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Serum metabolites as biomarkers 
in systemic sclerosis‑associated 
interstitial lung disease
C. Meier1, K. Freiburghaus2, C. Bovet2, J. Schniering1, Y. Allanore3, O. Distler1, C. Nakas2,4 & 
B. Maurer1*

Systemic sclerosis (SSc) is a severe multi‑organ disease with interstitial lung disease (ILD) being the 
major cause of death. While targeted therapies are emerging, biomarkers for sub‑stratifying patients 
based on individual profiles are lacking. Herein, we investigated how levels of serum metabolites 
correlated with different stages of SSc and SSc‑ILD. Serum samples of patients with SSc without ILD, 
stable and progressive SSc‑ILD as well as of healthy controls (HC) were analysed using liquid targeted 
tandem mass spectrometry. The best discriminating profile consisted of 4 amino acids (AA) and 3 
purine metabolites. l‑tyrosine, l‑tryptophan, and 1‑methyl‑adenosine distinguished HC from SSc 
patients. l‑leucine, l‑isoleucine, xanthosine, and adenosine monophosphate differentiated between 
progressing and stable SSc‑ILD. In SSc‑ILD, both, l‑leucine and xanthosine negatively correlated 
with changes in FVC% predicted. Additionally, xanthosine was negatively correlated with changes in 
DLco% predicted and positively with the prognostic GAP index. Validation of l‑leucine and l‑isoleucine 
by an enzymatic assay confirmed both the sub‑stratification of SSc‑ILD patients and correlation 
with lung function and prognosis score. Serum metabolites may have potential as biomarkers for 
discriminating SSc patients based on the presence and severity of ILD. Confirmation in larger cohorts 
will be needed to appreciate their value for routine clinical care.

Systemic sclerosis (SSc) is a multi-system fibrotic disease with high morbidity and  mortality1. Fibrosing interstitial 
lung disease (ILD) affects 60% of patients and is the leading cause of disease-related  deaths2,3. Disease severity 
at time point of ILD diagnosis and progression over time determine the  prognosis2,4,5. Currently available meas-
ures such as imaging, pulmonary function tests, or patient reported outcome scores have been shown to be of 
limited predictive value for the identification of SSc-ILD patients with poor  prognosis6,7. Circulating biomarkers 
as readily available tools have been studied extensively with focus on serum proteins and auto-antibodies, but 
have not yet been established for daily  use8.

A more recent research trend focuses on metabolic changes in diseased  states9. Metabolic pathways represent 
central hubs within cells that have significant impact on complex signalling networks as well as cell functions. 
Metabolites are the final products of pathophysiologic processes caused by diseased states or by exposure to 
environmental factors or drugs and as such offer an integrated view of the biochemical milieu of bodily fluids or 
 tissues10. The profiling of the metabolites present in biological samples—called metabolomics—has the potential 
to provide novel insights into pathophysiological  processes11. Disturbed metabolism in the setting of (lung) 
fibrosis is increasingly  acknowledged12. In general, the balance shifts from a catabolic to an anabolic state. In 
accordance, corresponding changes in the respective energy pathways occur, including e.g. an altered amino acid 
(AA) metabolism and enhanced protein production, an increased glycolysis with depletion of glucose, oxidative 
stress with mitochondrial dysfunction, decreased ATP levels, and reduced beta-oxidation of fatty  acids13–15. The 
biologic relevance is supported by recent data showing that metabolic reprogramming successfully retransforms 
myofibroblasts to fibroblasts and activates degradation of extracellular  matrix16–18, which offers novel therapeutic 
perspectives.

Metabolomics studies in ILD have so far mainly analysed lung tissue, bronchoalveolar lavage fluid (BALF) 
or exhaled breath condensate (EBC) from patients with idiopathic pulmonary fibrosis (IPF), the most prevalent 
form of  ILD14,19. One serum-based study identified LysoPC, a potential precursor of lysophosphatic acid as 
discriminator between patients and healthy  controls20. In SSc, data are scarce. Two recent studies showed some 
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diagnostic potential since SSc patients could be distinguished from healthy controls based on their serum and/
or urine metabolome with alterations in hexose, glycerolipid, and amino acid  metabolism21,22.

Given the high unmet need of sub-stratifying biomarkers for ILD in SSc, the aim of our study was to evaluate 
the potential of serum metabolites to identify SSc patients according to their disease state with special focus on 
differentiating those with progressive from non-progressive ILD as base of therapeutic decision making.

Results
Patients’ characteristics. To decrease potential confounding factors for metabolomics studies, we matched 
the participating individuals (n = 12 per group, n = 48 in total) for age, sex, and time point of blood withdrawal. 
Demographic, clinical, and laboratory data are summarized in Table 1. The mean age was 61.5 ± 9.9 years, the 
majority of patients was female (n = 30, 83.3%), 25.0% (n = 9) had diffuse cutaneous and 27.8% (n = 10) had 
limited cutaneous disease, whereas 22.2% (n = 8) and 25.0% (n = 9) had only sclerodactyly or no skin involve-
ment, respectively. The mean disease duration of SSc defined as onset of first non-Raynaud’s phenomenon was 
9.0 ± 7.7 years. The mean disease duration of ILD was 3.2 ± 2.5 years. No differences in non-lung organ involve-
ment were observed.

All SSc patients included in the study fulfilled the 2013 ACR/EULAR classification  criteria23 at the time of 
blood withdrawal.

Patients with progressing ILD show different clinical features compared with patients with 
stable ILD. With respect to autoantibody profiles, a higher prevalence of anti-Centromere antibod-
ies occurred in non-ILD patients (n = 9, 75%; p = 0.0045), of which the majority had only sclerodactyly or no 
skin involvement (n = 7, 58.3%) (Table 1). Anti-topoisomerase1-positivity, previously reported in the context 
of severe skin and lung involvement, was predominantly found in progressive SSc-ILD patients (n = 7, 58.3%, 
p = 0.0045, Fig. 1a) (Table 1, Fig. 1b).

While no difference was seen in time from onset from first non-Raynaud’s symptoms between the different 
patients’ groups, progressive patients had a significantly longer average duration of ILD than stable patients 
(mean ± SD = 4.7 ± 2.7 vs. 1.7 ± 1.0 years, p = 0.0028) and a more severe skin fibrosis as assessed by modified Rod-
nan skin score (mRSS) than both stable SSc-ILD and non-ILD patients (Table 1; Fig. 1c, mean ± SD = 10.3 ± 7.7 
vs. 4.5 ± 5.8 and 3.7 ± 4.1, respectively; p = 0.024 and 0.011).

In addition, progressive SSc-ILD patients had a significantly lower forced vital capacity (FVC% predicted) 
than stable (mean ± SD = 80.7 ± 22.8 versus 108.1 ± 18.5 versus 102.1 ± 18.8, p = 0.0059 and p = 0.036, respectively) 
and non-ILD patients, while their diffusion capacity for carbon monoxide (DLco% predicted) was significantly 
lower than that of SSc patients without ILD (mean ± SD = 58.6 ± 25.1 versus 79.2 ± 13.1, p = 0.035) (Table 1, 
Fig. 1d,e). During the observation period, patients with progressive ILD experienced a significant decline in 
lung function compared with stable ILD patients (change FVC% predicted mean ± SD − 14.5 ± 7.1 versus 4.4 ± 7.1, 
p < 0.0001 and change DLco% predicted − 16.1 ± 21.6 versus 2.1 ± 14.6, p = 0.026; Table 1). Moreover, both the 
gender-age-physiology (GAP)24 and composite physiologic index (CPI)25 values, developed for the prediction 
of mortality in IPF patients, were higher in progressive than in stable SSc-ILD patients indicating a worse prog-
nosis (mean ± SD = 2.6 ± 2.1 versus 1.2 ± 1.1 and 38.2 ± 20.8 versus 22.4 ± 11.5, p = 0.031 and 0.048, respectively, 
Table 1; Fig. 1f,g).

While there was a tendency towards a higher prevalence of immunosuppressive treatment, higher erythrocyte 
sedimentation rate (ESR) and higher C-reactive protein (CRP) levels in progressive SSc-ILD patients, changes 
were not statistically significant (Table 1). In addition, there was a non-significant tendency towards a lower body 
mass index (BMI) in progressive SSc-ILD compared to stable SSc-ILD and non-ILD patients (Table 1) (p = 0.35).

Metabolic serum profiling detects differences between disease subtypes. To identify differen-
tially regulated serum metabolites as potential discriminators between healthy individuals and different SSc 
subgroups, targeted metabolic profiling for 110 metabolites (Supplementary Table S1) using targeted LC–MS/
MS analysis was performed. After data processing and filtration, a total of 85 serum metabolites was detected, 
56 in ESI (electron spray ionization) positive, 24 in ESI negative mode, and 5 in both modes (Supplementary 
Table S2). To test our hypothesis of distinct and discriminating metabolite patterns we performed multivari-
ate analysis (hierarchical clustering and PLS-DA), followed by univariate analysis. Performance of significant 
metabolites from both analyses was then assessed by ROC analysis.

Hierarchical clustering of the targeted serum profiles suggested differences between the four groups (Fig. 2), 
which became more apparent in the subsequent PLS-DA (Fig. 3). Interestingly, the clearest separation was 
observed when comparing patients with progressing and stable ILD (Fig. 3b).

Serum metabolites show potential as biomarkers. To define the best discriminating metabolites we 
used variable importance in projection (VIP) scores (Supplementary Tables S3a,b) with a rather strict threshold 
set at ≥ 2. Based on this approach, we found distinct metabolite signatures for the different group comparisons 
(Table 2). Healthy individuals and SSc patients were best distinguished by changes in the amino acids (AAs) 
l-tyrosine and l-tryptophan, whereas SSc patients with and without ILD were best classified by dysregulation 
of l-threonine, xanthosine, 3-aminoisobutyric acid, and adenosine monophosphate. Progressors compared 
to stable ILD patients were characterized by alterations of l-leucine, l-isoleucine, xanthosine, and adenosine 
monophosphate.

In accordance with the results from the multivariate analysis, ANOVA-based univariate analysis with FDR 
correction for multiple testing identified l-leucine (p = 0.028), l-tyrosine (p = 0.077), xanthosine (p = 0.032), 
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Table 1.  Clinical characteristics of SSc patients of the Zurich cohort at time point of serum collection. BMI 
body mass index, CPI composite physiologic index, CRP C-reactive protein, dcSS diffuse cutaneous SSc, DLco 
carbon dioxide diffusion capacity, ESR erythrocyte sedimentation rate, FEV1 forced expiratory volume in one 
second, FVC forced vital capacity, lcSSc limited cutaneous SSc, GAP gender-age-physiology, mRSS modified 
Rodnan skin score, SD standard deviation, TLC total lung capacity. a n dependent on available datasets. 
b Disease duration after onset of first non-Raynaud’s symptoms, cSymptoms reported by patients d Disease 
duration from first diagnosis of SSc-ILD c Including treatment with following medications: azathioprine, 
corticosteroids, hydroxychloroquine, leflunomide, methotrexate, mycophenolate mofetil, rituximab, and 
tocilizumab.

Characteristics Non-ILD SSc (n = 12) Stable SSc-ILD (n = 12) Progressive SSc-ILD (n = 12) All (n = 24–36a)

General

Sex, n (%)

Female 10 (83.3) 10 (83.3) 10 (83.3) 30 (83.3)

Male 2 (16.7) 2 (16.7) 2 (16.7) 6 (16.7)

Age (mean ± SD) 61.6 ± 9.1 62.0 ± 10.3 63.1 ± 11.1 61.5 ± 9.9

BMI (mean ± SD) 25.7 ± 5.8 24.2 ± 4.5 22.7 ± 4.3 24.2 ± 4.9

SSc

SSc disease  durationb, years 
(mean ± SD) 10.0 ± 10.0 7.1 ± 5.5 7.0 ± 9.9 9.0 ± 7.7

mRSS (mean ± SD) 3.7 ± 4.1 4.5 ± 5.8 10.3 ± 7.7 6.2 ± 6.6

Extent of skin disease, n (%)

dcSSc 1 (8.3) 2 (16.7) 6 (50.0) 9 (25.0)

lcSSc 4 (33.3) 2 (16.7) 4 (33.3) 10 (27.8)

Sclerodactyly only 2 (16.7) 4 (33.3) 2 (16.7) 8 (22.2)

No skin involvement 5 (41.7) 4 (33.3) 0 (0) 9 (25.0)

Joint involvement, n (%)

Synovitis 3 (25.0) 0 (0) 3 (25.0) 6 (16.7)

Tendon friction rubs 2 (16.7) 0 (0) 0 (0) 2 (0.06)

Organ involvement, n (%)

Cardiac  diseasec 1 (8.3) 1 (8.3) 1 (8.3) 3 (8.3)

History of renal crisis 0 (0) 0 (0) 1 (8.3) 1 (0.03)

Gastrointestinal  involvementc 7 (58.3) 4 (33.3) 7 (58.3) 18 (50.0)

Autoantibody positivity, n (%)

Anti-centromere 9 (75) 2 (16.7) 1 (8.3) 12 (33.3)

Anti-topoisomerase 1 1 (8.3) 2 (16.7) 7 (58.3) 10 (27.8)

Markers of systemic inflammation (mean ± SD)

ESR, mm/h 11.8 ± 8.4 25.3 ± 20.1 26.5 ± 20.6 20.9 ± 17.9

CRP, mg/L 3.1 ± 2.6 2.6 ± 3.5 4.4 ± 4.9 3.3 ± 3.7

Disease activity index (mean ± SD) 2.56 ± 0.92 2.41 ± 2.18 3.59 ± 2.18 2.91 ± 1.60

Immunosuppressive  treatmente, 
n (%) 4 (33.3) 7 (58.3) 8 (66.7) 19 (52.8)

ILD

Lung involvement in CT, n (%)

< 20% N/A 11 (91.7) 8 (66.7) 19 (79.2)

≥ 20% N/A 2 (11.1) 3 (25.0) 10 (27.8)

ILD disease  durationd, years 
(mean ± SD) N/A 1.7 ± 1.0 4.7 ± 2.7 3.2 ± 2.5

Lung function parameters, % predicted (mean ± SD)

FVC% predicted (mean ± SD) 102.1 ± 18.8 108.1 ± 18.5 80.7 ± 22.8 96.9 ± 22.9

DLCO% predicted (mean ± SD) 79.2 ± 13.1 68.8 ± 17.7 58.6 ± 25.1 68.9 ± 20.6

FEV1% predicted (mean ± SD) 96.1 ± 19.2 98.3 ± 18.6 82.3 ± 20.7 92.2 ± 20.3

TLC% predicted (mean ± SD) 104.8 ± 18.6 108.9 ± 11.9 90.9 ± 23.6 101.5 (19.8)

FVC change, % (mean ± SD) N/A 4.4 ± 7.1 − 14.5 ± 7.1 − 5.1 ± 11.9

DLCO change, % (mean ± SD) N/A 2.1 ± 14.6 − 16.1 ± 21.6 − 6.6 ± 20.2

GAP index (mean ± SD) N/A 1.2 ± 1.1 2.6 ± 2.1 1.2 ± 0.5

CPI index (mean ± SD) N/A 22.4 ± 11.5 38.2 ± 20.8 30.3 ± 18.3
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l-tryptophan (p = 0.028 for ESI+ and ESI− modes), and 1-methyladenosine (p = 0.077) as significantly altered 
between groups.

Analysis of peak areas showed that levels of l-leucine and l-isoleucine were highest in healthy individuals 
and gradually decreased from SSc patients without ILD to those with stable ILD. Interestingly, patients with 
progressing ILD had increased levels compared with stable SSc-ILD patients (Fig. 4a,b). For xanthosine, we 
observed significantly lower levels in healthy individuals compared with non-ILD SSc patients as well as for 
stable SSc-ILD patients compared with progressing SSc-ILD patients (Fig. 4c).

l-Tryptophan, l-tyrosine, l-threonine, and adenosine monophosphate showed a gradual decline from healthy 
individuals, SSc without ILD, stable ILD to progressive ILD (Fig. 4d–h), whereas the opposite occurred for 
3-aminoisobutyric acid and 1-methyl-adenosine (Fig. 4i,j).
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Figure 1.  Clinical characteristics of SSc patients from the Zurich cohort at time point of sample collection. 
mRSS modified Rodnan skin score, dcSSc diffuse cutaneous SSc, lcSSc limited cutaneous SSc, ACA anti-
Centromere antibodies, AT-1 anti-topoisomerase I antibodies, FVC forced vital capacity, DLco carbon monoxide 
diffusion capacity. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, #not significant. N = 12 per group.
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Table 2.  Significant VIP scores from PLS-DA for all group comparisons by electrospray ionization (ESI) 
mode and x-variate component. Significance is defined by VIP values ≥ 2 meaning that these metabolites were 
essential for the discrimination of different groups of patients in PLS-DA14,21.

Metabolite

VIP scores

ESI mode GroupsComponent 1 Component 2

l-Tyrosine 2.05
Positive

Healthy vs. all SScl-Tryptophan 2.23 2.10

l-Tryptophan 2.76 2.48 Negative

l-Threonine 2.13

Positive
ILD vs. non-ILD SSc

3-Aminoisobutyric acid 2.06

Adenosine monophosphate 2.48 2.03

Xanthosine 2.11 Negative

l-Isoleucine 2.14

Positive
Stable vs. progressive SSc-ILD

l-Leucine 2.41 2.21

Adenosine monophosphate 2.01

Xanthosine 2.75 2.09 Negative
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Figure 4.  Significant metabolites in univariate analysis of Z-score-normalized peak areas and PLS-DA analysis. 
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Amino acid profiles discriminate between groups and correlate with changes in lung function 
and prognostic scores. To select the best discriminators between two groups, we performed ROC curve 
analysis for the previously identified candidate serum metabolites.

l-Tryptophan, detected in both ESI+ and ESI− modes, best differentiated between healthy individuals and SSc 
patients (AUC 0.859, 95% CI 0.745–0.973; AUC 0.884, 95% CI 0.788–0.981), followed by 1-methyl-adenosine 
(AUC 0.822, 95% CI 0.705–0.939) and l-tyrosine (AUC 0.812, 95% CI 0.667–0.958) (Fig. 5a).

In the group of ILD patients, l-leucine and l-isoleucine performed best to distinguish progressing from sta-
ble SSc-ILD patients (AUC 0.847, 95% CI 0.695–1.00; AUC 0.826, 95% CI 0.656–0.997), followed by adenosine 
monophosphate (AUC 0.785, 95% CI 0.598–0.971), and xanthosine (AUC 0.771, 95% CI 0.551–0.990) (Fig. 5b). 
No significant performance of metabolites in separation of non-ILD SSc and SSc-ILD patients was observed.

Notably, in patients with SSc-ILD, both, l-leucine and xanthosine negatively correlated with changes in the 
lung function parameter FVC% predicted (r = − 0.48 and − 0.51; p = 0.016 and 0.011, respectively), while xan-
thosine also negatively correlated with changes in DLco% predicted (r = − 0.58; p = 0.0038) as well as with the 
GAP index (r = 0.67, p = 0.0005) (Fig. 6). The correlations with changes in absolute values of FVC and DLco% 
predicted are shown in Supplementary Fig. S1a,b.

Validation of higher values of the BCAAs l-leucine and l-isoleucine in progressive SSc-ILD compared to 
stable disease with the use of an enzymatic assay resulted in similar results as LC–MS/MS, with significantly 
higher values detected in progressive patients (mean = 286.5 and 235.5 µM, for progressive and stable patients, 
respectively; p = 0.005) (Fig. 7a). In ROC analysis (AUC 0.818, 95% CI 0.631–1.032), a cut-off value of 250.3 µM 
separated stable from progressive patients with a sensitivity of 72.7% and a specificity of 83.3% (Fig. 7b). Fur-
thermore, BCAA levels negatively correlated with changes in FVC (r = − 0.55; p = 0.0063) and DLco% predicted 
(r = − 0.56; p = 0.0064) and positively with the GAP index (r = 0.66, p = 0.0005) (Fig. 7c–e). The correlations with 
changes in absolute values of FVC and DLco% predicted are shown in Supplementary Fig. S1c.

For external validation, we assessed BCAA levels in an independent, prospectively followed cohort of SSc-
ILD patients from Paris. Herein, we found a similar trend towards higher BCAA levels in patients with future 
progression of ILD as compared with patients, who remained stable during follow-up (mean = 311.8 ± 26.5 and 
289.6 ± 49.4 µM, respectively; p = 0.26). In ROC analysis, BCAA levels correlated negatively with DLco% pre-
dicted (r = − 0.38, p = 0.027), and positively with the mortality-predicting GAP index (r = 0.39, p = 0.022). The 
results are shown in Supplementary Fig. S2, for details including patients’ characteristics refer to data supplement.

In order to assess whether elevated BCAA levels specifically reflected fibrotic and/or pulmonary processes, 
we measured BCAA serum levels in 29 patients with non-fibrotic, primary  myositis26 without concomitant 
ILD. Interestingly, BCAA levels significantly correlated with disease activity (Spearman’s rho = 0.52, p = 0.0037). 
Patients with CK levels exceeding the defined upper limit of normal (170 U/l) had significantly higher BCAA 
levels than patients with low CK levels (mean = 309.5 ± 88.2 and 253.4 ± 41.6 U/l for active and inactive disease, 
respectively; p = 0.032). No correlation with systemic inflammation, measured by CRP as a surrogate marker, was 
observed (Pearson’s r = − 0.15, p = 0.46). All results are visualized in Supplementary Fig. S3, for details including 
patients’ characteristics refer to data supplement.
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Figure 5.  ROC analyses of significant metabolites for healthy (n = 12) versus all SSc (n = 36) (a) and stable 
(n = 12) versus progressive (n = 12) SSc-ILD (b). AUC area under the curve. Brackets show confidence intervals.
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Discussion
Our study assessed the potential of serum metabolites as circulating biomarkers for disease stage and severity 
of SSc(-ILD).

Serum metabolite profiling yielded a final set of 4 amino acids and 3 purine metabolites. Changes in the levels 
of l-tyrosine, l-tryptophan, and 1-methyl-adenosine distinguished HC from SSc and alterations in l-leucine, 
l-isoleucine, xanthosine, and adenosine monophosphate profiles differentiated between progressing and stable 
SSc-ILD with l-tryptophan and l-leucine being the best performing discriminators in the respective groups. 
Increased serum levels of l-leucine and l-isoleucine in progressing compared with stable SSc-ILD patients were 
confirmed with an independent enzymatic assay with definition of a critical threshold.

Our results are in accordance with the previously reported changes in energy metabolism in fibrotic 
 conditions13–15. Similar to our findings, previous studies in SSc and/or fibrosing ILD reported decreased serum 
levels of l-tryptophan27,28 or upregulation in IPF  lungs14.  Serotonin29, a downstream product of l-tryptophan, 
was upregulated in fibrotic  conditions30 including  SSc31. Inhibition of the serotonin receptors had anti-fibrotic 
effects in experimental conditions and in a first in human proof-of-concept  study31–34. Elevated levels of 1-methyl-
adenosine29 have so far been associated with proliferative and/or metastatic  tumors35,36. Non-modified adenosine, 
generated extracellularly from ATP/ADP  breakdown29, is a well-known pro-fibrotic  mediator37–41 and its inhibi-
tion was beneficial in in fibrotic animal  models37,39,40. As previously observed in lung fibrosis and  SSc14, there was 
a tendency towards lower adenosine monophosphate (AMP) levels in progressing SSc-ILD patients. Interestingly, 
AMP-activated protein kinase (AMPK), a critical sensor of energy sufficiency, acts as central metabolic switch in 
cell metabolism and thereby opposes mTOR (mechanistic target of rapamycin)  signaling42. Activation of AMPK 
causes a shift from anabolism to catabolism to generate ATP to restore energy homeostasis. In fibrotic condi-
tions, AMPK activity was  decreased43. Activation of AMPK reversed established lung fibrosis in the bleomycin-
induced lung fibrosis  model16,44. Patients with progressing compared with stable ILD displayed increased levels 
of l-leucine and l-isoleucine. Both essential AA are highly abundant in  elastin45, a major extracellular matrix 
(ECM) protein, and could thus reflect increased ECM degradation 46. Both AAs were upregulated in the lung tis-
sue and the exhaled breath condensate of patients with  IPF14,19. BCAAs, particularly l-leucine, stimulate protein 
synthesis and reduce protein breakdown via the phosphorylation of  mTOR47. mTOR plays an important role in 
anabolic processes by causing cells to switch from oxidative phosphorylation to aerobic  glycolysis48. In SSc und 
pulmonary fibrosis, mTOR activity is  increased49. Its inhibition by rapamycin prevented experimental fibrosis 
and showed some benefit in diffuse cutaneous SSc patients in a small, randomized, phase 1  study48. Finally, levels 
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Figure 6.  Pearson correlation analysis of l-leucine (a) and xanthosine (b) in SSc-ILD patients (n = 24). 
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of xanthosine, a purine nucleoside, were higher in progressing compared with stable SSc-ILD. Purine receptors 
were suggested to play a role in  fibrosis50.

Clinically, in our study, progressive SSc-ILD patients were characterized by a higher prevalence of anti-
topoisomerase 1 antibodies, more severe skin fibrosis, worse lung function and worse prognostic scores. In addi-
tion, they showed a substantial decline of lung function in the observation period. Of note, both l-leucine and 
xanthosine negatively correlated with pulmonary function (changes in FVC% and DLco% predicted respectively) 
and one ILD-mortality prediction score (GAP index), which underlines their relevance as biomarker candidates. 
Most importantly, we could validate l-leucine and l-isoleucine, the best discriminators of progressing vs. stable 
SSc-ILD, in an independent experiment. In the BCAA assay, a defined cut-off value of 250.3 µM distinguished 
stable from progressive patients with good sensitivity and specificity and again BCAA levels negatively correlated 

c

−20

0

20

240 280 320
BCAA concentration [uM]

C
ha

ng
e 

in
 F

V
C

 [%
]

r = -0.55 ** −50

−25

0

25

50

C
ha

ng
e 

in
 D

Lc
o 

[%
]

240 280 320
BCAA concentration [uM]

r = -0.56 **

d

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.818 (0.631-1.000)

stable progressive

200

250

300

350

B
C

A
A

 c
on

ce
nt

ra
tio

n 
[u

M
]

**a b

240 280 320
BCAA concentration [uM]

r = 0.66 ***

6

4

2

0

G
A

P
-in

de
x

e

Figure 7.  Results of t-test (a), ROC analysis (b), and Pearson’s correlation analysis (c,d) of enzymatic analysis of 
BCAA levels in SSc-ILD patients. **p ≤ 0.01. N = 11 (progressive) and 12 (stable).



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21912  | https://doi.org/10.1038/s41598-020-78951-6

www.nature.com/scientificreports/

with changes of lung function parameters and positively with the GAP index. Similar results were obtained by 
analysing an independent, external validation cohort of SSc-ILD patients from Paris.

The limitations of our study mainly arise from the limited number of patients. Validation in external multi-
centre cohorts will be needed to assess the future usefulness in clinical routine. Furthermore, potential cor-
relations with other protein biomarkers should be assessed. Prediction modelling for progression of ILD with 
circulating biomarkers, clinical, functional, and imaging parameters would be ideal to test the performance 
of circulating biomarkers only models versus mixed models. This, however, again warrants large datasets and 
multi-centre cohorts.

Disturbances in AA metabolism have been reported in other studies on SSc and IPF. Differences in identi-
fied metabolite profiles might arise from different analysis and detection methodologies (i.e. mass spectrometry 
or ion exchange chromatography) or differences in sample collection, storage and processing. We decided on 
a large-scale targeted analysis on a triple quadrupole mass spectrometer rather than an untargeted full-scan 
approach applying high-resolution mass spectrometry due to the increased sensitivity, linearity, reproducibility 
and straight-forward metabolite identification of targeted LC–MS/MS  acquisition51. Although the applied assay 
covered multiple differentially regulated pathways, it is limited to the tested 110 metabolites. Further research 
could be carried out using untargeted metabolic profiling or a targeted assay covering a wider range of metabolites 
such as carbohydrates or phospholipids.

Additionally, given the real-life scenario, we cannot exclude that the fasting state and/or the diet might have 
some influence especially on the measured AA levels. Supplementation with micronutrients and/or vitamins did 
not occur in our patients’ cohort and we draw blood at approximately the same time in the morning to elimi-
nate potentially confounding factors as well as possible. The fact, however, that changes in (BC)AA levels were 
reported consistently in other studies of lung fibrosis argues against a strong or exclusively dietary influence.

Furthermore, we have to take into account that SSc is a multi-organ disease. In our study, patients with 
progressive ILD also had more extensive skin disease pointing towards a more severe disease state. We can 
therefore not assume that changes in BCAA serum levels exclusively reflect lung pathology. Taking into account 
the correlation between CK and BCAA levels in primary myositis patients, it seems likely that in both myositis 
and SSc(-ILD), high serum BCAA levels reflect overall disease activity characterized by a switch to an anabolic 
state with subsequent changes in AA metabolism. Thus, in these complex diseases, changes in BCAA levels can 
probably not be attributed to either pro-fibrotic or immune processes since they may rather reflect the disturbed 
metabolism that arises from global tissue remodelling with varying contributions of different cell types. This 
argues, however, not against the usefulness of BCAA as progression markers in a given disease context.

In conclusion, our study suggests that serum metabolites might have potential as circulating biomarkers for 
discriminating stable and progressive SSc patients. Confirmation in larger multi-cohorts will be needed to fully 
appreciate their value for routine clinical care.

Methods
Patients and controls. For this study, SSc patients from the University Hospital Zurich’s prospective SSc 
patients cohort were divided in the following three groups: patients without ILD (non-ILD), patients with stable 
ILD and patients with progressive ILD (n = 12 per group).

Progressive ILD was defined as either a relative decrease in FVC% predicted of ≥ 10% independent of changes 
in DLco% predicted, a decrease in FVC% predicted of 5–9% combined with a decrease in DLco% predicted 
of ≥ 15%, or an increase of pathologic lung involvement in high resolution computed tomography (HRCT) 
from < 20% to > 20% compared to the previous visit [mean follow-up interval = 14 months (range = 9–26)]52,53. 
Stable ILD was defined as the absence of the above-mentioned criteria for progression in any of the visits 
recorded in the EUSTAR  database54. Non-ILD patients were defined as having no evidence of lung involvement 
on HRCT scans.

Progressive SSc-ILD patients were matched with stable SSc-ILD and non-ILD SSc patients as well as healthy 
controls (HC, n = 12) for age, sex, and time point of blood withdrawal (morning).

In addition, serum BCAA levels were analyzed in two additional cohorts of SSc-ILD and primary myositis 
patients. Detailed information on these patients can be found in the Supplementary Methods, data supplement 
pp. 15.

Serum collection and processing was performed following a standardized protocol in accordance with inter-
national  guidelines55. Aliquots of serum were stored at − 80 °C until further processing.

Written informed consent was obtained from all enrolled individuals.
The study was approved by the canton of Zurich’s ethics committee (approval numbers: pre-BASEC-EK-839 

(KEK-no.-2016-01515), KEK-ZH-no. 2010-158/5, BASEC-no. 2018-01873, BASEC-no. 2018-02165, BASEC-no. 
2017-01298, KEK-ZH-Nr. 2012-0419) and all experiments were conducted in accordance with Swiss legislation 
and regulation.

Ultra‑high performance liquid chromatography coupled to tandem mass spectrometry 
(UHPLC‑MS/MS). Serum profiling of 110 metabolites of SSc patients and HC was performed using a tar-
geted ultra-high performance liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) assay 
as described  previously56.

For metabolite extraction, frozen serum samples were thawed at room temperature and 300 μL of ice-cold 
acetonitrile:ethanol (1:1) were added to 100 μL of each sample. Samples as well as an equally treated water-only 
control were vortexed, incubated at − 80 °C for 30 min, centrifuged at 14,000g and 4 °C for 15 min in order to 
pellet precipitated proteins. 350 μL of supernatant of each sample were transferred to fresh tubes and dried using 
a speed vacuum centrifuge at room temperature and minimum pressure 5.1 Torr (Savant SPD1010, Thermo). 
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Dried samples were stored at − 80 °C until further processing. Before data acquisition, samples were reconstituted 
in 300 μL 10% methanol, resulting in a final dilution of 1:3 in respect to the initial serum volume, sonicated for 
1 min in a water bath in order to ensure complete reconstitution, and centrifuged at 14,000g and 4 °C for 20 min. 
Supernatants were transferred into glass vials and a quality control (QC) sample was generated by pooling 10 µL 
of all extracted samples. After, samples were stored at 10 °C until analysis.

Extracted samples were analysed on a Xevo TQ-S triple quadrupole mass spectrometer interfaced with an 
electrospray ionization source and coupled to an ACQUITY UPLC I-Class system (both Waters, USA). Chro-
matographic separation of 1 µL extract was performed using reversed-phase chromatography (ACQUITY UPLC 
HSS T3, 2.1 × 100 mm, 1.8 µm column, Waters, USA) with mobile phases composed of (A) 0.1% formic acid 
in  H2O and (B) 0.1% formic acid in methanol. Further LC conditions and MS-specific parameters were previ-
ously  described56. LC–MS/MS analysis was performed in negative electrospray ionization (ESI−) and positive 
electrospray ionization (ESI+) mode by two independent injections.

Before analysis of the first sample, the instrument was equilibrated by injecting the QC sample 10 times. 
Samples were then injected in a randomized block design order with intermittent analysis of the QC sample 
after every fifth sample in order to observe instrumental fluctuations.

Branched chain amino acid assay. For quantification of the branched chain amino acids (BCAAs) leu-
cine, isoleucine and valine, a commercial colorimetric analysis kit (ab83374, Abcam, United Kingdom) was used 
following the manufacturer’s instructions. Briefly, leucine standards and 2.5 times diluted serum samples were 
incubated for 30 min at room temperature with an equal volume of enzyme and substrate mix, initiating the 
colorimetric reaction. Absorption at 450 nm was measured using a GloMax-Multi Detection System microplate 
reader (Promega, USA) and sample BCAA concentration was calculated in relation to the standard curve.

Data analysis. Raw metabolomics data were processed in Skyline 4.2 (MacCoss Lab Software, USA). 
Metabolites were selected for statistical analysis if the peak area decreased linearly in diluted samples, no detec-
tion of background noise in extracted blank sample was observed, the coefficient of variation was ≤ 20% in QC 
samples, as well as, a proper peak shape was detected. Peak areas were then used for further statistical analysis 
as specified below.

Statistical data analysis and graphical visualization was performed using R 3.6 with the mixOmics package 
and GraphPad Prism 8.0.0 (GraphPad Software, USA).

For univariate analysis and hierarchical clustering, metabolite peak areas were Z-score transformed for 
normalization.

Univariate analysis of metabolomics data was performed by applying one-way ANOVA as well as Tukey’s 
post-hoc test for multi-group data. Two-group data was analyzed by Student’s t-test or Mann–Whitney U test 
for parametric and nonparametric data, respectively. Categorical data were analysed using a Chi-Square test. 
Performance of potential biomarkers was assessed by Receiver Operating Characteristic (ROC) curve analysis. 
Pearson’s (parametric) and Spearman’s (non-parametric) correlation was used to assess linear relationships 
between metabolites and clinical parameters. For multivariate analysis, data were subjected to partial least-square 
discriminant analysis (PLS-DA) with variable importance in projection (VIP) scores of ≥ 2 being considered 
statistically significant.

Data are presented either as medians with interquartile range (boxplots; horizontal line = median, 
boxes = interquartile range) or as means with standard deviation (SD; tables). For false discovery rate (FDR)-
corrected univariate analysis of metabolites (excluding post-hoc testing), the significance level was set to 0.1, 
while for all other analyses p-values < 0.05 were considered statistically significant.

Data availability
All data are presented either in the main text or in the data supplement. The datasets generated and/or analysed 
during the current study are available from the corresponding author on reasonable request.
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