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The Superfine Open Pulled Straw (SOPS) system is the most commonly used method

for vitrification of pig embryos. However, this system only allows the vitrification of four to

seven embryos per straw. In this study, we investigated the effectiveness of the open

(OC) and closed (CC) Cryotop® systems to simultaneously vitrify a larger number of

porcine embryos. Morulae, early blastocysts and full blastocysts were vitrified with the

open Cryotop® (n= 250; 20 embryos per device) system, the closed Cryotop® (n= 158;

20 embryos per device) system and the traditional superfine open pulled straw (SOPS;

n = 241; 4–7 embryos per straw) method. Fresh embryos from each developmental

stage constituted the control group (n = 132). Data expressed as percentages were

compared with the Fisher’s exact test. The Kruskal-Wallis test was used to analyze the

effect of the different vitrification systems on the embryo quality parameters and two-

by-two comparisons were accomplished with the Mann-Whitney U test. Differences

were considered statistically significant when p < 0.05. Vitrified and control embryos

were incubated for 24 h and examined for viability and quality. At the warming step, the

embryo recovery rate for the CC system was 51%, while all embryos were recovered

when using OC and SOPS. There were no differences between the vitrification and

control groups in the postwarming viability of full blastocysts. In contrast, morulae and

early blastocysts that were vitrified-warmed with the SOPS system had lower viability

(p < 0.01) compared to those from the OC, CC and control groups. The embryonic

viability was similar between the OC and control groups, regardless of the developmental

stage considered. Moreover, the embryos from the OC group had comparable total cell

number and cells from the inner cell mass and apoptotic index than the controls. In

conclusion, the OC system is suitable for the simultaneous vitrification of 20 porcine

embryos at different developmental stages and provides comparable viability and quality

results to fresh embryos subjected to 24 h of in vitro culture.
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INTRODUCTION

Unlike cattle, in vivo-derived embryos at the morula and
blastocyst stages are the preferred source of embryos for
commercial embryo transfer (ET) in pigs (1). High farrowing
rates have been reported after transfer of these embryonic
developmental stages (2–9) and, therefore, they are used for
high-quality genetic embryo cryopreservation programs.

Cryopreservation by slow freezing has been shown to be
ineffective in pig embryos because of their high content of
intracellular lipids. Although the amount and composition may
vary slightly between different breeds of Sus scrofa domesticus,
vitrification is currently the main method for cryopreservation of
pig embryos (10, 11). The ultrarapid vitrification systems are the
most effective systems for vitrification of porcine embryos (12–
14). These systems, which use a minimal volume of vitrification
solution, achieve cooling rates as high as 20,000 ◦C/min (15).
Among them, open pulled straw (OPS) (14) has been widely
used for the cryopreservation of porcine embryos, specifically, the
superfine open pulled straw (SOPS) (16). The SOPS vitrification
of morulae and blastocysts has resulted in elevated embryo
survival rates (17–20) and satisfactory fertility (∼70%) after ET
(7, 17). However, the SOPS system only allows the vitrification
of small groups of embryos per straw (four to seven embryos)
while maintaining the minimal volume of vitrification solution
(1–2 µl) required for an adequate cooling rate (6, 17, 19, 21, 22).
This is a disadvantage of this system for efficient cryopreservation
and transfer of porcine embryo. A potentially successful ET
requires between 30 and 40 vitrified in vivo-derived embryos,
depending on whether the transfer is performed by surgical or
nonsurgical procedures (7). This fact means that six to eight
SOPS straws need to be warmed to accomplish a single ET. This
technical limitation of the SOPS procedure can be overcome by
using other vitrification systems, such as Cryotop R© [Kitazato,
BioPharma Corporation, Ltd, Japan; (12)], which, thanks to its
design, permits the simultaneous vitrification and warming of
a greater number of embryos. Despite this technical advantage
for polytocous species, very little information is available on the
number of embryos that can be successfully vitrified at one time
using the Cryotop R© system. In porcine species, although some
studies have reported the vitrification of five to six in vivo-derived
blastocysts loaded onto the tip of a Cryotop R© device (23–25),
to the best of our knowledge, the simultaneous vitrification of a
greater number of morulae and blastocysts using this system has
not been investigated.

On the other hand, open vitrification systems (such as SOPS
and Cryotop R©) permit direct contact between the vitrification
solution and liquid nitrogen (LN2), which may pose a potential
risk of pathogen transmission during long-term storage (26–
28). A solution to this concern would be to use sterile LN2,
but this possibility is expensive or requires special equipment.
The use of closed vitrification systems is an ideal alternative
to prevent direct contact between the medium and LN2, thus
preventing possible contamination of the embryos. Several closed
vitrification systems, such as closed 0.25ml straws (29) and
CryoTipTM and CryoBioTM’s high security vitrification systems
(30), have been used to vitrify in vitro-produced porcine embryos,

but the efficiency of closed vitrification of in vivo-derived
embryos remains to be elucidated. Moreover, although several
studies using in vivo-derived mouse (31, 32) and bovine (33)
embryos have compared the efficiency of open and closed
vitrification systems, no comparative information for in vivo-
derived porcine embryos is available.

The aim of this study was to determine the effectiveness of
open Cryotop R© (OC) and closed Cryotop R© (CC) systems for
simultaneous vitrification in a single storage device of 20 in
vivo-derived porcine morulae or blastocysts and to compare the
postwarming embryo survival and quality obtained with these
systems with the conventional SOPS procedure and also to non-
vitrified control group.

MATERIALS AND METHODS

Animals
The animals used as embryo donors for this experiment were
sows (Landrace x Large White; 2 to 7 parity). The sows were
housed in individual crates in an automatically ventilated room
located in a commercial farm in southeastern Spain (Agropor
S.L., Murcia, Spain). They were fed a commercial ration twice
daily, and water was provided ad libitum.

Superovulation, Estrous Detection and
Artificial Insemination
Synchronization of the sows was performed by weaning.
Superovulation was induced with 1,000 IU eCG (Folligon R©,
Intervet International B.V., Boxxmeer, the Netherlands; im)
24 h postweaning and 750 IU (hCG; Veterin Corion R©, Divasa
Farmavic, S.A., Barcelona, Spain; im) 2–3 days later.

Estrous detection was performed once daily in the morning
(7:00 am) by using a mature vasectomized boar. Sows with
a standing estrous reflex were inseminated immediately after
estrous was detected and again 24 h later by intracervical artificial
insemination with 3 × 109 spermatozoa in 90ml doses prepared
at a commercial artificial insemination center using semen from
an adult Duroc boar extended in Beltsville Thawing Solution
extender (34).

Embryo Collection
Embryos were collected on Day 6 (Day 0: onset of estrous)
as previously described (3). Briefly, the donors were sedated
and anesthetized with azaperone (2 mg/kg, im) and sodium
thiopental (7 mg/kg, iv), respectively, and maintained with
isoflurane (3.5–5%). After exposition of the ovaries and uterine
horns, the number of corpora lutea on each ovary was counted
and the embryos were recovered from each uterine horn with
30ml of Tyrode’s lactate-polyvinyl alcohol buffered with HEPES
(TL-HEPES-PVA) (3, 35). Only embryos at the morula and
blastocyst stages with good or excellent morphology (36), were
selected for the experiment. The collected embryos were placed
in 1ml of TL-HEPES-PVA and transported at 39 ◦C to the
laboratory at the University of Murcia.
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Vitrification and Warming
Vitrification of the embryos was performed within 3 h after
collection as previously reported (8, 17). For this purpose,
three vitrification systems were used: OC, CC, and SOPS.
Embryos were vitrified into groups of 20 (OC and CC systems)
or four to seven (SOPS system) embryos. The base medium
for vitrification and warming was TL-HEPES-PVA. Embryo
handling was performed at room temperature (RT; 22◦C to
24◦C), and the media were maintained at 38–39◦C.

The embryos were washed twice in TL-HEPES-PVA and
equilibrated in the first vitrification medium (V1: TL-HEPES-
PVA + 7.5% ethylene glycol + 7.5% DMSO) for 3min and then
in the second vitrification medium (V2: TL-HEPES-PVA + 16%
ethylene glycol+ 16% DMSO+ 0.4M sucrose) for 1 min.

For SOPS vitrification, the embryos were transferred to a
1–2 µl drop of V2 medium in the final step and loaded into
the straw by capillary action. Then, the straws were immersed
horizontally into LN2. In the OC and CC groups, the embryos
were transferred to a 40µl droplet of V2medium and then placed
in groups of 1–3 embryos in 0.5–1 µl of V2 medium and loaded
with a pulled glass pipette on the top of the polypropylene sheet
of the Cryotop R© device. The total number of embryos vitrified in
each device was 20. For the OC vitrification system, the device
was immersed in LN2 and then covered with a plastic sheath
before storage. For the CC vitrification system, the polypropylene
sheet with the embryos was inserted into an LN2 precooled plastic
sheath, and then the plastic sheath was heat sealed to avoid any
direct contact between the sample and LN2. Vitrified embryos
were kept in LN2 containers for 1 week before warming.

The embryos were warmed using the one-step dilution
method (37). For the SOPS system, the end of the straw
containing the embryos was immersed in 800 µl of warming
medium (TL-HEPES-PVA with 0.13M sucrose). In the OC and
CC groups, the polypropylene sheet containing the embryos
was immersed 2ml of warming medium. Once the embryos
were recovered, they were equilibrated in warming medium
for 5min and then washed in TL-HEPES-PVA. After that, the
embryos were cultured for 24 h in 500 µl of NCSU23 medium
supplemented with 0.4% BSA and 10% FCS at 39◦C in an
atmosphere of 5% CO2 in air while covered with paraffin oil (38).

Recovery Rate at Warming and
Assessment of Embryo Survival Rate After
Culture
The recovery rate at warming was calculated as the number
of embryos recovered after warming to the total number of
vitrified embryos. The postwarming in vitro embryo viability
was morphologically assessed at the end of culture using
a stereomicroscope. Postwarmed morulae that developed to
blastocysts and postwarmed blastocysts that restructured their
blastocoelic cavities and had good or excellent morphology were
considered viable. Control embryos (not vitrified) that continued
their development during in vitro culture and exhibited good or
excellent morphology were also considered viable. The survival
rate was the ratio between the total number of viable embryos at
the end of the culture and the total number of embryos cultured.

Differential Staining of the Embryos
To assess the total cell number (TCN), inner cell mass (ICM)
and trophectoderm (TE) cells, some viable blastocysts were
differentially stained after in vitro culture as previously described
(39). For this purpose, the embryos were fixed by immersion
in 4% paraformaldehyde in PBS for 30min at RT. After
fixation, the embryos were transferred to a 500 µl drop of PBS
containing 0.3% BSA (PBS-BSA). Unless otherwise indicated, all
washes were performed three times with PBS-BSA for 2min.
The embryos were permeabilized overnight in PBS containing
1.5% Triton X-100 and 0.15% Tween 20 (PBS-TT). After
permeabilization, they were washed in PBS-BSA and denatured
by sequential exposure for 20min to HCl medium (2N) and
for 10min to Tris HCl medium (100mM). After denaturation
and washing, the embryos were equilibrated in blocking solution
(PBS containing 1% BSA, 10% normal donkey serum and
0.05% Tween 20) for 6 h. Then, the embryos were washed and
incubated for 36 h in the dark with 1µg/ml anti-CDX2 primary
antibody (BioGenex, Molenstraat, The Hague, The Netherlands)
in PBS-BSA at 4-6 ◦C. After incubation with the primary
antibody, the embryos were washed and incubated for 1 h with
2µg/ml donkey anti-mouse IgG Alexa Fluor R© 568 conjugate
(ThermoFisher Scientific, Eugene, Oregon, USA) in blocking
solution and then washed again. Finally, the embryos were placed
on a slide in Vectashield (Vector, Burlingame, USA) containing
10µg/ml Hoechst-33342 and covered and flattened with a
coverslip. Stained blastocysts were evaluated with a fluorescence
microscope (excitation filter of 400–440 nm) to visualize TCN,
whose nuclei displayed blue fluorescence, and an excitation filter
of 510–560 nm to visualize TE cells, whose nuclei showed red
fluorescence (Figure 1). The number of ICM cells was calculated
as the difference between the number of TE and TCN cells. The
ICM/TCN ratio was considered as the ratio between the number
of nuclei in the ICM to the total number of nuclei.

Cellular Apoptosis
The evaluation of apoptosis in the blastocysts was performed
with a cell death detection method based on the terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end
labeling (TUNEL) technique as previously reported (40, 41). This
technique was performed using the Apoptosis BrdU TUNEL
Assay Kit (A23210; Thermo Fisher Scientific). The embryos
were first fixed as described above. Unless otherwise indicated,
all washes in this technique were performed in triplicate with
PBS-BSA for 5min. After fixing and washing, embryos were
permeabilized overnight in PBS-TT and washed in PBS-BSA for
10min. Some fixed and permeabilized embryos were used as
positive and negative controls. After permeabilization, positive
control blastocysts were incubated with DNase I (10µg/ml)
in PBS-BSA for 20min at 39◦C in the dark. Subsequently, all
blastocysts were washed in 0.5% Tween 20 in PBS-BSA for
10min, incubated with TdT enzyme and Br-dUTP (5-bromo-
2’-deoxyuridine 5’-triphosphate), and then covered with paraffin
oil in 10 µl drops for 1 h at 39◦C. Negative control blastocysts
were incubated in the same medium and under the same
conditions described but without TdT enzyme. After incubation,
the embryos were washed and transferred to rinse buffer
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FIGURE 1 | Differential staining of blastocysts. Embryos were stained with Hoechst-33342 (blue fluorescence) for total cell staining and anti-CDX2 (red fluorescence)

for trophectoderm cell staining. The merged image shows blue and pink fluorescence for inner cell mass nuclei and TE nuclei, respectively.

containing a mouse anti-BrdU-Alexa Fluor R© 488 conjugate
for 30min at RT. The blastocysts were then washed and
placed on a slide in Vectashield (Vector, Burlingame, USA)
containing 10µg/ml Hoechst-33342 and covered and flattened
with a coverslip. Samples were examined with a fluorescence
microscope (excitation filter of 400–440 nm) to visualize the
TCN, whose nuclei displayed blue fluorescence, and a 465–
495 nm excitation filter to visualize TUNEL-positive nuclei,
which exhibited green fluorescence (Figure 2). The apoptotic
index was defined as the ratio between the number of apoptotic
cells and the total number of cells in each embryo. Those
embryos without TUNEL-positive nuclei were considered intact.
Embryos that displayed TUNEL-positive areas were distributed
into two groups: embryos with TUNEL-positive areas that
occupied < 20% of the embryo surface and embryos showing
TUNEL-positive areas that occupied between 20 and 50% of the
embryo surface.

Experimental Design
Embryos were retrieved from 40 sows and pooled into groups
depending on their developmental stage: morulae (n= 299), early
blastocysts (n = 325) and full blastocysts (n = 157). A portion of
embryos from each stage of development were cultured for 24 h
to assess the in vitro development of the fresh embryos (control;
n = 132). The rest of the embryos from each developmental
stage were vitrified using different vitrification systems: OC (n
= 250), CC (n = 158), and SOPS (n = 241). The recovery
rate of each vitrification system was calculated immediately
after warming, and the recovered embryos were cultured for
24 h to assess the embryo viability. After viability assessment,
some blastocysts from the control and vitrification groups were
processed for differential staining (n = 60) or cellular apoptosis
assessment (n= 89).

Statistical Analysis
Data were analyzed using IBM SPSS software, version 24.0
(SPSS; Chicago, IL, USA). All data expressed as percentages
were compared using the Fisher’s exact test. The normality
of the variables was tested by the Kolmogorov–Smirnov test.
The nonparametric Kruskal-Wallis test was used to analyze the
effect of the different vitrification systems on the TCN, ICM,
ICM/TCN ratio, mean number of apoptotic cells, and apoptotic

index. When the test showed a significant effect, two-by-two
comparisons were accomplished with the Mann-Whitney U
test. Differences were considered statistically significant when
p < 0.05. The results are expressed as percentages and mean
values± SEM.

RESULTS

Embryo Collection
The average ovulation rate of the sows was 22.8 ± 3.3 corpora
lutea (range from 15 to 30), with 829 structures recovered after
surgical embryo collection (91.1% recovery rate), among which
94.1% were embryos and the rest were unfertilized oocytes and
degenerated embryos. Among the 781 embryos recovered, 299
(38.3%) weremorulae, 325 (41.6%) were early blastocysts and 157
(20.1%) were full blastocysts.

Recovery Rate and Embryo Survival After
Vitrification and Warming
While 77 out of 158 embryos (48.7%) were lost during
vitrification and warming in the CC group, all vitrified embryos
were recovered after warming in the OC and SOPS groups (p
< 0.0001).

The survival rates of the control and vitrified embryos at
different developmental stages after 24 h of in vitro culture are
shown in Figure 3. Survival rates were similar in the OC and
CC groups, regardless of the embryonic stage, although survival
rate for the CC group was lower (p < 0.01) than the control
group for the morula stage. The SOPS group showed the lowest
(p < 0.01) survival rate of all groups when only morulae or early
blastocysts were considered. Full blastocysts from all vitrification
groups showed high viability values, which were similar to those
obtained in the control group.

Total Cell Number, Differential Cell Count
and Cellular Apoptosis
The embryos from the CC group showed lower (p < 0.05)
TCNs and ICM values than their control counterparts. However,
there were no differences in these parameters between the
different vitrification groups. The number of TE cells and the
ICM/TCN ratio were similar between the vitrified and control
groups (Table 1).
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FIGURE 2 | Apoptosis in vitrified blastocysts. (A) Representative fluorescence images of the TUNEL assay of blastocysts stained with Hoechst-33342 (blue

fluorescence) for total cells and TUNEL labeling (green fluorescence) for the detection of apoptosis. Positive and negative controls are included. (B) Apoptosis levels in

blastocysts from control (n = 26), open Cryotop® (OC; n = 24), closed Cryotop® (CC; n = 27) and SOPS (n = 25) groups. a,b, p < 0.001.

The percentage of intact embryos (with no apoptotic cells)
was 3- to 5-fold higher (p < 0.05) and the apoptosis index was
5- to 8-fold lower (p < 0.05) in the OC and control groups
than in the CC and SOPS groups (Figure 2). Additionally, the
mean number of apoptotic cells per embryo from the CC and
SOPS groups was higher (p<0.001) than those from the OC
and control groups (Table 2). Some embryos did not show
well-defined TUNEL-positive cells but rather TUNEL-positive
areas. The CC group had the highest (p < 0.05) number of
embryos with TUNEL-positive areas compared with the OC
and control groups. Additionally, embryos with TUNEL-positive
areas between 20 and 50% of the embryo surface were only found
in the CC and SOPS groups (Table 2).

DISCUSSION

The results of this study show that the OC is a suitable system
for the simultaneous vitrification of 20 porcine embryos at the
morula or blastocyst stages, which is of great importance for
the practical application of embryo vitrification and transfer
in swine. The possibility of simultaneously vitrifying a large
number of embryos not only greatly simplifies the current
vitrification protocols, but also facilitates the embryo warming
and embryo transfer processes, which are normally performed
under field conditions.

Although the Cryotop R© system is typically used for human
oocytes and embryos (42, 43), where only 1–2 oocytes or embryos
are vitrified at a time, this system is an ideal alternative for the

vitrification of a large number of embryos in polytocous species,
such as the pig. In our study, a total of 20 porcine embryos were
successfully placed in the polypropylene sheet of the Cryotop R©

device and vitrified, showing similar postwarming viability and
quality as nonvitrified control embryos. The success of this
vitrification system could be related to the minimal volume of
medium surrounding the sample (44, 45). Based onmathematical
models, recent results indicate that the number of embryos placed
on an OC device does not have a great impact on cooling
rates as long as the volume of the vitrification medium remains
small (46). Our study supports this computational simulation.
To vitrify 20 embryos, it is necessary to cover a large area of
the Cryotop R© polypropylene sheet, but the embryos are placed
in 0.5–1 µl droplets containing one to three embryos each, and
therefore, each embryo is surrounded by a minimal volume of
vitrification medium.

The postwarming recovery rate was significantly reduced
in the CC group, where almost half of the embryos were
lost during the vitrification and/or warming processes. This
could be explained by the fact that the CC system is a closed
system with a polypropylene film with an L-shaped tip to
protect the sample when inserted into the external straw; since
in our experiment we placed multiple droplets in the film,
the protective effect might be inefficient, allowing the loss of
embryos during the insertion of the device into the external
straw before plunging into LN2. The high number of embryos
lost with this system is a compelling reason to reject this
method for the simultaneous vitrification of a large number
of embryos.
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FIGURE 3 | Embryo survival after vitrification and warming. (A) Postwarming survival rates of morulae (n = 283), early blastocysts (n = 283), and full blastocysts (n =

137) vitrified with open Cryotop® (OC), closed Cryotop® (CC) and SOPS systems. a,b,c p < 0.01. (B) Representative images of in vivo-derived morulae and

blastocysts prior and after vitrification with the different systems. Scale bar: 200µm.

The postwarming embryo viability results obtained in this
study using the SOPS system are comparable to those previously
reported for porcine morulae (19, 47) and blastocysts (17,
20, 48). It is generally assumed that morulae have a lower
vitrification capacity than blastocysts, as most studies have
found a lower survival rate for SOPS-vitrified morulae (19,
47) than for SOPS-vitrified blastocysts (17, 20, 48). The

higher lipid content in the embryos at the morula stage
compared to that in blastocysts has been related to their low
cryotolerance (49). In this study, the use of the Cryotop R© systems
improved the results obtained with morulae and early blastocysts
compared with those of the SOPS method. Moreover, embryos
vitrified with the OC system showed similar viability to their
control counterparts.
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TABLE 1 | Total cell number and differential cell counts of blastocysts derived from embryos vitrified with open Cryotop® (OC), closed Cryotop® (CC) or SOPS systems.

Groups n TCN ICM TE Ratio

Control 16 90.6 ± 4.7a 22.3 ± 2.4a 68.4 ± 4.5 24.9 ± 2.9

OC 13 72.2 ± 6.2ab 15.5 ± 1.8ab 56.7 ± 5.5 21.7 ± 2.3

CC 13 68.5 ± 5.9b 14.8 ± 2.0b 54.1 ± 4.5 21.0 ± 1.7

SOPS 18 80.8 ± 5.8ab 18.6 ± 1.7ab 62.2 ± 4.6 23.0 ± 1.4

TCN, total cell number; ICM, inner cell mass; TE, trophectoderm.

Ratio: percentage of ICM cells to the TCN.
a,bDifferent superscripts indicate significant differences (p<0.05). Data are expressed as the mean ± SEM.

TABLE 2 | Results of the TUNEL assay of morulae and early blastocysts vitrified with open Cryotop® (OC), closed Cryotop® (CC) or SOPS systems.

Groups n Mean number of

apoptotic cells

[Range of cells]

A1, n (%) A2, n (%) TA, n (%)

Control 26 1.0 ± 0.3 [1–4]a 0 (0.0) 0 (0.0) 0 (0.0)c

OC 24 1.8 ± 0.6 [1–7]a 2 (8.3) 0 (0.0) 2 (8.3)c

CC 27 6.7 ± 1.2 [1–25]b 7 (25.9) 2 (7.4) 9 (33.3)d

SOPS 25 7.1 ± 1.0 [2–36]b 4 (16.0) 1 (4.0) 5 (24.0)cd

A1: Embryos showing TUNEL-positive areas that occupied < 20% of the embryo surface.

A2: Embryos showing TUNEL-positive areas that occupied between 20 and 50% of the embryo surface.

TA: Total number of embryos showing TUNEL-positive areas.

Different superscripts within a variable indicate significant differences (a,b, p < 0.001; c,d, p <0.05).

In agreement with previous reports on mouse and bovine
embryo vitrification (31, 33), our study showed similar survival
rates between the CC and OC groups. However, CC embryos,
such as SOPS embryos, presented a higher apoptosis index, more
TUNEL-positive cells, and a lower percentage of intact embryos
than OC and control embryos. It is well known that an increased
apoptosis level in embryos is one of the main consequences
of vitrification and that it is associated with lower embryo
viability (41, 50). Our results are consistent with previous studies
(51, 52), which reported that SOPS vitrification and warming
increased apoptosis in porcine embryos. Interestingly, in the
present study, the apoptosis parameters were low in embryos
from the OC and control groups, with no differences between the
groups. These results agree with previous studies using vitrified
in vitro-produced embryos (53) and suggest that the apoptotic
values observed in OC and control embryos can be considered
physiological, since apoptosis is a natural phenomenon occurring
in mammalian blastocysts (54).

The main advantage of the OC system compared to the
CC and SOPS systems is that the contact of the sample with
LN2 during vitrification and with the warming solution during
warming is more direct, which should lead to higher cooling
and warming rates, as has also been reported for other devices
(44, 55). Achieving high cooling rates during vitrification is a
key factor for success, as it helps to minimize chilling injury
by reducing the exposure of embryos to critical temperatures
(56, 57). In addition, several studies using mouse oocytes (58,
59) and embryos at different developmental stages (60, 61)
suggest that the warming process may have a larger impact on
embryo survival rates than the cooling step during vitrification.

Therefore, the apparent increased cooling and warming rates
using the OC system could explain the better outcomes in terms
of embryo survival and/or apoptosis compared with the other
two vitrification systems evaluated.

CONCLUSION

In conclusion, the use of the OC is suitable for the simultaneous
vitrification of at least 20 porcine embryos at the morula or
blastocyst stage and yields similar postwarming results in terms
of embryo survival, TCN, ICM, ICM/TCM ratio and apoptosis
levels to those achieved in control embryos.
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