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Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic

cellular processes but the scope of its function in cancer cells is unknown. Here, we report

dominant-negative activity of novel peptides derived from the SAP and RGG-domains of

SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of

cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation

of alternatively spliced targets and decreases levels of key spliceosome proteins in a

cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone

marks, promotes chromatin compaction, and activates the DNA damage response

and cell death in a subset of cancer cell types. Our findings reveal an unprecedented

function of SAFA-derived peptides in regulating diverse SAFA molecular functions as

a tumor suppressive mechanism and demonstrate the potential therapeutic utility of

SAFA-peptides in a wide range of cancer cells.

Keywords: hnRNPU, epigenetics, cell-penetrating peptides, splicing, cancer, RGG domain, SAP domain

BACKGROUND

Scaffold-attachment-factor A (SAFA, also called hnRNPU) belongs to the hnRNP family of proteins
and functions in diverse processes such as epigenetic regulation, transcription, alternative splicing,
translation, and mRNA stability (1–4). SAFA possesses both RNA and DNA binding activities.
SAFA-mediated transcriptional activation and repression are the result of its association with p300
(5) and CBX5 (6), respectively. SAFA also participates in transcription by directly associating
with BRG1 complex (7) and/or with core-TFIIH complex (8). It plays a structural role in nuclear
organization by selectively tethering chromatin loops to the nuclear matrix (9, 10). SAFA binds
to both coding and non-coding transcripts and functions as a global splicing regulator (3) and
enhances the stability of some transcripts by binding to their 3′ UTR (11). Cellular studies have
implicated SAFA as a master regulator of cell proliferation (12, 13) and cellular senescence (14).
In X-chromosome inactivation, the RGG domain mediates recruitment and layering of the Xist
molecule on the X-chromosome (15, 16).

With such diverse functions it is not surprising that SAFA has key roles in development
and disease (17–19). SAFA variants are associated with central nervous system, cardiac, and
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renal anomalies (20). Its contribution to the pathogenesis of a
variety of cancers is emerging. SAFA stabilizes LIMD1 mRNA
by interacting with LIMD1-AS1 to suppress non-small cell
lung cancer progression (21). SAFA associates with DIS3-like
3′–5′ exoribonuclease 2 to promote hepatocellular carcinoma
cell progression via SAFA-mediated alternative splicing
(22). A SAFA/HNF4A-AS1/CTCF axis drives neuroblastoma
progression (23). More recent data show that SAFA plays an
essential role in telomere maintenance, 3D organization of
interphase chromatin, chromosome positioning, and dynamic
epigenetic landscape (24, 25). These collective findings provide
a compelling rationale for developing agents targeting SAFA as
cancer therapy.

Cell-penetrating peptides are short stretches of amino
acids which allow translocation of cargo molecules across
cell membranes (26). This strategy has been employed to
deliver dominant-negative peptides that abrogate the function of
oncoproteins Myc and ATF5, now in clinical trials (27–35). In
addition to these targets, numerous peptides have been developed
with effects on gastric and colon cancers (36), breast cancer (37),
glioma (38), and skin cancer (39). Based on these promising
results, the U.S. Food Drug Administration has recently
authorized 15 different peptides (7% of all drugs approved
from 2015 to 2019), reflecting the intense drug discovery efforts
employing this strategy by industry and academia (40).

SAFA possesses both RNA and DNA binding activities
conferred by the RGG (arginine-glycine-glycine) domain and
the SAP (SAF-A/B acinus, and PIAS) domains, respectively (41–
43). Senescence is a key tumor suppressor mechanism (44) and
loss of SAFA reduces cell proliferation and induces premature
senescence in human fibroblasts (14). Thus, we reasoned that
further exploration of SAFA loss-of-function could yield novel
cancer therapeutic strategies. We developed SAFA-derived cell-
penetrating peptides to interrogate the mechanism(s) of SAFA-
mediated functions in cancer cells and to identify dominant-
negatives that phenocopy the decreased proliferation and altered
gene expression that result from loss of SAFA. We employed
Penetratin peptide to deliver the SAP and RGG domains
and show widespread effects on cancer hallmarks and the
epigenetic and transcriptional landscapes of multiple cancer cells.
These results establish significance of SAFA and the efficacy of
dominant-negative SAFA domains in cancer.

MATERIALS AND METHODS

Cell Culture
T47D, MDA-MB231, CRL2327, HFF1, MCF10A, UMUC3,
HCT116, DU145, and HT1080 were obtained and maintained as
per the procedures mentioned in ATCC.

Antibodies
R-IgG (SC-2027), m-IgG (SC-2025), Actin (SC-47778),
H3K9me3 (Cell Signaling, 9754), H3K4me3 (Cell Signaling,
9751; active motif 39159), H3K27me3 (Cell Signaling, 9733),
H3K9ac (Cell Signaling, 9649), H3K36me (Cell Signaling, 4909),
H3K27ac (ab4729), H3K9ac (ab176916), rabbit polyclonal Ki67
(Vectorlabs), MLL1 (Active motif, 61296), Lamin A/C (E-1),

hnRNPC1/C2 (Santa Cruz, SC-32308), SAFA (Santa Cruz,
SC-32315), U2AF65 (Santa Cruz, SC-53942), DDX3 (Santa
Cruz, SC-365768), hnRNPA1 (Santa Cruz, SC-32301), hnRNPD
(abcam, ab61193), DDX21 (Santa Cruz, SC-376953), DNA
Damage antibody sample kit (Cell Signaling, 9947), Apoptosis
Antibody sampler Kit (Cell signaling, 9915).

Protein Extraction and
Immunoprecipitations (IPs)
Immunoprecipitations were performed as previously
described (45).

Immunoblotting
Immunoblotting were performed as previously reported (46).
Briefly, whole-cell lysates or immunoprecipitated samples were
separated by 4–20% precast BioRad gels (BioRad). PAGE
separated proteins were transferred to the PVDF membrane by
Mini Trans-Blot cells (BioRad) as per the manufacturer protocol.
Protein-bound PVDF membranes were further sequentially
incubated in a blocking buffer followed by primary (protein
specific as mentioned in the figures) and secondary antibodies
(anti-rabbit or anti-mouse HRP conjugate) for 2 h each. ECL Plus
Western Blotting detection system (GE Healthcare) was used to
reveal the protein of interest.

Crystal Violet Assay/Optical Density
Method of Cell Quantitation
Cell viability was measured by crystal violet staining as per the
manufacturer’s protocol (Abcam: ab232855). Three independent
wells represent each point on the curve.

RNA Isolation and Reverse
Transcription–PCR Analysis
Total RNA was prepared as per the manufacture’s protocol.
We used “RNeasy Mini Kit” (Cat.No:74104) from Qiagen to
extract the cell’s RNA. cDNA is prepared from the RNA using
EcoDry Premix Double Primed (Clontech) kits to convert the
RNA to cDNA. Quantitative RT-PCR was performed by using
SsoFast Evagreen Supermix (Bio-Rad) as per the manufacturer’s
protocol. PCR amplicons are separated on 3% agarose gels to
detect alternative spliced isoforms. Images were captured using
the ChemiDoc XRS + system (BioRad). Densitometric analysis
was performed on long and short isoform-specific amplicons of
the spliced targets using ImgaeJ software to calculate the ratio
between exclusion and inclusion.

Chromatin Immunoprecipitation (ChIP)
Chromatin Immunoprecipitation was carried out as per the
manufacturer’s protocol (9003S, Cell Signaling).

siRNA Knockdown
Cells are transfected with control or SAFA specific siRNAs (14)
using X-treme GENE HP DNA transfection reagent (Roche,
6366244001) as per manufacturer’s instructions.
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Cell Counts for Cell-Penetrating Peptide
(CPP) Treatments
Cells were seeded in six-well dishes and incubated with 10µM
concentration of peptides in Opti-MEM reduced serum media
for the indicated times. Cell counts were measured by using
a hemocytometer.

Generation of Synthetic Peptides
Lifetein synthesized SAFA-derived peptides at purity >75%.
Peptides were dissolved in RNase/DNase free MilliQ water
at 2 mg/ml and used at a concentration of 10µM in Opti-
MEMmedia.

RT-PCR and ChIP-PCR primer sequences are available in
Table 1 (Supplementary Material).

Annexin V-FITC Apoptosis Detection
Activation of apoptosis was measured by Annexin V/PI dual
staining by using Annexin V-FITC apoptosis detection kit
(ab14085) from Abcam. Seventy percent of confluent cells were
treated with 10µM of SAFA-derived peptides for 12 h in Opti-
MEM reduced media. Apoptosis detection assay was performed
as per themanufacture’s protocol. The stained cells were captured
by confocal microscopy.

Immunofluorescence was performed as previously
published (47).

UV-Crosslinked RNA Immunoprecipitation
(CLIP)
CLIP was performed as previously described (48). Briefly,
confluent cells were treated with SAFA-derived peptides for
12 h in reduced serum media. Cells were washed in PBS and
crosslinked in Stratalinker at the rate of 400 mj/cm2 at 254 nm
wavelength. Lysates were prepared by using NP-40 lysis buffer
(50mM Tris HCl, pH 7.4, 150mM NaCl, 1mM MgCl2, 0.05%
NP-40, 1mMDTT, 2mM EDTA, 100 U/ml RNasin, and Protease
inhibitor cocktail). Cleared lysate was immunoprecipitated by
anti-SAFA and R-IgG antibodies. Enriched protein complexes
were subjected to Proteinase K digestion at 37◦C for 1 h,
followed by RNA isolation using phenol/chloroform extraction
and ethanol precipitation.

RESULTS

SAFA-Derived Cell-Penetrating Peptide
Reduces Proliferation of Human
Fibroblasts
We previously demonstrated that the SAFA RGG domain
facilitates the interaction of SAFA and Polycomb complex
to regulate expression of pro-proliferation genes (14). We
hypothesized that the RGG and SAP domains could have
dominant-negative functions that would induce SAFA loss-of-
function on cell survival, proliferation, and gene expression.
We added Penetratin and a his6-tag to the RGG and SAP
domains (Figures 1A,B). We also generated a peptide derived
from the SAFA actin dimerization domain because it plays a
vital role in SAFA-actin complex formation and transcription.

These engineered peptides are henceforth referred to as CPP-
RGG, CPP-SAP, CPP-Act: the N-terminal Penetratin domain
mediates cellular penetration (49) and the C-terminal his6-
tag acts as a detection signal. A his6-tagged Penetratin
peptide serves as a negative control (CPP-Neg). Analysis of
human primary fibroblasts treated with 10µM peptide showed
that all four peptides entered the nucleus within 4 h of
treatment (Supplementary Figures 1.1B–E, negative controls
Supplementary Figures 1.1F–J). Quantitation of cell number
and viability showed that treatment with CPP-RGG markedly
decreases proliferation, total cell number, and Ki67+ cells while
the effect of CPP-SAP was more modest (Figures 1D–F). In
contrast, CPP-Act had no effect on any of these parameters
and we did not pursue this peptide further (Figures 1C–G,
Supplementary Figure 1.2). In addition to their effects on
proliferation, CPP-RGG and CPP-SAP significantly increased
cell death (Figure 1G). SAFA depletion decreases expression
of E2F-responsive genes (14) and qRT-PCR revealed decreased
transcripts of such genes in CPP-RGG and CPP-SAP treated
fibroblasts (Figure 1H). CPP-SAP treated fibroblasts displayed an
increased number of Annexin V positive, propidium iodide (PI)
negative cells, suggestive of early apoptosis (Figures 1I,J) while
CPP-RGG treatment caused an increased number of Annexin
V/PI positive cells which are late apoptotic or necrotic cells
(Figure 1K). These results are congruent with SAFA loss-of-
function and suggest dominant-negative properties of CPP-SAP
and CPP-RGG.

CPP-SAP and CPP-RGG Are Effective
Against a Range of Cancer Cell Types
SAFA is expressed in a wide range of cancer cells so we
tested these peptides on breast (luminal subtypes T47D and
CRL2327 and MDA-MB231 triple-negative subtype), bladder
(UMUC3), colorectal (HCT116), fibrosarcoma (HT1080), and
prostate (DU145) cancer cell lines. We also tested MCF10A
cells, a transformed but non-malignant breast epithelial
cell line and verified that the peptides enter these cells
(Supplementary Figures 2.1A–G). Treatment of all of the
cancer cell lines with CPP-RGG decreased cell proliferation
as measured by total cell number, crystal violet OD units,
and Ki67+ cells (Figures 2A–J). MCF10A and HT1080 cells
were markedly less sensitive to treatment. The percentage
of dead cells was >60% in all cell lines except MCF10A and
HT1080 (Figures 2D,I) demonstrating that the altered growth
curves reflect both decreased proliferation and increased death.
Analysis of the apoptotic/necrotic response by Annexin V/PI
staining showed both early and late apoptotic cells in response
to CPP-RGG in MDA-MB231, HCT116, and UMUC3 cells
(Supplementary Figures 2.2,2.3) while T47D and DU145 cells
exhibited only increased annexin V-positive cells. In contrast,
MCF10A and HT1080 cells had only modest increases in
Annexin V-positive cells.

Notably, and in contradistinction to CPP-RGG, the effects
of CPP-SAP were restricted to cancer cells, with minimal
effects on MCF10A cells (Figures 2A–G). Although HT1080
is a fibrosarcoma line, CPP-SAP treatment did not affect their
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FIGURE 1 | Cell-penetrating SAFA-derived peptides reduce proliferation of primary human fibroblasts. (A) Schematic of SAFA protein domains. Numbers in the

brackets indicate the amino acids in each domain. (B) Sequences of the cell-penetrating peptides CPP-Neg, CPP-SAP, CPP-RGG, and CPP-Act-His. The sequence

of Penetratin is in green, his tag in red and SAFA domains in black. (C) Representative light microscopic images of crystal violet-stained human foreskin fibroblasts

treated for 48 h with 10µM concentration of SAFA-derived peptides (listed at top). (D) Crystal violet assay of HFFs treated with CPP-Neg, CPP-SAP, CPP-RGG, and

CPP-Act peptides over the course of 48 h. (E) Quantification of total cell number of HFFs after 24 h of treatment. (F, G) Quantitation of Ki67+ cells (F) and -percent

dead trypan blue stained cells (G) after 24 h of peptide treatment. (H) qRT-PCR analysis of cell cycle gene transcripts in total RNA isolated after 24 h of peptide

treatment. (I–K) Representative immunofluorescence images of Annexin V/PI stained HFFs after 24 h treatment [(I), CPP-Neg; (J), CPP-SAP; (K), CPP-RGG].

Individual channels (Hoechst = Blue, Annexin V = Green, PI = Red) and merged images are shown. Scale bar, 50µm. Error bars represent standard deviation. *p <

0.05, **p < 0.01 relative to control.

proliferation or viability and these cells were also the least
sensitive to CPP-RGG (Figures 2F–I); this is consistent with
the low sensitivity of fibrosarcoma to both chemo- and
radiation therapies; http://www.nice.org.uk/guidance/

csgsarcoma/evidence/improving-outcomes-for-people-with-
sarcoma-the-manual2. CPP-SAP treatment increased Annexin
V staining in T47D and DU145 cells and increased levels of both
Annexin V and PI inMDA-MB231, CRL2327, HCT116, UMUC3
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FIGURE 2 | Cell-penetrating SAFA-derived peptides reduce proliferation of a wide range of cells. (A) Representative light microscopic images of crystal violet stained

MCF10A, T47D, CRL2327, and MDA-MB231 cells treated with SAFA-derived peptides (listed at top), for 48 h at 10µM. (B) Crystal violet assay of MCF10A, T47D,

CRL2327, and MDAMB 231 cells treated with CPP-Neg, CPP-SAP, and CPP-RGG peptides over the course of 48 h (1= 0, 2 = 12, 3 = 24, 4 = 48). (C–E)

Quantification of total cell number, dead cells as measured by trypan blue staining and Ki67+ cells after 24 h of CPP-Neg, CPP-SAP, CPP-RGG, and CPP-Act peptide

treatments. (F–J) As in (A–E) with additional cell lines. *p < 0.05, **p < 0.01 relative to control.
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cells; MCF10A and HT1080 cells were again minimally affected
(Supplementary Figures 2.2,2.3). Thus, the dominant-negative
functions of CPP-SAP and CPP-RGG diverge in their effects on
cancer cells vs. benign or chemo-resistant cells.

The cell-type specific effects on gene expression led us
to ask whether peptide treatment altered cell cycle kinetics.
To this end, we treated DU145, HCT116, and HT1080 cells
with peptide for 24 h, stained adherent cells with PI and
performed flow cytometry (Supplementary Figure 2.4); we also
assayed cell cycle gene expression (Supplementary Figure 2.5).
CPP-SAP and CPP-RGG reduced the percentage of DU145
cells in G1 with an increase in S phase, indicating that
the peptides cause replication defects and/or DNA damage
(Supplementary Figure 2.4A). Despite altered expression of
multiple cell cycle genes (Supplementary Figure 2.5E), the
phased distribution of cells was not perturbed in HCT116
cells (Supplementary Figure 2.4B) possibly indicating that the
progression to death was rapid in this line. Peptide treatments
marginally affected cell cycle gene expression in HT1080 cells
(Supplementary Figures 2.4C,2.5H) consistent with their lower
sensitivity to peptide in previous assays.

CPP-SAP and CPP-RGG Alter Splicing of
SAFA Targets in a Cell-Specific Manner
SAFA participates in exon inclusion and exclusion of a large
number of transcripts via the RGG domain (3). We reasoned
that the dominant-negative effect of CPP-RGG could arise
from antagonism of SAFA-mediated splicing. To test this, we
assayed splice variants of 20 known SAFA targets in response
to peptide treatment in cancer and MCF10A cells (Figure 3,
Supplementary Figures 3.1,3.2). Densitometric values of PCR
amplicons were used to calculate the exon inclusion vs. exclusion
ratio and are represented as bar graphs for each target;
representative agarose gel pictures are also shown. While both
peptides had effects on alternative splicing, this was more
common and robust with CPP-RGG. There was no bias or
predictable pattern toward exon inclusion or exclusion of a
particular target (compare CDC42BPA across cell lines), with
the exception of EIF2A which had increased ratio of inclusion
to exclusion in most cell types only in response to CPP-RGG.
Even the two breast cancer lines (T47D and MDA-MB231)
had divergent splicing responses to peptide treatment. Once
again, HT1080 was the least affected cancer cell line (Figure 3F).
Overall peptide treatment alters the stoichiometry of isoforms
in diverse, context-specific ways, as has been reported elsewhere
for SAFA (50, 51). These data provided strong evidence for
an RGG-mediated dominant-negative effect on SAFA-mediated
splicing regulation.

RGG Peptide Alters the Binding of SAFA
With RNA Targets in vivo
We next examined SAFA’s interaction with its spliced targets
by CLIP analysis to determine whether altered splicing in
response to peptide correlated with altered SAFA RNA-binding
(Figures 4A–D, Supplementary Figure 4.1). CPP-Neg. CLIP

shows SAFA binding to each transcript in the cells tested. CPP-
RGG markedly decreased SAFA binding to isoforms of most
targets in all cell lines while CPP-SAP had variable effects
as exemplified by PICALM (Figures 4A–D). These results are
consistent with the pivotal role of the RGG domain in the RNA-
binding functions of SAFA (52). In contrast, CPP-SAP-domain
influences the splicing of only a few of these targets. Thus, CPP-
SAP and CPP-RGG have distinct effects on alternative splicing.

CPP-SAP and CPP-RGG Peptides Alter
Levels of Spliceosome Complex Proteins
and RBPs in HCT116 Cells
Several spliceosome components are known to interact
with SAFA (3, 53) therefore, we decided to determine the
consequence of peptide treatment on the levels of SAFA-
interacting RNA-binding proteins (RBP) relevant to splicing,
cell cycle progression, and survival. We did these experiments
in HCT116 cells because this line responded similarly to
both peptides with regard to splicing (Figure 3B). We first
examined the effects of peptide on amount and location of
SAFA since altered levels or location could contribute to
the splicing defects observed and to any alterations in its
interacting partners: while CPP-SAP did not alter the SAFA
levels or subcellular localization, CPP-RGG treatment caused
only a modest reduction of SAFA expression in HCT116 cells
(Figure 5A, Supplementary Figures 4.2.11,4.2.12). We think
it is unlikely that this small decrement in SAFA levels is a
significant contributor to the dramatic phenotypes observed in
response to CPP-RGG.

The peptides had marked effects on the levels and localization
of numerous SAFA splicing interacting proteins. SC35, a known
nuclear speckle marker, was drastically reduced in response to
both peptides with a decrease in SC35+ cells of >60% by CPP-
RGG [Figure 5B, quantitation at right of image (Figure 5J)].
We also noted a decrease in speckle size in those cells retaining
SC35. Thus, the downregulation of SC35 coincides with the
splicing defects induced by the dominant-negative domains of
SAFA. Loss of SC35 induces widespread alterations in splicing
as well as genomic instability, and cell cycle arrest (54) as
does SAFA depletion, suggesting a convergent role for SAFA
and SC35 in spliceosome speckle organization and function.
DDX3 and DDX21 are multifunctional Dead-box RNA helicases
involved in spliceosome formation, RNA processing, and cell
cycle regulation (55). Again, both peptides decreased these
nuclear proteins and CPP-RGG had the most pronounced effect
(Figures 5C,D). Loss of hnRNPA1, hnRNPC1, or hnRNPD
induces cell death and proliferation arrest in cancer models (56–
62) and these proteins were decreased in response to peptide
treatment (Figures 5E–G). U2AF65 plays an instrumental role
in splicing regulation and other RNA processing events (63, 64).
The effect of CCP-SAP was more pronounced (>80% of cells
had decreased or no U2AF65 signal, Figure 5H) than CPP-
RGG. In the case of the multifunctional RBP TDP-43, CPP-SAP
treatment caused a modest increase in TDP43 signal intensity
while in CPP-RGG treated cells, TDP43 was redistributed
as punctae in the cytoplasm in >90% of cells (Figure 5I,
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FIGURE 3 | CPP-RGG and CPP-SAP dysregulate alternative splicing of SAFA-targets in vivo in wide range of cells. (A–F) RT-PCR testing of known SAFA-dependent

splicing targets in T47D (A), HCT116 (B), MDA-MB231 (C), DU145 (D), UMUC3 (E), and HT1080 (F) cells treated with CPP-Neg, CPP-SAP, and CPP-RGG peptides

for 12 h. Bar graph indicates the relative ratio of cassette inclusion to exclusion as determined by densitometry. Red and green bars indicate exclusion and inclusion,

respectively. Representative gel pictures are shown below the bar graphs. *p < 0.05, **p < 0.01 relative to control.

Supplementary Figures 4.2.15, 4.2.16). Previous reports have
demonstrated such a pattern for TDP43 (65) and suggested that
these punctae are localized within stress granules (66). Together
these results argue that effects of SAFA-derived peptides on
levels and localization of multiple key splicing factors and RBPs
contribute to splicing defects as a mechanism for the decreased
cell proliferation and survival in response to peptides.

CPP-SAP and CPP-RGG Treatment Do Not
Affect SAFA Chromatin Occupancy on
Target Gene Promoters
We previously showed that SAFA binds to the promoters
of pro-senescence genes and represses their transcription
in fibroblasts (14). Deletion studies suggest that the SAP-
domain plays a pivotal function in SAFA-mediated chromatin
activities (67, 68). Hence, we asked whether CPP-SAP treatment
disrupted SAFA’s association with target promoters. We
isolated SAFA-bound chromatin complexes from HCT116

and MDA-MB231 cells treated with CPP-SAP, CPP-RGG, and
CPP-Neg. peptides. We choose them based on their similarly
severe cell death response in the Annexin V/PI experiments

(Supplementary Figures 2.2B,2.3B). Quantitative ChIP-qPCR

employing a series of primer pairs that scan the promoters

of a randomly selected group of known SAFA target genes

detected specific association of SAFA with all the promoters

at baseline. Surprisingly, there was only a modest reduction

of SAFA association with three of these promoters by CPP-

SAP and only in HCT116 cells (Supplementary Figure 4.3).

Expression of CDK1, CDC25C, and CCNB1 is markedly deceased

by both peptides in fibroblasts and HCT116 cells (Figure 1H,

Supplementary Figure 2.5E). So, we tested whether this was

related to SAFA binding however, we did not detect SAFA

occupancy at these promoters (Supplementary Figures 5A,B) in

either MDA-MB231 or HCT116 cells. These results indicate that

the mechanism for peptide efficacy is not based on disruption of

SAFA chromatin binding.
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FIGURE 4 | CPP-RGG and CPP-SAP disrupt endogenous SAFA association with specific mRNAs and spliceosome components. (A–D) Crosslinked RNA-IP (CLIP)

with anti-SAFA and R-IgG followed by RT-PCR for transcript detection. Red box highlights the lack of SAFA interaction with specific transcripts in CPP-RGG treated

cells. *p < 0.05, **p < 0.01 relative to control.

CPP-SAP and CPP-RGG Peptide Alter
Levels and Localization of Nuclear Matrix
Proteins
SAFA associates with the nuclear matrix and mediates tethering
of higher-order chromatin loops to the nuclear matrix via
scaffold/matrix attachment regions (S/MARs); the SAP domain
is needed for this aspect of SAFA function (67). Since there

are over 400 nuclear matrix associated proteins (69) we chose a
small group of these based on SAFA interaction, representation of

four different aspect of nuclear architecture and these additional

criteria: (1) Lamin B1 and A/C play a key role in nuclear
membrane structure and organization, spatial positioning of the

genome, and global gene regulation and disruption of SAFA

causes widespread remodeling of chromatin-lamina interactions
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FIGURE 5 | CPP-RGG and CPP-SAP decrease levels of SAFA-interacting spliceosome components. (A–I) Immunofluorescence for spliceosome interactors (red or

green signal) and nuclei (Hoechst, blue) in peptide treated HCT116 cells. Scale bar, 10µm. (J) Quantification of % of HCT116 cells positive for proteins indicated at

left. *p < 0.05, **p < 0.01 relative to control.
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at the nuclear periphery (24); (2) PML nuclear bodies associate
with the nuclear matrix (70, 71); (3) SAFA loss-of-function causes
a substantial reduction of C23 which, is an essential nucleolar
protein of nucleolus that, when decreased, causes nucleolar
disruption, increased H3K9me3 marks, and cell cycle arrest
(72); (4) ASH2L and SAFA are recruited during X chromosome
inactivation and function in layering of the Xist lncRNA and
subsequent maintenance of Xi repression (16, 73). We found
that both CPP-SAP and CPP-RGG lead to diminished lamin
B1 in the nuclear envelope in ∼50% of cells, as well as nuclear
distortion despite overall maintenance of lamin B1 protein
levels (Figures 6A,F). Interestingly, lamin B1 is expressed in
all cells, whereas lamin A/C is restricted to differentiated cells
(74) and primarily regulates nuclear stiffness (75). We scored
peptide treated cells for lamin A/C levels and evaluated for
the presence of distortion or other irregularities of the nuclear
envelope. While we found a significant difference in lamin
A/C staining in both CPP-RGG and CPP-SAP treated cells
(Figures 6B,F, Supplementary Figures 6.1.13,6.1.14), abnormal
nuclei were more common and severe in the CPP-SAP
treated cells (Figures 6A–E). Consistent with this, the effects
on PML bodies and protein levels were very different: CPP-
SAP increased PML number, size, and the total amount of
PML protein whereas CPP-RGG significantly reduced these
features (Figures 6C,F). Both peptides caused a significant
decrease in C23 intensity in the nucleus and nucleolar regions
(Figures 6D,F) comparable to the effect of SAFA knockdown
(24); consistent with this, nucleolar size and number increased
(best visible in Figures 6C,E). This is notable because it is a
marker of senescence and apoptosis (76–78). Both peptides
decrease the number of ASH2L+ cells and ASH2L protein
levels (Figures 6E,F). Assay of the ASH2L partner MLL1 did
not show any peptide effect (Supplementary Figure 6.1.17).
Thus, peptides specifically effect select nuclear proteins. All
of these findings indicate diverging effects of these peptides
on distinct nuclear proteins regulating multiple aspects of
nuclear architecture.

We considered the marked differences in PML bodies and
levels in response to CPP-SAP vs. CPP-RGG in light of reports
that increased PML (seen with CPP-SAP) correlates with the
DNA response (DDR) (79) while decreased PML (seen with
CPP-RGG) correlates with progression to apoptosis (80). This
prompted us to investigate possible modes of action in cell
cycle and apoptosis. RGG-CPP caused a marked increase
of cleaved caspase-7 (Supplementary Figure 6.2C), but not
cleaved caspase-3 or−9 (Supplementary Figures 6.2A,B).
Analysis of DDR markers revealed increased levels of p-
ATM and its substrate pCHK2 by CPP-SAP (Figures 6G,J,K).
Conversely, CPP-RGG treatment increased p-ATR and its
downstream target p-CHK1 (Figures 6H,I,K). A surprising
finding was an increase in p-CHK1 in the cytoplasm
of CPP-SAP treated cells (Figure 6I) and p-CHK2 in the
cytoplasm of CPP-RGG treated cells. Cytoplasmic functions
for these proteins in cellular metabolism and homeostasis
are emerging (81). In total these findings indicate complex
and differential cellular stresses induced by CPP-SAP vs.
CPP-RGG treatment.

CPP-SAP Induces Heterochromatinization
in a Cell-Specific Manner
We previously demonstrated that silencing SAFA in human
primary fibroblasts results in alteration of chromatin structure
with increases in senescence-associated heterochromatin foci
(SAHFs) and in marks of transcriptionally silent chromatin
(H3K9me2/3, H3K27me3, H2A119ub; 14). We reasoned that
SAFA-derived dominant-negative peptides would similarly
disrupt higher-order chromatin structure in cancer cells and
so we isolated native chromatin from a selection of cancer
and benign cells and digested with micrococcal nuclease
(MNase) to assess the effects of peptide treatment. As
in previous experiments, MCF10A and HT1080 cells were
unaffected by peptides, evident by the virtually identical MNase
ladders between control and CPP-SAP or CPP-RGG peptides
(Figures 7A,B). In contrast, chromatin structure in HCT116,
T47D, and UMUC3 cancer cells was markedly compacted by
CPP-SAP treatment, but not CPP-RGG (Figures 7C-E). This
nuclease resistance was previously reported in response to SAFA
knockdown in AML12 hepatocytes (24). From these results, we
infer that SAFA facilitates active chromatin hubs in cancer cells
and conclude that CPP-SAP leads to heterochromatinization
which predicts widespread repression of gene expression that
likely contributes to CPP-SAP mediated effects on proliferation
and death of cancer cells. This is another example of differential
effects of CPP-SAP and CPP-RGG and are consistent with the
DNA-binding function of the SAP domain.

SAP and RGG Peptides Induce Wide
Spectrum of Alterations in Global
Epigenetic Marks
SAFA interacts directly with active (H3K4me3, H3K36me,
H3K9ac) and repressive (H3K27me) histones (14). The increase
in heterochromatin in response to CPP-SAP would be expected
to correlate with globally altered histone marks. We tested
this in HCT116 cells and found that H3K9me3 repressive
marks were increased by CPP-SAP (Figures 7K,N) while
most active marks were decreased (H3K4me3, H3K27ac,
H4K8ac, H3K9ac, Figures 7F–J,N). CPP-RGG decreased some
active marks but had no effect or minimal effects on
repressive marks with the exception of H2A119ub (Figures 7L,N,
Supplementary Figures 7.11,7.12). The high levels of γH2AX
in these cells at baseline (Figure 7M, CPP-Neg) (82, 83) was
markedly decreased by both CPP-SAP and CPP-RGG; in the
CPP-SAP treated cells, this finding is consistent with the fact
that γH2AX requires relaxed chromatin to bind and recruit
other DDR proteins to generate H2AX foci. The explanation
for the decrement of γH2AX in the CPP-RGG cells is not
clear. Previously we reported that PRC1 complex interacts
with SAFA in a lncRNA dependent manner via the RGG
domain and silencing of SAFA reduces global H2A119ub marks
(14). Consistent with this, CPP-RGG treatment phenocopied
SAFA loss-of-function and showed reduced H2A119ub signal
intensity as well as loss of the H3K4me3 epigenetic mark
catalyzed by the Trithorax complex (ASH2L, MLL1, RbBP5,
and WDR5, Figures 7A,N). SAFA and ASH2L are part of the
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FIGURE 6 | CPP-RGG and CPP-SAP disrupt nuclear architecture and nuclear protein levels and activate DDR pathways in HCT116 cells. (A–E) Representative

immunofluorescence images for lamin B1, lamin A/C, PML, C23 (red); ASH2L (green); nuclei (Hoechst, blue) after 24 h of treatment. Scale bar, 10µm. (F) Quantitation

of cells for protein or nuclear feature. Immunoblots showing the endogenous protein levels. (G–J) Immunofluorescence for DDR effectors (green) and nuclei (Hoechst,

blue) in CPP-treated HCT116 cells. Scale bar, 10µm. (K) Immunoblots of p-ATM, p-ATR, p-CHK1, p-CHK2, and tubulin levels in HCT116 cells treated with

SAFA-derived peptides. *p < 0.05, **p < 0.01 relative to control.

X-chromosome inactivation machinery, and the RGG domain
is required for SAFA recruitment by XIST RNA. Altogether,
these experiments suggest divergent roles for the SAP and RGG
domains in SAFA-mediated chromatin organization and global
epigenetic regulation.

DISCUSSION

SAFA is a multimodular protein involved in the structural
organization of nuclear matrix (42), genome integrity (84),
transcription regulation (8), alternative splicing (3), and mRNA
stability (11). Alterations in SAFA levels and function are linked
to numerous diseases, including cancer and to cardiovascular,
neurological, and developmental disorders (4, 17, 18, 20,

85). Recent reports suggest that SAFA plays an instrumental
role in cell fate decisions by regulating gene expression of
coding and non-coding genes (14, 86). Despite its importance,
mechanistic understanding of SAFA in cancer cell behavior is
still primitive and it has not been probed as a therapeutic target.
We demonstrate the therapeutic potential of SAFA-derived
cell-penetrating peptides from the DNA (SAP) and RNA (RGG)-
binding domains on a wide range of cancer cells.

Our main finding is the functional divergence of SAFA-
derived peptides in controlling multiple key cellular processes in
normal vs. cancer cells which suggests the potential for SAFA-
based treatments via these novel therapeutic molecules.
Treatment of cancer cells with SAFA-derived peptides
significantly dysregulated the transcripts and isoforms of
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FIGURE 7 | CPP-RGG and CPP-SAP alter chromatin organization and epigenetic marks in HCT116 cells. (A–E) Agarose gel images of MNase digested chromatin

from cells pretreated with SAFA-derived peptides for 24 h. Relative MNase concentration gradient at top. (F–M) Immunofluorescence analysis of histone marks in

treated HCT116 cells. Scale bar, 10µm. (N) Quantification of % cells positive for the indicated histone epigenetic marks in response to peptide treatment. *p < 0.05,

**p < 0.01 relative to control.

multiple genes involved in neoplastic transformation, apoptosis,
cell cycle regulation, and proliferation in a peptide-specific
manner. CPP-SAP had marked effects on proliferation, growth
and the epigenetic landscape by driving chromatin compaction
and global loss of active histone marks in cancer cells; benign
(MCF10A) or treatment-resistant cancer cells (HT1080) were
un- or minimally affected. In contrast, CPP-RGG had effects on

proliferation, survival, and splicing/splicing machinery in all cell
types; combined with its very minimal effects on the epigenetic
landscape, these findings indicate that SAFA’s RNA-binding
and processing functions are essential for cell survival. These
peptides also had divergent effects on nuclear architecture and
levels of DDR effectors. These different modes of action offer
distinct opportunities for targeted therapies.
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The dramatic alteration of chromatin structure and histone
marks in cancer cells in response to CPP-SAP are consistent
with previous work showing that the depletion of SAFA itself
leads to chromatin compaction and loss of long-range chromatin
interactions (24). CPP-SAP treatment leads to chromatin
compaction by increasing heterochromatin marks, suppressing
the expression of proliferation-promoting genes, and inhibiting
cancer cell growth. Expanded euchromatin is a hallmark of the
epigenetic landscape in cancer so the resistance of MCF10A
and HT1080 cells to CPP-SAP-mediated chromatin compaction
underscores the importance of SAFA in establishing active
chromatin environment in cancer cells and provides additional
incentive to pursue this peptide for clinical purposes. RGG-
derived peptide reduces global H3K4me3 marks, likely due to
the association of SAFA with ASH2L, a part of the Trithorax
histone methyltransferase complex (73). Combined with data
showing that SAFA and ASH2L are critical for X-chromosome
inactivation and the requirement for the RGG domain for SAFA’s
association with XIST RNA (15), our data support important
functional crosstalk between SAFA and ASH2L in regulating the
H3K4me3 mark. We show profound effects of these peptides on
nuclear architecture and organelles and divergent effects on PML
and PML bodies: CPP-SAP markedly increased levels of PML
protein and number of PML bodies which is notable since PML
overexpression is associated with the DDR, repressive histone
epigenetic marks, altered cell cycle blockade, and induction of
senescence (87). This notion is concordant with our finding of
elevated levels of p-ATM and its downstream target p-CHK2.

CPP-RGGpeptide treatment disrupts SAFA-mediated splicing
and the splicing machinery in all cell lines tested suggesting that
RNA association of SAFA is essential for alternative splicing,
spliceosome complex dynamics, and RBP interactions. In vivo
RNA-binding analyses (CLIP assays) indicate that CPP-RGG
sequesters SAFA’s RNA-binding activity and functions as a
splicing antagonist in a wide range of cells. There may be other
mechanisms underlying its effects on splicing, such as altered
protein-protein interactions and activity of signal transduction
pathways. Moreover, cell cycle arrest, loss of proliferation, and
apoptosis induction are the common phenotypes observed in
response to splicing machinery loss-of-function (88, 89). CPP-
SAP exhibited a modest effect on the alternative splicing of SAFA
target genes in cancer cells. Since the CLIP showed that CPP-SAP
did not disrupt SAFA binding to its RNA targets, this effect is
not themanifestation of a co-transcriptional splicingmechanism,
as has been postulated (90). Rather it suggests that splicing
dysregulation by CPP-SAP may be a secondary consequence of
transcriptional dysregulation. Hence, our study demonstrates an
important division of labor between the DNA and RNA binding
domains of SAFA in a wide range of cells.

CPP-SAP and CPP-RGG altered binding of SAFA to
chromatin of only a subset of known target promoter regions and
the effect was target- and cell type-specific. Further investigation
is needed to identify SAP-domain-independent mechanisms
for SAFA binding to the unaffected targets, and to determine
how broadly DNA binding is affected by both CPP-SAP and
CPP-RGG across the genome. This could reveal distinct SAFA

functions (and peptide specific targets and pathways) in different
types of cancer cells as also indicated by target- and cell-specific
effects on splicing and levels of cell cycle gene transcripts.

Several groups have reported anti-cancer strategies with
nucleic acid-based knockdowns or pharmacological inhibition
of cancer drivers however, many of these proteins play critical
functions in both healthy and cancer cells which like other cancer
treatments, can result in life threatening side effects thereby
which could limit their utility or render them no more effective
than standard chemotherapy. This is the obvious advantage of
identifying interventions whose effects are restricted to cancer
cells (91–93) such as the CPP-SAP peptide. If the observed
effects of peptide treatments are via off-target or non-specific
actions, we would expect the same responses to CPP-SAP and
CPP-RGG. To our knowledge we are the first to explore and
develop hnRNP-derived cell-penetrating peptides as potential
cancer therapies and the CPPs we describe hold promise as
seen with other anti-tumor peptides such as OmoMYC and
d/n/ATF5-2 (91, 93, 94). We are undertaking the next step of
preclinical testing of these peptides using mouse models of BC
and patient-derived tumor xenografts to assess their ability to
interfere with tumor formation, progression, and metastasis in
vivo. Our results serve as a proof-of-principle that the cell-
penetrating dominant-negative domains of SAFA are efficacious,
selective, and non-toxic.
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