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d Université de Montréal, Montreal, QC, Canada   

A R T I C L E  I N F O   

Keywords: 
Head and neck cancer 
Artificial intelligence 
Machine learning 
Radiomic 
Predictive modeling 
Cancer outcomes 

A B S T R A C T   

Head and neck radiotherapy induces important toxicity, and its efficacy and tolerance vary widely across pa
tients. Advancements in radiotherapy delivery techniques, along with the increased quality and frequency of 
image guidance, offer a unique opportunity to individualize radiotherapy based on imaging biomarkers, with the 
aim of improving radiation efficacy while reducing its toxicity. Various artificial intelligence models integrating 
clinical data and radiomics have shown encouraging results for toxicity and cancer control outcomes prediction 
in head and neck cancer radiotherapy. Clinical implementation of these models could lead to individualized risk- 
based therapeutic decision making, but the reliability of the current studies is limited. Understanding, validating 
and expanding these models to larger multi-institutional data sets and testing them in the context of clinical trials 
is needed to ensure safe clinical implementation. This review summarizes the current state of the art of machine 
learning models for prediction of head and neck cancer radiotherapy outcomes.   

Introduction 

Global approximate incidence of head and neck cancer (HNC) is 880 
000 patients each year worldwide [1]. As a core therapeutic option, 
radiotherapy (RT) is being used in 75 % of cases, combined with other 
treatment modalities such as chemotherapy or surgery [2]. Current HNC 
RT is associated with high rates of toxicity as well as adverse impacts on 
patients’ quality of life [3]. HNC encompasses a heterogeneous group of 

cancers originating from various subsites that are associated with 
various risk factors including viral infections [4], tobacco and alcohol 
use [5]. In addition to known heterogeneity, RT efficacy and tolerance 
also vary across apparently similar patients presenting with the same 
cancer subtype, anatomical stage and apparent risk factors [6]. Patient- 
specific clinical, radiological and biological factors are thought to drive 
these individual cancer outcomes. To date, HPV-positive status is known 
to be a favorable predictor of response to treatment in oropharyngeal 
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cancer and have led to the concept of de-escalation treatments, but 
which can not be used outside of clinical trials as studies have been 
inconclusive [18]. Currently, there are no other biomarkers used to 
guide decisions in HNC RT. 

Over the last decades, the refinement of RT techniques, along with 
the parallel developments in image guidance for better delineation and 
tumor localization over the course of treatment [7–8], have been asso
ciated with an increasing interest for individualized RT with the aim of 
increasing or maintaining tumor control and reducing radiation toxicity 
[7]. Machine learning (ML) consists in the analysis of large amounts of 
empirical data using computational algorithms and leading to automatic 
extraction of discriminative features and learning of complex patterns 
[9–10]. Developments in artificial intelligence (AI), particularly ML and 
deep learning (DL), have led to significant enthusiasm for the concept of 
“rapid learning health system”, whereby decision-making would be 
individualized based on analysis of large patient cohorts [11]. AI offers a 
unique opportunity for the development of predictive models that can 
help stratify individual patient’s risk and guide therapeutic decisions for 
optimal patients’ outcomes and quality of life in HNC RT. Herein, we 
review the current stance of the role of AI in predicting toxicity and 
therapeutic outcomes in HNC patients treated with RT. 

Radiation oncology and artificial intelligence 

The term “Artificial intelligence” first appeared at the Dartmouth 
Scientific Conference in 1956 [12]. ML is a subfield of AI that uses an 
algorithm to find patterns within data. DL is a subcategory of ML based 
on the use of neural networks and representation learning (Fig. 1). 

Since the success of computer vision based analysis due to the in
crease in access to graphical process units (GPU), the field of medical 
image analysis has seen rapid benefits from ML approaches, which 
contributed in advancing the fast growing field of adaptive RT. With the 
increasing digitization and standardization of image acquisition and 
storage processes, the primary drawback of ML methods - the large 
training data requirements - continues to diminish. More specifically, 
recent studies focused on opportunities to use big data as decision sup
port by predicting tumor response and toxicity outcomes [19–20]. ML- 
based risk stratification could support decisions such as RT or systemic 
therapy intensification (or de-intensification), or even guide prophy
lactic measures in prevention of expected toxicity. 

Radiomics (Fig. 2) is a research field which consists in the extraction 
of a large number of quantitative, hand-crafted features from different 
medical images (CT; MRI; PET-CT) - that cannot be manually deciphered 

by clinicians [21], and which will be then integrated to data- 
characterization algorithms [22]. Although pathology can be gold 
standard, it is not feasible to biopsy every node or every area of the 
tumor and radiomics offers the promise of characterizing different areas 
of the cancer [23]. Radiomics offer a particular potential in HNC RT as 
an immense volume of different imaging modalities are gathered 
routinely. Most HNC patients begin with initial diagnostic and staging 
images including diagnostic and/or planning computed tomography 
(CT) and magnetic resonance imaging (MRI). Positron emission to
mography (PET) is also frequently part of routine diagnostic (or plan
ning) imaging in HNC [24–25]. During RT, daily CBCT (cone-beam 
computed tomography) serves for patient positioning further contrib
uting to the quantity of available anatomic imaging [26]. More recently, 
the MR-Linac, which is available in an increasing number of institutions, 
has allowed for daily online MRI, therefore further improving image 
guidance [27]. After RT completion, follow-up typically includes CT, 
MRI or PET, based on different factors and guidelines [28]. 

Classification models are used to cluster data into different groups by 
approximating a mapping from a different set of inputs to discrete a set 
of outputs, has been mainly used as a predictive ML algorithm for HNC. 
The main algorithms are logistic regression (LR), decision tree, random 
forest (RF), support vector machine (SVM), k nearest neighbor (KNN), 
naives Bayes and artificial neural network. These traditional models 
have allowed better understanding of medical images, but with the 
major disadvantage of the time consuming step involving extracting and 
selecting important image features [35]. To address this issue, convolu
tion neural network (CNN), a DL model that automatically learns, extracts 
and selects important features have shown promise in imaging classifi
cation tasks [36]. For any AI models, including classifiers, overfitting is a 
common problem when an algorithm is too focused on the training data 
set that it can not be successfully applied to a new data set. In order to 
verify if the model is not overfitting, a k-fold cross validation could be 
done by randomly partitioning a data set into k mutually exclusive 
subsets. Different metrics can be used in order to evaluate a model’s 
performance. These include sensitivity, specificity, accuracy, precision 
and recall. Another measurement could be done with the Area Under the 
ROC Curve (AUC) ranging from 0 to 1 (0 for a model’s predictive per
formance is 100 % wrong and 1, as its performance is 100 % correct). 
The calculation of the concordance index (C-index) could also be 
measured for predictive performance, on a scale between zero and one 
with 0.5 indicating no prognostic value. 

Fig. 1. Various levels of Artificial intelligence, including machine learning and deep learning.  
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Prediction of toxicity 

Different Normal Tissue Complication Probability (NTCP) models 
have been proposed in order to help understand and estimate the risk of 
different toxicities. The common traditional models are the Lyman- 
Kutcher-Burnman models based on simplified characterization of the 
radiation-dose response for each anatomy [37]. For different toxicities, 
some studies have shown good validation [38]. In clinical practice, ra
diation oncologists routinely use the Quantitative Analyses of Normal 
Tissue Effects in the Clinic (QUANTEC) dose–response guidelines to 

determine tolerance dose to organs at risk [39]. However, the predictive 
power of currently models is largely limited by the lack of integration of 
patient-specific risk factors [40 41] and omission of the inclusion of 
radiomic features despite studies having shown their relevance [38]. In 
order to account for these issues and update the current NTCP models, 
different ML methods have been studied [43]. Table 2 summarizes the 
current literature on AI predictive models for toxicities. 

As xerostomia is known to be a common major early- and long-term 
toxicity of HNC RT, different studies reported on radiomic features from 
salivary glands, namely the parotid glands (PGs) or submandibular 
glands (SMGs). Gabry et al [44] compared the predictive performance of 
seven classification algorithms, six feature selection methods, and ten 
data cleaning/class balancing techniques by integrating retrospective 
dosiomic, radiomic and demographic data from 153 HNC patients 
treated with definitive RT. Important features such as dosimetric shape 
and gradients, PG volume and eccentricity, and DVH spread were 
identified. Their MLs based models performed better compared to the 
traditional NTCP models based on mean dose to PG only. Jiang et al [45] 
tested three different algorithms applied to a data set including clinical 
and radiomic features such as voxels dose in the PGs and SMGs from 427 
HNC patients treated with definitive RT. Similar to. Gabry et al, the 
authors were able to observe that specific dose patterns across the 
subvolumes in both organs were an important predictive feature and 
their ridge logistic regression model had the best performance with AUC 
of 0.70. Dijk et al [46] used the CT based image biomarkers (IBMs) of the 
PGs and SMGs from 249 HNC patients treated with definitive RT in order 
to improve the NTCP predictive models for sticky saliva (STIC) and 
moderate-severe xerostomia 12 months. For both toxicities, pre- 
selection through a lasso regularization identified different important 
radiomic features and the predictive performance of NTCP models were 
stronger when IBMs were added (AUC 0.74 vs 0.77). Beasley et al [47] 
also used ML applied to the image based data mining (IBDM) in order to 
identify clusters of dose distribution voxels involved in radiation 
induced trismus. From clinical and radiomic data set from 86 HNC pa
tients focusing on the dose distributions within the anatomy of interest, 
different features investigated in a multivariable analysis and an inter
nal/external validation demonstrated the importance of dose patterns 
within anatomy to predict trismus. 

Fig. 2. Schematic illustration of radiomic pipeline.  

Table 1 
Summary list of potential use of AI algorithms in different steps in HNC RT.  

Steps Clinical Use Algorithms 

1) Diagnosis/ 
Initial 
evaluation 

Clinical/Pathological/ 
radiological data 
processing 

SVM, LR, RF, DT, KNN, Bayesian, 
Linear Discriminant Analysis, DL 
and combination of ML and DL 

2) Treatment 
Decision 
Making 

Treatment Decision Aid DSS, SDM 
Outcome Prediction SVM, LR, Bayesian, neural 

network, decision trees and 
combination 

Toxicities Prediction Bayes, LR, KNN, SVM, SVC, RF, 
XGBoost PLR, RFC, IBDM, CART, 
CNN 

3) Simulation Synthetic Imaging 
Generation 

Fuzzy c-means clustering, CNNs 
and GANs 

4) Treatment 
Planning 

Auto-segmentation DSC, CNN DD-Resnet 
Dosimetric 
Optimization 

Unet, DenseNet, GANs 

5) Treatment 
delivery 

Image Guidance and 
Motion Management 

CNN, Bayesian, SVM, 

CBCT quality 
improvement 

CNN 

Abbreviations: CBCT, cone-beam computed tomography; CNN, convolutional 
neural network; CART, Classification and Regression Tree; DL, deep learning; 
DT, Decision Tree; DSC, Dice Similarity Coefficient; DSS, clinical decision sup
port systems; KNN, k nearest neighbor; LR, logistic regression;ML, machine 
learning; GANs, Generative Adversarial Networks; IBDM, image based data 
mining; RF, random forest; RFC,random forest classifier; SDM, shared decision 
making; SVM, support vector machine; SVC, support vector classifier. 
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Dysphagia is also a common toxicity among patients treated with RT 
for HNC causing a major impact in patients’ quality of life [48]. In order 
to improve the current predictive NTCP model for dysphagia, Dean et al 
[49] incorporated spatial dose metrics in different ML models with a 
prospective data set of 173 HNC patients including clinical and dosi
metric features focusing on pharyngeal mucosa (PM). Their RFC model 
with a highest AUC of 0.71 identified that the volume, length and 
circumference of PM receiving 1 Gy/fraction and higher were strongly 
associated with the risk of dysphagia. More recently, Reddy et al [50] 
used a different data set from 2,121 HNC patients in order to compare 
predictive performance of three different classifiers for unplanned hos
pitalizations, feeding tube placement and significant weight loss. This 
method identified over 700 treatment-related and clinical variables, and 
achieved AUC values of up to 0.64, 0.75, and 0.75 for RF, gradient 
boosting, and LR, respectively. Wojcieszynski et al [51] compared the 
predictive performance of three ML methods on a prospective data set of 
437 HNC patients treated with definitive chemoradiation (CRT). Their 
RF model yielded moderate success for toxicity at 90 and 180 days with 
c-static of 0.65 and 0.63, respectively. From this study, higher integral 
doses outside of the target volume, target volume integral dose, body 
mass index (BMI) and age were important factors associated with 
increased grade 3 + toxicity. Cheng et al [52] used a Classification and 
Regression Tree model in HNC patients treated with definitive RT by 
using demographic, dosimetric and clinical data from 391 patients in 
order to predict weight loss ≥5 kg at 3 months post-RT. Two models 
were built, one during the RT planning and one at the end of the 
treatments. When additional treatment-related data was added to each 
model, the predictive performance was improved, with an AUC of 0.77 
and 0.82, respectively. 

Several other radiation-induced toxicities have been the focus of 
individual studies. Mucositis was the focus of a study by Dean et al [53], 
where clinical, dose-volume and spatial dose metrics data from 317 HNC 
patients were used to build predictive ML models for severe acute 
mucositis. Among different models tested, the discriminative perfor
mance was not improved with the additional spatial dose metrics. 
Important features were in the range V80-V220 and the most important 
feature was the V220. Interestingly, in contrast to the RTOG guidelines 
focusing on mean dose to the oral cavity, the authors therefore identified 
that the strongest feature associated with severe acute mucositis was the 
volume receiving intermediate and high doses. To predict radiation- 

induced temporal lobe injury, Zhang et al [54] used retrospective clin
ical and CT and MRI based radiomic data from 242 nasopharynx (NPC) 
patients treated with definitive RT. Different radiomic features were first 
extracted from the medial temporal lobe regions. RF predictive model 
showed strong predictive performance in three subsequent radiological 
follow-ups preceding the onset of radiation-induced temporal lobe 
injury with the mean AUCs of between 0.71 and 0.83. More recently, 
Humbert-Vidan et al [55] used retrospective demographic, clinical and 
dosimetric data (3D dose distribution map) of 140 HNC patients (70 
patients with ORN and 70 patients as control group) in order to compare 
the predictive performance of a 3D densely-connected 121-layer con
volutional neural network (CNN) model with a DVH based RF model. 
The 3D DenseNet121 CNN model had better performance with an 
average AUC of 0.71 (0.64–0.79), compared to 0.65 (0.57–0.73) for the 
RF model. 

There was a general trend of increasing feature importance with 
increasing dose and feature importance was also high for RT dose 
metrics in the range V80 – V220. 

Prediction of cancer control outcomes 

Current predictive models for HNC are mainly based on the TNM 
(Primary tumor, regional lymph nodes and distant metastasis) staging 
[56], which guides oncologists in the selection of the appropriate ther
apeutic options for patients. In oropharyngeal cancer (OPC), other 
prognostic variables established in the context of clinical trials, namely 
human papillomavirus (HPV) status and tobacco smoking pack-years, 
have largely been integrated in the clinical practice. While patients 
with HPV-associated OPC generally have an improved prognosis, we 
now recognize that a subset of these patients present a highly aggressive 
behavior [57]. There is therefore a general concern that safe treatment 
de-escalation should not jeopardize the chance of cure of these patients, 
and that more reliable tools to predict tumor behavior are greatly 
needed. In recent years, several predictive AI models to better predict 
cancer control outcomes in HNC have been published and are presented 
in Table 3. 

To better stratify survival outcomes, Tseng et al [58] evaluated the 
elastic net penalized Cox proportional hazards regression-based risk 
stratification model in operated oral cavity cancers. The authors inte
grated clinicopathologic and genomic data from 334 patients with 

Table 2 
AI predictive models for toxicities.  

Authors Endpoints Number of HNC 
cohort 

Algorithms Performance Important features 

Dean et al. 
(2016) [53] 

Mucositis 351 PLR, SVC, RFC RFC with AUC 0.71 Volumes of oral cavity receiving 
intermed - high dose 

Dijk et al. (2016) [46] Xerostomia and sticky saliva at 
12 months 

249 LASSO regularisation AUC 0.77 IBMs 

Pota et al. (2017) [95] PG shrinkage and Xerostomia at 
12 months 

37 fuzzy classification AUC 0.86 and 0.79 Final volume PG shrinkage 

Dean et al. (2017) [49] Dysphagia 173 PLR, SVC, RFC RFC with AUC 0.71 PM receiving >1 Gy/fraction 
Cheng et al. (2017) [52] WL during RT and EOT 391 CART AUC 0.773 and 0.821 Dose in OARs, oral intake, N stage, 

pain, nausea 
Beasley et al. (2018) [47] Trismus 86 Linear regression Rs of − 0.45 IBDM clusters in ipsilateral masseter 
Gabry s et al. (2018) [44] Xerostomia at different 

timelines 
153 7 classifiers and 6 feature 

selectors 
AUC 0.74–0.88 Dose gradient in PGs, PG volume, 

PG eccentricity 
Jiang et al. (2018) [45] Xerostomia 3 months post RT 427 RLR, LLR, RF AUC 0.70 Dose pattern in PG/SMG 
Reddy et al. (2019) [50] Hospitalization Feeding tube 

WL 
2121 RF, GB, LR AUC 0.640-0.751 – 

Wojcieszynski et al 
(2019) [51] 

Grade > 3 toxicity 
(90and180days) 

437 PLR, RF, XGBoost C-statistic 0.65 and 
0.63 

PTV integral dose and integral dose 
out of PTV 

Zhang et al. (2020) [54] RTLI post RT in different 
timelines 

242 NPC RF AUCs 0.830, 0.773 and 
0.716 

Features from medial temporal lobe 

Humbert-Vidan et al. 
(2022) [55] 

ORN 140 3D CNN, DenseNet 21 AUC 0.71 Clinical dosimetric distribution 

Abbreviations: AUC, Area Under the ROC Curve; CART, Classification and Regression Tree; GB, Gradient boosting; IBMs, image biomarkers; LLR, Local linear forest; 
LR, logistic regression; PLR, Positive likelihood ratio; PG, parotid glands; PTV, Planning target volumes; RLR, Rigid logistic regression; RF, random forest; RFC, random 
forest classifier; SMG, Submandibular glands; SVC, support vector classifier; XGBoost, extreme gradient boosting; 3D, three dimensions. 
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locally advanced HNC treated with curative intent surgery, combined 
with adjuvant RT or CRT. Compared to the baseline model using clini
copathologic data alone, the identification and integration of genetic 
features associated with prognostic led to a model with better classifi
cation performance, with mean C-indexes of 0.689 (vs 0.673) and 0.693 
(vs 0.678) for cancer-specific survival and locoregional recurrence-free 
survival, respectively. Also in the post-operative setting, Howard et al 
[59] aimed to build an overall survival (OS) predictive model to better 
identify patients that may benefit from the addition of adjuvant con
current chemotherapy. The authors evaluated different ML models 

integrating a large retrospective data from the National Cancer Data
base, including 33 527 patients with squamous cell carcinoma of the 
oral cavity, oropharynx, hypopharynx, or larynx treated with definitive 
surgery followed by an adjuvant RT or CRT. Three different models were 
trained, then validated using a subset of the same cohort. Compared to 
RTOG 95–01 and EORTC 22931 recommendations [60–61], treatments 
guided by all three models had improved survival outcomes with hazard 
ratio (HR) of 0.79–0.90 and c index of 0.691–0.695 with similar accu
racy and there was no survival benefit for CRT for patients recom
mended to receive RT alone. These models also identified important 

Table 3 
Different AI predictive models for outcomes.  

Authors Patient 
population 

Predicted outcomes Number of 
patients 

Algorithms Performance Important features 

Parmar 
et al. 
(2015)  
[63] 

HNC SCC 3Y OS 206 13 feature selectors and 11 ML 
classifiers 

3 feature selectors (MRMR, 
MIFS and CIFE) with AUC 
0.66–0.69 
3 classifier (RF, NN and BY) 
with AUC 0.61–0.67 

CT based radiomic 
features 

Jiang et al. 
(2015)  
[62] 

NSC OS 347 SVM HR 3.45 Combination of CRT 

Li et al. 
(2018)  
[65] 

NSC LR 306 PCA, ANN, KNN 
SVM 

ANN with accuracy of 0.812 MRI based radiomic 
features 

Zdilar et al. 
(2018)  
[64] 

OPC OS 
RFC 

529 MRMR, Wilcoxon, RF, RReliefF, 
RRF, IAMB, RSF, PCA 

RF selectors AUC 0.75 and C- 
index 0.68 

CT based radiomic 
features 

Fujima 
et al. 
(2019)  
[96] 

Sinonasal SCC LF 36 SVM Accuracy of 0.96 MRI based radiomic 
features 

Wu et al. 
(2019)  
[97] 

OPC DMFS 140 RSF C-index 0.73 Max distance between 
nodes and tumor-nodes 

Zhou et al. 
(2019)  
[67] 

NPC DM 176 PyRadiomics features extraction, 
features selections (Mann-Whitney 
U test, mRMR, Lasso), LR 

AUC 0.827 (training group) 
and 0.792 (validation group) 

MRI based radiomic 
features 

Tseng et al. 
(2020)  
[58] 

Oral cavity Survival (Cancer specific 
and loco-regional 
recurrence free) 

334 Elastic Net Penalized Cox 
Proportional Hazards regression 

C index 0.689 and 0.693. 
Distant metastasis free 
survival not different 

Genetic data 

Howard 
et al. 
(2020)  
[59] 

HNC SCC OS 33 527 DeepSurv, RSF 
N-MTLR 

HR of 0.79, 0.83 and 0.90 Stage T4, HPV status, 
tonsil subsite 

De Felice 
et al. 
(2020)  
[32] 

OPC OS 273 RF - Classification tree Mean decrease accuracy of 
4.29, 2.49 and 1.11 % 

HPV status 
N status 
Early responders 

Tran et al. 
(2020)  
[68] 

HNC SCC Local nodal response 32 LR, KNN, naive-Bayes Accuracy 87.5 % with three 
feature model 

Quantitative US 
radiomic features 

Tosado 
et al. 
(2020)  
[70] 

OPC OS, RFS 644 RReliefF feature selector, Cox 
Model, RSF 

AUC 0.6395 (OS) and 0.6483 
(RFS) 

Radiomic features 
combined with clinical 
features 

Bogowicz 
et al. 
(2020)  
[71] 

OPC, hypo 
pharynx, larynx, 
oral cavity 

2YOS, HPV 1174 Feature selector (LR Z-Rad), 
Classification (hierarchical 
clustering, LR) 

No significant differences in 
AUC between centralized and 
distributed. 

981 radomic features 

Rich et al. 
(2021)  
[69] 

OPC HPV + DM 225 Feature extractor (SMOTE, 
ADASYN, borderline SMOTE), SVM 

AUC 0.84–0.95 CT based radiomic 

Le et al. 
(2022)  
[72] 

HNC SCC 10Y DM, Lr, OS 371 Cox Model, RF, CNN, DenseNet, 
InceptionV3, ResNet, ResNeXt and 
PreSANet 

PreSAnet - Accuracy of 74 % 
(Lr) and 79 % (OS) 

Performance decrease 
with PET images 

Abbreviations: ADASYN, adaptive synthetic sampling; ANN, artificial neural network; BY, Bayesian; CT, Computed tomography; C-index, concordance index; CIFE, 
conditional informax feature extraction; CRT, chemo-radiotherapyDM, distant metastasis; DMFS, distant metastasis-free survival; HNC, head and neck cancer; HPV, 
human papillomavirus; HR, Hazard ratio; IAMB, incremental association Markov blanket; KNN, k nearest neighbor; LF, local failure; Lr, locoregional recurrence; LR, 
logistic regression; LRC, loco-regional control; NPC, nasopharyngeal cancer; MIFS, mutual information based feature selection; MRI, Magnetic resonance imaging; 
MRMR, Minimum redundancy feature selection; N, node; NN, nearest neighoor; N-MLTR, Neural Multi-Task Logistic Regression; OS, overall survival; PET, positron 
emission tomography; PCA, Principal component analysis; RF, random forest; RFC, relapse-free survival; RRF, Regularized random forest; RSF, random survival forest; 
SCC, squamous cell carcinoma; SMOTE, synthetic minority over-sampling technique; SVM, support vector machine; US, Ultrasounds; 2D CNN, two dimensions 
convolutional neural network; 3D CNN, three dimensions convolutional neural network. 
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variables related to prognosis such as year of diagnosis, T4, HPV posi
tivity and tonsillar subsite. 

In order to evaluate the role of radiomics for risk stratification of DM, 
Rich et al [69] used CT based radiomic and clinical features from 225 
locally advanced OPC HPV+ patients treated with curative intent RT or 
CRT. Nine different algorithms were built using different radiomic 
datasets derived using different algorithms integrated to SVM classifier. 
All classifiers achieved at least an excellent level in discriminating the 
two patient cohorts with DM or not. In order to build a predictive model 
for OS and RFS outcomes, Tosado et al [70] incorporated retrospective 
CT based radiomic data with clinical data from 644 OPC patients treated 
with RT or CRT. Distinctive radiomic and clinical features with the 
cluster labels were identified and different supervised models were built 
using these features. Compared to the baseline model based on clinical 
features only, these models had better predictive performance for both 
outcomes. In another study by Jiang et al [62], aiming to predict out
comes in metastatic NPC patients treated with chemotherapy alone, RT 
alone or the combination of both, the retrospective hematological, 
clinical and therapeutic parameters of 347 patients were used in a SVM 
model. The multivariate model had a strong performance with an AUC 
at 0.761 and the classifier was able to stratify the patients into low risk 
and high risk groups with significantly different 2 year OS of 71.4 % vs 
18.8 %, respectively. This classifier also helped identify that combined 
CRT was associated with significantly better outcomes in the low risk 
groups, but not in the higher risk groups. 

Other studies focused on integrating radiomic data into ML algo
rithms to optimize predictive models for HNC treatment outcomes. In 
order to identify the optimal ML methods for radiomic-based overall 
survival prediction, Parmar et al [63] compared the performance of 13 
features selection methods and 11 ML classification methods integrating 
CT based 440 radiomic features from 196 HNC patients. Three feature 
selection methods had the best performance with AUC between 0.66 and 
0.69 and stability between 0.66 and 0.70 compared to the median values 
of AUC = 0.61 and stability = 0.66. Three classifying methods had the 
best performance with AUC between 0.61 and 0.67. Zdilar et al [64] 
used retrospective CT based radiomic, clinical, demographic, toxicity 
and cancer control outcome data from 529 OPC patients treated with 
curative intent RT or CRT to compare the predictive performance of 
different selectors for OS and RFS. Among 3800 radiomic features 
extracted, selected features using 8 different methods resulted in better 
AUC compared to clinical features alone. Among the feature selectors, 
RF based selectors had the best overall scores. In order to build a model 
predicting a radioresistance, Li et al [65] used retrospective data from 
306 NPC patients treated with definitive CRT. Clinicopathological and 
radiomic/dosimetric features from planning CT and from follow up 
imagings including CT, MRI or PET. Once detected, recurrent tumor 
volumes were delineated, then was categorized as “in field recurrence” if 
the recurrence was inside the high-dose target. Eight discriminative 
features were identified from pretreatment MRIs compared between the 
patients with and without the disease recurrence. Features were fed to 
three different MLs, which were trained, then validated and yield ac
curacies ranging between 0.732 and 0.812. These results could indicate 
possible differences in heterogeneity in LR tumors. For a predictive 
performance of loco-regional recurrence (LRR), Starke et al [66] used 
the retrospective data from 291 patients with locally advanced HNC 
treated with CRT. A baseline Cox proportional hazards model (CPHM) 
using clinical features alone was compared to different 3D-CNN and 2D- 
CNN models built from scratch combining clinical features and CT im
ages. Among these, the ensemble of 3D-CNNs had the best performance 
and successful validation with a C-index of 0.31. Patient risk group 
defined by this model’s predictions showed significant differences in 
LRR with p = 0.001. The C-index for 2D-CNN and for CPHM was 0.38 
and 0.39, respectively. In order to satisfy risks for DM and 5Y OS, Zhou 
et al [67] used MRI based radiomic with dosiomic and clinical features 
from 176 NPC patients treated with curative intent RT or CRT. With the 
radiomic features extracted, an algorithm model was built in order to 

classify into high- and low risk groups for DM. With the clinical features, 
the radiomic based models show strong predictive performance for both 
in the training and validation cohorts with AUC of 0.827 and 0.792 
respectively. Another study was done to predict therapeutic response in 
metastatic lymph nodes by Tran et al [68]. Their team used the quan
titative ultrasound based radiomic markers from 32 HNC patients with 
positive lymph nodes treated with curative intent RT or CRT. Depending 
on their 3 months follow up MRI, patients were divided into two 
different categories: complete responders or partial responders. 
Different radiomic features were extracted, then applied in LR, KNN and 
a naive-Bayes. Multi Parametric models showed a strong predictive 
power with high accuracy of 87.5 %. Significant differences in radiomic 
parameters were found between the two groups. 

In order to evaluate the role of radiomics for risk stratification of DM, 
Rich et al [69] used CT based radiomic and clinical features from 225 
locally advanced OPC HPV+ patients treated with curative intent RT or 
CRT. Nine different algorithms were built using different radiomic 
datasets derived using different algorithms integrated to SVM classifier. 
All classifiers achieved at least an excellent level in discriminating the 
two patient cohorts with DM or not. In order to build a predictive model 
for OS and RFS outcomes, Tosado et al [70] incorporated retrospective 
CT based radiomic data with clinical data from 644 OPC patients treated 
with RT or CRT. Distinctive radiomic and clinical features with the 
cluster labels were identified and different supervised models were built 
using these features. Compared to the baseline model based on clinical 
features only, these models had better predictive performance for both 
outcomes. In another study by Jiang et al [62], aiming to predict out
comes in metastatic NPC patients treated with chemotherapy alone, RT 
alone or the combination of both, the retrospective hematological, 
clinical and therapeutic parameters of 347 patients were used in a SVM 
model. The multivariate model had a strong performance with an AUC 
at 0.761 and the classifier was able to stratify the patients into low risk 
and high risk groups with significantly different 2 year OS of 71.4 % vs 
18.8 %, respectively. This classifier also helped identify that combined 
CRT was associated with significantly better outcomes in the low risk 
groups, but not in the higher risk groups. 

The sufficient quantity of a radomic data set is a common problem for 
an AI algorithm development and multicenter approach can be a solu
tion but implicating ethical issues. In order to address this issue, Bogo
wicz et al [71] tested the distributed learning technique enabling 
training models on multicenter data without data leaving the hospitals. 
Two different approaches, centralized and distributed, were compared 
for 2Y OS and HPV status predictive models built with CT based radio
mic, dosiomic and clinical features from 1174 HNC patients treated with 
curative intent RT or CRT. For both feature selection and classification, 
there was no significant difference in terms of performance between 
these two approaches. Most recently, Le et al [72] used retrospective 
cross-institutional patho-clinical and PET-CT based radiomic data set 
from 298 HNC patients treated with curative intent RT or CRT in order 
to train a predictive model based on a pseudo-volumetric convolutional 
neural network with PreSANet. The model was internally validated, 
then an extensive set of ablation experiments on the public data set 
showed AUROC of DM, LR and OS between 80 and 82 %. External 
validation on a retrospective dataset showed an AUROC at 69 % and a 
validation of single site-holdout and cross-validation showed mean ac
curacy across four different institutions was between 70 and 72 %. 

Discussion 

Recent studies have shown promising results in the use of ML in the 
field of HNC RT in predicting therapeutic outcomes and toxicity. 
Different algorithms have shown good predictive performance and have 
helped identify features that provide insight into the heterogeneous 
nature of HNC. Those features have included demographic characteris
tics, molecular, dosimetric, radiomic and therapeutic factors. Their 
integration to the current clinical decision algorithms has the potential 
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to improve risk stratification and selection of optimal therapeutic 
options. 

Despite promising results, these models remain largely premature for 
clinical use at this stage. One major concern is the lack of standardiza
tion of the largely retrospective data used in a single center. In radiomics 
specifically, for each imaging modality, intra and inter-institutional 
variations in scanner, acquisition and reconstruction parameters have 
been shown to impact the robustness of the predictive models [73]. 
Pertaining to RT data, differences in tumor and organs at risk segmen
tations as well as dosimetric data further challenges reproducibility 
[42,74]. In addition, variations in feature extraction techniques, choice 
of robustness metrics and outcome definitions used across studies 
complicate the interpretation of results. The small sample sizes and high 
heterogeneity of HNC and frequent lack of external validation lead lack 
of generalizability of the current studies. Increased use of open-access 
data sets and multicenter prospective cohorts, along with strict guide
lines for data standardization would be critical for these models to reach 
clinical usability [71–72,75]. In addition, training clinical oncologists to 
the field of AI, as well as integrating them early in the development and 
validation of these models will be increasingly important. As clinicians 
are ultimately responsible for decision making, ensuring their adequate 
understanding and interpretation of these models will help overcome 
the ‘’black box’’ problem and facilitate clinical implementation of these 
tools [76–77]. 

Beside the risk stratification and decision support in HNC RT, AI has 
substantial potential in other upstream tasks such as automatic detection 
and segmentation of anatomical structures [13], automatic registration 
of mono-modal or multimodal images [14], temporal motion compen
sation [15], tumor and lesion grade classification [16], and nomograms 
for risk stratification-prognostic modeling [17]. AI can independently be 
introduced at all stages of a patient’s treatment from diagnosis, to 
planning and re-planning, to long-term follow-up and prognosis, while 
allowing or benefiting from expert input along the way. 

AI can reveal the radiomic signatures in HNC such as tumor char
acteristics including HPV status [29] or Programmed Death-Ligand 1 
expression [30], identification of extranodal extension [31] as well as 
cancer control outcomes [32] and larynx/hypopharynx cancers [33]. 
Radiomics also has the potential to provide a quantitative assessment of 
tumor and normal tissue reaction to RT over the course of treatment (i.e. 
delta-radiomics) [34]. The emerging use of multi-omics ((Gen-omics, 
Epigen-omics, Transcipt-omics, prote-omics, metabol-omics and microbi- 
omics) [78–79] in oncology, along with the increasing quantity and 
quality of imaging in radiation oncology, represent a clear opportunity 
to propule the role of AI in HNC. The integration of daily imaging used 
over the course of RT in order to capture dynamically tumor response or 
early signs of toxicity could guide therapeutic decision or early in
terventions more efficiently, as suggested in early work using CBCTs 
data in dynamic predictive algorithms [80–81]. The increasing avail
ability of the MR-Linac technology across institutions will lead to 
increased quality and both anatomic and functional information of daily 
RT imaging and will further increase the potential to unlock dynamic 
imaging-based biomarkers [82–85]. Finally, as the field of liquid biopsy 
if expanding rapidly, non invasive biologic serum or salivary HNC bio
markers [86–88] could be further integrated to these algorithms to in
crease the precision of dynamic clinical outcomes predictions over the 
course of treatment and in post-treatment follow-ups [89–94]. 

This review has several limitations. First, its non-systematic review 
method could cause potential risks of different bias with less trans
parency. However, this method seemed suitable to offer a general 
overview of the current stance of AI in HNC RT. Also, our study did not 
include a recently developed radiomics quality score, a tool built by 
Lambin et al. in order to determine the validity and completeness of 
radiomics studies [98]. For a more comprehensive understanding of the 
subject matter, future reviews could include use of this tool as well as an 
insight on the ongoing clinical trials evaluating AI and radiomics tools in 
HNC RT [99–101]. 

AI-models predicting cancel control and toxicity outcomes in HNC 
RT have shown promising performance and would be of high clinical 
utility for individualized risk-based decision making. These important 
challenges to the development and safe clinical implementation of these 
models could only be overcome with coordinated collaborative efforts to 
standardize, validate and expand these models to large enough datasets 
and test in the context of clinical trials. 
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[8] Grégoire V, Langendijk JA, Nuyts S. Advances in Radiotherapy for Head and Neck 
Cancer. J Clin Oncol 2015 Oct 10;33(29):3277–84. https://doi.org/10.1200/ 
JCO.2015.61.2994. Epub 2015 Sep 8 PMID: 26351354. 

[9] Giraud P, Giraud P, Gasnier A, et al. Radiomics and machine learning for 
radiotherapy in head and neck cancers. Front Oncol 2019;9:174. 

[10] Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for 
quantitative radiomic biomarkers. Sci Rep 2015;5:13087. 

[11] Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CM, et al. Rapid 
Learning health care in oncology’ - an approach towards decision support systems 
enabling customised radiotherapy. Radiother Oncol 2013 Oct;109(1):159–64. 
https://doi.org/10.1016/j.radonc.2013.07.007. Epub 2013 Aug 28 PMID: 
23993399. 

[12] Moor J. The dartmouth college artificial intelligence conference: the next fifty 
years. AI Mag 2006;27(4):87. 

[13] Nikolov, S. et al. Deep learning to achieve clinically applicable segmentation of 
head and neck anatomy for radiotherapy. Preprint at arXiv (2018). 

[14] Fan J, Cao X, Wang Q, Yap PT, Shen D. Adversarial learning for mono- or multi- 
modal registration. Med Image Anal. 2019 Dec;58:101545. 10.1016/j. 
media.2019.101545. Epub 2019 Aug 24. PMID: 31557633; PMCID: 
PMC7455790. 

[15] Shi L, Han S, Zhao J, Kuang Z, Jing W, Cui Y, et al. Respiratory prediction based 
on multi-scale temporal convolutional network for tracking thoracic tumor 
movement. Front Oncol 2022 May;27(12):884523. https://doi.org/10.3389/ 
fonc.2022.884523. PMID: 35692785; PMCID: PMC9184446. 

[16] Reimagining T. Staging through artificial intelligence and machine learning 
image processing approaches in digital pathology Kaustav Bera, Ian Katz, and 
Anant Madabhushi. JCO Clin Cancer Inf 2020;4:1039–50. 

[17] Machine Learning and Nomogram Prognostic Modeling for 2-Year Head and Neck 
Cancer–Specific Survival Using Electronic Health Record Data: A Multisite Study 
Damian P. Kotevski, Robert I. Smee, Claire M. Vajdic, and Matthew Field JCO 
Clinical Cancer Informatics 2023:7. 
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