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Head and neck radiotherapy induces important toxicity, and its efficacy and tolerance vary widely across pa-
tients. Advancements in radiotherapy delivery techniques, along with the increased quality and frequency of
image guidance, offer a unique opportunity to individualize radiotherapy based on imaging biomarkers, with the
aim of improving radiation efficacy while reducing its toxicity. Various artificial intelligence models integrating
clinical data and radiomics have shown encouraging results for toxicity and cancer control outcomes prediction
in head and neck cancer radiotherapy. Clinical implementation of these models could lead to individualized risk-
based therapeutic decision making, but the reliability of the current studies is limited. Understanding, validating
and expanding these models to larger multi-institutional data sets and testing them in the context of clinical trials
is needed to ensure safe clinical implementation. This review summarizes the current state of the art of machine
learning models for prediction of head and neck cancer radiotherapy outcomes.

Introduction

Global approximate incidence of head and neck cancer (HNC) is 880
000 patients each year worldwide [1]. As a core therapeutic option,
radiotherapy (RT) is being used in 75 % of cases, combined with other
treatment modalities such as chemotherapy or surgery [2]. Current HNC
RT is associated with high rates of toxicity as well as adverse impacts on
patients’ quality of life [3]. HNC encompasses a heterogeneous group of

cancers originating from various subsites that are associated with
various risk factors including viral infections [4], tobacco and alcohol
use [5]. In addition to known heterogeneity, RT efficacy and tolerance
also vary across apparently similar patients presenting with the same
cancer subtype, anatomical stage and apparent risk factors [6]. Patient-
specific clinical, radiological and biological factors are thought to drive
these individual cancer outcomes. To date, HPV-positive status is known
to be a favorable predictor of response to treatment in oropharyngeal
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cancer and have led to the concept of de-escalation treatments, but
which can not be used outside of clinical trials as studies have been
inconclusive [18]. Currently, there are no other biomarkers used to
guide decisions in HNC RT.

Over the last decades, the refinement of RT techniques, along with
the parallel developments in image guidance for better delineation and
tumor localization over the course of treatment [7-8], have been asso-
ciated with an increasing interest for individualized RT with the aim of
increasing or maintaining tumor control and reducing radiation toxicity
[7]. Machine learning (ML) consists in the analysis of large amounts of
empirical data using computational algorithms and leading to automatic
extraction of discriminative features and learning of complex patterns
[9-10]. Developments in artificial intelligence (AI), particularly ML and
deep learning (DL), have led to significant enthusiasm for the concept of
“rapid learning health system”, whereby decision-making would be
individualized based on analysis of large patient cohorts [11]. Al offers a
unique opportunity for the development of predictive models that can
help stratify individual patient’s risk and guide therapeutic decisions for
optimal patients’ outcomes and quality of life in HNC RT. Herein, we
review the current stance of the role of Al in predicting toxicity and
therapeutic outcomes in HNC patients treated with RT.

Radiation oncology and artificial intelligence

The term “Artificial intelligence” first appeared at the Dartmouth
Scientific Conference in 1956 [12]. ML is a subfield of Al that uses an
algorithm to find patterns within data. DL is a subcategory of ML based
on the use of neural networks and representation learning (Fig. 1).

Since the success of computer vision based analysis due to the in-
crease in access to graphical process units (GPU), the field of medical
image analysis has seen rapid benefits from ML approaches, which
contributed in advancing the fast growing field of adaptive RT. With the
increasing digitization and standardization of image acquisition and
storage processes, the primary drawback of ML methods - the large
training data requirements - continues to diminish. More specifically,
recent studies focused on opportunities to use big data as decision sup-
port by predicting tumor response and toxicity outcomes [19-20]. ML-
based risk stratification could support decisions such as RT or systemic
therapy intensification (or de-intensification), or even guide prophy-
lactic measures in prevention of expected toxicity.

Radiomics (Fig. 2) is a research field which consists in the extraction
of a large number of quantitative, hand-crafted features from different
medical images (CT; MRI; PET-CT) - that cannot be manually deciphered
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by clinicians [21], and which will be then integrated to data-
characterization algorithms [22]. Although pathology can be gold
standard, it is not feasible to biopsy every node or every area of the
tumor and radiomics offers the promise of characterizing different areas
of the cancer [23]. Radiomics offer a particular potential in HNC RT as
an immense volume of different imaging modalities are gathered
routinely. Most HNC patients begin with initial diagnostic and staging
images including diagnostic and/or planning computed tomography
(CT) and magnetic resonance imaging (MRI). Positron emission to-
mography (PET) is also frequently part of routine diagnostic (or plan-
ning) imaging in HNC [24-25]. During RT, daily CBCT (cone-beam
computed tomography) serves for patient positioning further contrib-
uting to the quantity of available anatomic imaging [26]. More recently,
the MR-Linac, which is available in an increasing number of institutions,
has allowed for daily online MRI, therefore further improving image
guidance [27]. After RT completion, follow-up typically includes CT,
MRI or PET, based on different factors and guidelines [28].

Classification models are used to cluster data into different groups by
approximating a mapping from a different set of inputs to discrete a set
of outputs, has been mainly used as a predictive ML algorithm for HNC.
The main algorithms are logistic regression (LR), decision tree, random
forest (RF), support vector machine (SVM), k nearest neighbor (KNN),
naives Bayes and artificial neural network. These traditional models
have allowed better understanding of medical images, but with the
major disadvantage of the time consuming step involving extracting and
selecting important image features [35]. To address this issue, convolu-
tion neural network (CNN), a DL model that automatically learns, extracts
and selects important features have shown promise in imaging classifi-
cation tasks [36]. For any Al models, including classifiers, overfitting is a
common problem when an algorithm is too focused on the training data
set that it can not be successfully applied to a new data set. In order to
verify if the model is not overfitting, a k-fold cross validation could be
done by randomly partitioning a data set into k mutually exclusive
subsets. Different metrics can be used in order to evaluate a model’s
performance. These include sensitivity, specificity, accuracy, precision
and recall. Another measurement could be done with the Area Under the
ROC Curve (AUC) ranging from O to 1 (0 for a model’s predictive per-
formance is 100 % wrong and 1, as its performance is 100 % correct).
The calculation of the concordance index (C-index) could also be
measured for predictive performance, on a scale between zero and one
with 0.5 indicating no prognostic value.

Artificial intelligence

Machine Learning

Learning

Deep Learning

Deep Learning

Fig. 1. Various levels of Artificial intelligence, including machine learning and deep learning.
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Fig. 2. Schematic illustration of radiomic pipeline.

Table 1
Summary list of potential use of AI algorithms in different steps in HNC RT.

Steps Clinical Use Algorithms

1) Diagnosis/ Clinical/Pathological/ SVM, LR, RF, DT, KNN, Bayesian,

Initial radiological data Linear Discriminant Analysis, DL

evaluation processing and combination of ML and DL
2) Treatment Treatment Decision Aid DSS, SDM

Decision Outcome Prediction SVM, LR, Bayesian, neural

Making network, decision trees and

combination

Bayes, LR, KNN, SVM, SVC, RF,
XGBoost PLR, RFC, IBDM, CART,
CNN

Toxicities Prediction

3) Simulation Synthetic Imaging Fuzzy c-means clustering, CNNs
Generation and GANs
4) Treatment Auto-segmentation DSC, CNN pp-Resnet
Planning Dosimetric Unet, DenseNet, GANs
Optimization

5) Treatment
delivery

Image Guidance and
Motion Management
CBCT quality
improvement

CNN, Bayesian, SVM,

CNN

Abbreviations: CBCT, cone-beam computed tomography; CNN, convolutional
neural network; CART, Classification and Regression Tree; DL, deep learning;
DT, Decision Tree; DSC, Dice Similarity Coefficient; DSS, clinical decision sup-
port systems; KNN, k nearest neighbor; LR, logistic regression;ML, machine
learning; GANs, Generative Adversarial Networks; IBDM, image based data
mining; RF, random forest; RFC,random forest classifier; SDM, shared decision
making; SVM, support vector machine; SVC, support vector classifier.

Prediction of toxicity

Different Normal Tissue Complication Probability (NTCP) models
have been proposed in order to help understand and estimate the risk of
different toxicities. The common traditional models are the Lyman-
Kutcher-Burnman models based on simplified characterization of the
radiation-dose response for each anatomy [37]. For different toxicities,
some studies have shown good validation [38]. In clinical practice, ra-
diation oncologists routinely use the Quantitative Analyses of Normal
Tissue Effects in the Clinic (QUANTEC) dose-response guidelines to

determine tolerance dose to organs at risk [39]. However, the predictive
power of currently models is largely limited by the lack of integration of
patient-specific risk factors [40 41] and omission of the inclusion of
radiomic features despite studies having shown their relevance [38]. In
order to account for these issues and update the current NTCP models,
different ML methods have been studied [43]. Table 2 summarizes the
current literature on Al predictive models for toxicities.

As xerostomia is known to be a common major early- and long-term
toxicity of HNC RT, different studies reported on radiomic features from
salivary glands, namely the parotid glands (PGs) or submandibular
glands (SMGs). Gabry et al [44] compared the predictive performance of
seven classification algorithms, six feature selection methods, and ten
data cleaning/class balancing techniques by integrating retrospective
dosiomic, radiomic and demographic data from 153 HNC patients
treated with definitive RT. Important features such as dosimetric shape
and gradients, PG volume and eccentricity, and DVH spread were
identified. Their MLs based models performed better compared to the
traditional NTCP models based on mean dose to PG only. Jiang et al [45]
tested three different algorithms applied to a data set including clinical
and radiomic features such as voxels dose in the PGs and SMGs from 427
HNC patients treated with definitive RT. Similar to. Gabry et al, the
authors were able to observe that specific dose patterns across the
subvolumes in both organs were an important predictive feature and
their ridge logistic regression model had the best performance with AUC
of 0.70. Dijk et al [46] used the CT based image biomarkers (IBMs) of the
PGs and SMGs from 249 HNC patients treated with definitive RT in order
to improve the NTCP predictive models for sticky saliva (STIC) and
moderate-severe xerostomia 12 months. For both toxicities, pre-
selection through a lasso regularization identified different important
radiomic features and the predictive performance of NTCP models were
stronger when IBMs were added (AUC 0.74 vs 0.77). Beasley et al [47]
also used ML applied to the image based data mining (IBDM) in order to
identify clusters of dose distribution voxels involved in radiation
induced trismus. From clinical and radiomic data set from 86 HNC pa-
tients focusing on the dose distributions within the anatomy of interest,
different features investigated in a multivariable analysis and an inter-
nal/external validation demonstrated the importance of dose patterns
within anatomy to predict trismus.
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Table 2
Al predictive models for toxicities.
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Authors Endpoints Number of HNC Algorithms Performance Important features
cohort
Dean et al. Mucositis 351 PLR, SVC, RFC RFC with AUC 0.71 Volumes of oral cavity receiving
(2016) [53] intermed - high dose
Dijk et al. (2016) [46] Xerostomia and sticky saliva at 249 LASSO regularisation AUC 0.77 IBMs
12 months
Pota et al. (2017) [95] PG shrinkage and Xerostomia at 37 fuzzy classification AUC 0.86 and 0.79 Final volume PG shrinkage
12 months
Dean et al. (2017) [49] Dysphagia 173 PLR, SVC, RFC RFC with AUC 0.71 PM receiving >1 Gy/fraction
Cheng et al. (2017) [52] WL during RT and EOT 391 CART AUC 0.773 and 0.821 Dose in OARs, oral intake, N stage,
pain, nausea
Beasley et al. (2018) [47]  Trismus 86 Linear regression Rs of —0.45 IBDM clusters in ipsilateral masseter
Gabry s et al. (2018) [44] Xerostomia at different 153 7 classifiers and 6 feature AUC 0.74-0.88 Dose gradient in PGs, PG volume,
timelines selectors PG eccentricity
Jiang et al. (2018) [45] Xerostomia 3 months post RT 427 RLR, LLR, RF AUC 0.70 Dose pattern in PG/SMG
Reddy et al. (2019) [50] Hospitalization Feeding tube 2121 RF, GB, LR AUC 0.640-0.751 -
WL
Wojcieszynski et al Grade > 3 toxicity 437 PLR, RF, XGBoost C-statistic 0.65 and PTV integral dose and integral dose
(2019) [51] (90and180days) 0.63 out of PTV
Zhang et al. (2020) [54] RTLI post RT in different 242 NPC RF AUCs 0.830, 0.773 and Features from medial temporal lobe
timelines 0.716
Humbert-Vidan et al. ORN 140 3D CNN, DenseNet 21 AUC 0.71 Clinical dosimetric distribution

(2022) [55]

Abbreviations: AUC, Area Under the ROC Curve; CART, Classification and Regression Tree; GB, Gradient boosting; IBMs, image biomarkers; LLR, Local linear forest;
LR, logistic regression; PLR, Positive likelihood ratio; PG, parotid glands; PTV, Planning target volumes; RLR, Rigid logistic regression; RF, random forest; RFC, random
forest classifier; SMG, Submandibular glands; SVC, support vector classifier; XGBoost, extreme gradient boosting; 3D, three dimensions.

Dysphagia is also a common toxicity among patients treated with RT
for HNC causing a major impact in patients’ quality of life [48]. In order
to improve the current predictive NTCP model for dysphagia, Dean et al
[49] incorporated spatial dose metrics in different ML models with a
prospective data set of 173 HNC patients including clinical and dosi-
metric features focusing on pharyngeal mucosa (PM). Their RFC model
with a highest AUC of 0.71 identified that the volume, length and
circumference of PM receiving 1 Gy/fraction and higher were strongly
associated with the risk of dysphagia. More recently, Reddy et al [50]
used a different data set from 2,121 HNC patients in order to compare
predictive performance of three different classifiers for unplanned hos-
pitalizations, feeding tube placement and significant weight loss. This
method identified over 700 treatment-related and clinical variables, and
achieved AUC values of up to 0.64, 0.75, and 0.75 for RF, gradient
boosting, and LR, respectively. Wojcieszynski et al [51] compared the
predictive performance of three ML methods on a prospective data set of
437 HNC patients treated with definitive chemoradiation (CRT). Their
RF model yielded moderate success for toxicity at 90 and 180 days with
c-static of 0.65 and 0.63, respectively. From this study, higher integral
doses outside of the target volume, target volume integral dose, body
mass index (BMI) and age were important factors associated with
increased grade 3 + toxicity. Cheng et al [52] used a Classification and
Regression Tree model in HNC patients treated with definitive RT by
using demographic, dosimetric and clinical data from 391 patients in
order to predict weight loss >5 kg at 3 months post-RT. Two models
were built, one during the RT planning and one at the end of the
treatments. When additional treatment-related data was added to each
model, the predictive performance was improved, with an AUC of 0.77
and 0.82, respectively.

Several other radiation-induced toxicities have been the focus of
individual studies. Mucositis was the focus of a study by Dean et al [53],
where clinical, dose-volume and spatial dose metrics data from 317 HNC
patients were used to build predictive ML models for severe acute
mucositis. Among different models tested, the discriminative perfor-
mance was not improved with the additional spatial dose metrics.
Important features were in the range V80-V220 and the most important
feature was the V220. Interestingly, in contrast to the RTOG guidelines
focusing on mean dose to the oral cavity, the authors therefore identified
that the strongest feature associated with severe acute mucositis was the
volume receiving intermediate and high doses. To predict radiation-

induced temporal lobe injury, Zhang et al [54] used retrospective clin-
ical and CT and MRI based radiomic data from 242 nasopharynx (NPC)
patients treated with definitive RT. Different radiomic features were first
extracted from the medial temporal lobe regions. RF predictive model
showed strong predictive performance in three subsequent radiological
follow-ups preceding the onset of radiation-induced temporal lobe
injury with the mean AUCs of between 0.71 and 0.83. More recently,
Humbert-Vidan et al [55] used retrospective demographic, clinical and
dosimetric data (3D dose distribution map) of 140 HNC patients (70
patients with ORN and 70 patients as control group) in order to compare
the predictive performance of a 3D densely-connected 121-layer con-
volutional neural network (CNN) model with a DVH based RF model.
The 3D DenseNet121 CNN model had better performance with an
average AUC of 0.71 (0.64-0.79), compared to 0.65 (0.57-0.73) for the
RF model.

There was a general trend of increasing feature importance with
increasing dose and feature importance was also high for RT dose
metrics in the range V80 — V220.

Prediction of cancer control outcomes

Current predictive models for HNC are mainly based on the TNM
(Primary tumor, regional lymph nodes and distant metastasis) staging
[56], which guides oncologists in the selection of the appropriate ther-
apeutic options for patients. In oropharyngeal cancer (OPC), other
prognostic variables established in the context of clinical trials, namely
human papillomavirus (HPV) status and tobacco smoking pack-years,
have largely been integrated in the clinical practice. While patients
with HPV-associated OPC generally have an improved prognosis, we
now recognize that a subset of these patients present a highly aggressive
behavior [57]. There is therefore a general concern that safe treatment
de-escalation should not jeopardize the chance of cure of these patients,
and that more reliable tools to predict tumor behavior are greatly
needed. In recent years, several predictive Al models to better predict
cancer control outcomes in HNC have been published and are presented
in Table 3.

To better stratify survival outcomes, Tseng et al [58] evaluated the
elastic net penalized Cox proportional hazards regression-based risk
stratification model in operated oral cavity cancers. The authors inte-
grated clinicopathologic and genomic data from 334 patients with
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Table 3

Different Al predictive models for outcomes.
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Authors Patient Predicted outcomes Number of Algorithms Performance Important features

population patients

Parmar HNC SCC 3Y OS 206 13 feature selectors and 11 ML 3 feature selectors (MRMR, CT based radiomic
et al. classifiers MIFS and CIFE) with AUC features
(2015) 0.66-0.69
[63] 3 classifier (RF, NN and BY)

with AUC 0.61-0.67

Jiang et al. NSC oS 347 SVM HR 3.45 Combination of CRT
(2015)

[62]

Li et al. NSC LR 306 PCA, ANN, KNN ANN with accuracy of 0.812 MRI based radiomic
(2018) SVM features
[65]

Zdilar et al. OPC oS 529 MRMR, Wilcoxon, RF, RReliefF, RF selectors AUC 0.75 and C- CT based radiomic
(2018) RFC RRF, IAMB, RSF, PCA index 0.68 features
[64]

Fujima Sinonasal SCC LF 36 SVM Accuracy of 0.96 MRI based radiomic
et al. features
(2019)

[96]

Wu et al. OPC DMFS 140 RSF C-index 0.73 Max distance between
(2019) nodes and tumor-nodes
[97]

Zhou et al. NPC DM 176 PyRadiomics features extraction, AUC 0.827 (training group) MRI based radiomic
(2019) features selections (Mann-Whitney and 0.792 (validation group)  features
[67] U test, mRMR, Lasso), LR

Tseng et al.  Oral cavity Survival (Cancer specific ~ 334 Elastic Net Penalized Cox C index 0.689 and 0.693. Genetic data
(2020) and loco-regional Proportional Hazards regression Distant metastasis free
[58] recurrence free) survival not different

Howard HNC SCC oS 33527 DeepSurv, RSF HR of 0.79, 0.83 and 0.90 Stage T4, HPV status,
et al. N-MTLR tonsil subsite
(2020)

[591]

De Felice OPC oS 273 RF - Classification tree Mean decrease accuracy of HPV status
et al. 4.29,2.49 and 1.11 % N status
(2020) Early responders
[32]

Tran et al. HNC SCC Local nodal response 32 LR, KNN, naive-Bayes Accuracy 87.5 % with three Quantitative US
(2020) feature model radiomic features
[68]

Tosado OPC 0S, RFS 644 RReliefF feature selector, Cox AUC 0.6395 (0S) and 0.6483 Radiomic features
et al. Model, RSF (RFS) combined with clinical
(2020) features
[70]

Bogowicz OPC, hypo 2YOS, HPV 1174 Feature selector (LR Z-Rad), No significant differences in 981 radomic features
et al. pharynx, larynx, Classification (hierarchical AUC between centralized and
(2020) oral cavity clustering, LR) distributed.

[71]

Rich et al. OPC HPV + DM 225 Feature extractor (SMOTE, AUC 0.84-0.95 CT based radiomic
(2021) ADASYN, borderline SMOTE), SVM
[69]

Le et al. HNC SCC 10Y DM, Lr, OS 371 Cox Model, RF, CNN, DenseNet, PreSAnet - Accuracy of 74 % Performance decrease
(2022) InceptionV3, ResNet, ResNeXt and (Lr) and 79 % (OS) with PET images
[72] PreSANet

Abbreviations: ADASYN, adaptive synthetic sampling; ANN, artificial neural network; BY, Bayesian; CT, Computed tomography; C-index, concordance index; CIFE,
conditional informax feature extraction; CRT, chemo-radiotherapyDM, distant metastasis; DMFS, distant metastasis-free survival; HNC, head and neck cancer; HPV,
human papillomavirus; HR, Hazard ratio; IAMB, incremental association Markov blanket; KNN, k nearest neighbor; LF, local failure; Lr, locoregional recurrence; LR,
logistic regression; LRC, loco-regional control; NPC, nasopharyngeal cancer; MIFS, mutual information based feature selection; MRI, Magnetic resonance imaging;
MRMR, Minimum redundancy feature selection; N, node; NN, nearest neighoor; N-MLTR, Neural Multi-Task Logistic Regression; OS, overall survival; PET, positron
emission tomography; PCA, Principal component analysis; RF, random forest; RFC, relapse-free survival; RRF, Regularized random forest; RSF, random survival forest;
SCC, squamous cell carcinoma; SMOTE, synthetic minority over-sampling technique; SVM, support vector machine; US, Ultrasounds; 2D CNN, two dimensions
convolutional neural network; 3D CNN, three dimensions convolutional neural network.

locally advanced HNC treated with curative intent surgery, combined
with adjuvant RT or CRT. Compared to the baseline model using clini-
copathologic data alone, the identification and integration of genetic
features associated with prognostic led to a model with better classifi-
cation performance, with mean C-indexes of 0.689 (vs 0.673) and 0.693
(vs 0.678) for cancer-specific survival and locoregional recurrence-free
survival, respectively. Also in the post-operative setting, Howard et al
[59] aimed to build an overall survival (OS) predictive model to better
identify patients that may benefit from the addition of adjuvant con-
current chemotherapy. The authors evaluated different ML models

integrating a large retrospective data from the National Cancer Data-
base, including 33 527 patients with squamous cell carcinoma of the
oral cavity, oropharynx, hypopharynx, or larynx treated with definitive
surgery followed by an adjuvant RT or CRT. Three different models were
trained, then validated using a subset of the same cohort. Compared to
RTOG 95-01 and EORTC 22931 recommendations [60-61], treatments
guided by all three models had improved survival outcomes with hazard
ratio (HR) of 0.79-0.90 and c index of 0.691-0.695 with similar accu-
racy and there was no survival benefit for CRT for patients recom-
mended to receive RT alone. These models also identified important
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variables related to prognosis such as year of diagnosis, T4, HPV posi-
tivity and tonsillar subsite.

In order to evaluate the role of radiomics for risk stratification of DM,
Rich et al [69] used CT based radiomic and clinical features from 225
locally advanced OPC HPV+ patients treated with curative intent RT or
CRT. Nine different algorithms were built using different radiomic
datasets derived using different algorithms integrated to SVM classifier.
All classifiers achieved at least an excellent level in discriminating the
two patient cohorts with DM or not. In order to build a predictive model
for OS and RFS outcomes, Tosado et al [70] incorporated retrospective
CT based radiomic data with clinical data from 644 OPC patients treated
with RT or CRT. Distinctive radiomic and clinical features with the
cluster labels were identified and different supervised models were built
using these features. Compared to the baseline model based on clinical
features only, these models had better predictive performance for both
outcomes. In another study by Jiang et al [62], aiming to predict out-
comes in metastatic NPC patients treated with chemotherapy alone, RT
alone or the combination of both, the retrospective hematological,
clinical and therapeutic parameters of 347 patients were used in a SVM
model. The multivariate model had a strong performance with an AUC
at 0.761 and the classifier was able to stratify the patients into low risk
and high risk groups with significantly different 2 year OS of 71.4 % vs
18.8 %, respectively. This classifier also helped identify that combined
CRT was associated with significantly better outcomes in the low risk
groups, but not in the higher risk groups.

Other studies focused on integrating radiomic data into ML algo-
rithms to optimize predictive models for HNC treatment outcomes. In
order to identify the optimal ML methods for radiomic-based overall
survival prediction, Parmar et al [63] compared the performance of 13
features selection methods and 11 ML classification methods integrating
CT based 440 radiomic features from 196 HNC patients. Three feature
selection methods had the best performance with AUC between 0.66 and
0.69 and stability between 0.66 and 0.70 compared to the median values
of AUC = 0.61 and stability = 0.66. Three classifying methods had the
best performance with AUC between 0.61 and 0.67. Zdilar et al [64]
used retrospective CT based radiomic, clinical, demographic, toxicity
and cancer control outcome data from 529 OPC patients treated with
curative intent RT or CRT to compare the predictive performance of
different selectors for OS and RFS. Among 3800 radiomic features
extracted, selected features using 8 different methods resulted in better
AUC compared to clinical features alone. Among the feature selectors,
RF based selectors had the best overall scores. In order to build a model
predicting a radioresistance, Li et al [65] used retrospective data from
306 NPC patients treated with definitive CRT. Clinicopathological and
radiomic/dosimetric features from planning CT and from follow up
imagings including CT, MRI or PET. Once detected, recurrent tumor
volumes were delineated, then was categorized as “in field recurrence” if
the recurrence was inside the high-dose target. Eight discriminative
features were identified from pretreatment MRIs compared between the
patients with and without the disease recurrence. Features were fed to
three different MLs, which were trained, then validated and yield ac-
curacies ranging between 0.732 and 0.812. These results could indicate
possible differences in heterogeneity in LR tumors. For a predictive
performance of loco-regional recurrence (LRR), Starke et al [66] used
the retrospective data from 291 patients with locally advanced HNC
treated with CRT. A baseline Cox proportional hazards model (CPHM)
using clinical features alone was compared to different 3D-CNN and 2D-
CNN models built from scratch combining clinical features and CT im-
ages. Among these, the ensemble of 3D-CNNs had the best performance
and successful validation with a C-index of 0.31. Patient risk group
defined by this model’s predictions showed significant differences in
LRR with p = 0.001. The C-index for 2D-CNN and for CPHM was 0.38
and 0.39, respectively. In order to satisfy risks for DM and 5Y OS, Zhou
et al [67] used MRI based radiomic with dosiomic and clinical features
from 176 NPC patients treated with curative intent RT or CRT. With the
radiomic features extracted, an algorithm model was built in order to
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classify into high- and low risk groups for DM. With the clinical features,
the radiomic based models show strong predictive performance for both
in the training and validation cohorts with AUC of 0.827 and 0.792
respectively. Another study was done to predict therapeutic response in
metastatic lymph nodes by Tran et al [68]. Their team used the quan-
titative ultrasound based radiomic markers from 32 HNC patients with
positive lymph nodes treated with curative intent RT or CRT. Depending
on their 3 months follow up MRI, patients were divided into two
different categories: complete responders or partial responders.
Different radiomic features were extracted, then applied in LR, KNN and
a naive-Bayes. Multi Parametric models showed a strong predictive
power with high accuracy of 87.5 %. Significant differences in radiomic
parameters were found between the two groups.

In order to evaluate the role of radiomics for risk stratification of DM,
Rich et al [69] used CT based radiomic and clinical features from 225
locally advanced OPC HPV+ patients treated with curative intent RT or
CRT. Nine different algorithms were built using different radiomic
datasets derived using different algorithms integrated to SVM classifier.
All classifiers achieved at least an excellent level in discriminating the
two patient cohorts with DM or not. In order to build a predictive model
for OS and RFS outcomes, Tosado et al [70] incorporated retrospective
CT based radiomic data with clinical data from 644 OPC patients treated
with RT or CRT. Distinctive radiomic and clinical features with the
cluster labels were identified and different supervised models were built
using these features. Compared to the baseline model based on clinical
features only, these models had better predictive performance for both
outcomes. In another study by Jiang et al [62], aiming to predict out-
comes in metastatic NPC patients treated with chemotherapy alone, RT
alone or the combination of both, the retrospective hematological,
clinical and therapeutic parameters of 347 patients were used in a SVM
model. The multivariate model had a strong performance with an AUC
at 0.761 and the classifier was able to stratify the patients into low risk
and high risk groups with significantly different 2 year OS of 71.4 % vs
18.8 %, respectively. This classifier also helped identify that combined
CRT was associated with significantly better outcomes in the low risk
groups, but not in the higher risk groups.

The sufficient quantity of a radomic data set is a common problem for
an Al algorithm development and multicenter approach can be a solu-
tion but implicating ethical issues. In order to address this issue, Bogo-
wicz et al [71] tested the distributed learning technique enabling
training models on multicenter data without data leaving the hospitals.
Two different approaches, centralized and distributed, were compared
for 2Y OS and HPV status predictive models built with CT based radio-
mic, dosiomic and clinical features from 1174 HNC patients treated with
curative intent RT or CRT. For both feature selection and classification,
there was no significant difference in terms of performance between
these two approaches. Most recently, Le et al [72] used retrospective
cross-institutional patho-clinical and PET-CT based radiomic data set
from 298 HNC patients treated with curative intent RT or CRT in order
to train a predictive model based on a pseudo-volumetric convolutional
neural network with PreSANet. The model was internally validated,
then an extensive set of ablation experiments on the public data set
showed AUROC of DM, LR and OS between 80 and 82 %. External
validation on a retrospective dataset showed an AUROC at 69 % and a
validation of single site-holdout and cross-validation showed mean ac-
curacy across four different institutions was between 70 and 72 %.

Discussion

Recent studies have shown promising results in the use of ML in the
field of HNC RT in predicting therapeutic outcomes and toxicity.
Different algorithms have shown good predictive performance and have
helped identify features that provide insight into the heterogeneous
nature of HNC. Those features have included demographic characteris-
tics, molecular, dosimetric, radiomic and therapeutic factors. Their
integration to the current clinical decision algorithms has the potential
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to improve risk stratification and selection of optimal therapeutic
options.

Despite promising results, these models remain largely premature for
clinical use at this stage. One major concern is the lack of standardiza-
tion of the largely retrospective data used in a single center. In radiomics
specifically, for each imaging modality, intra and inter-institutional
variations in scanner, acquisition and reconstruction parameters have
been shown to impact the robustness of the predictive models [73].
Pertaining to RT data, differences in tumor and organs at risk segmen-
tations as well as dosimetric data further challenges reproducibility
[42,74]. In addition, variations in feature extraction techniques, choice
of robustness metrics and outcome definitions used across studies
complicate the interpretation of results. The small sample sizes and high
heterogeneity of HNC and frequent lack of external validation lead lack
of generalizability of the current studies. Increased use of open-access
data sets and multicenter prospective cohorts, along with strict guide-
lines for data standardization would be critical for these models to reach
clinical usability [71-72,75]. In addition, training clinical oncologists to
the field of Al, as well as integrating them early in the development and
validation of these models will be increasingly important. As clinicians
are ultimately responsible for decision making, ensuring their adequate
understanding and interpretation of these models will help overcome
the “black box’’ problem and facilitate clinical implementation of these
tools [76-77].

Beside the risk stratification and decision support in HNC RT, AI has
substantial potential in other upstream tasks such as automatic detection
and segmentation of anatomical structures [13], automatic registration
of mono-modal or multimodal images [14], temporal motion compen-
sation [15], tumor and lesion grade classification [16], and nomograms
for risk stratification-prognostic modeling [17]. Al can independently be
introduced at all stages of a patient’s treatment from diagnosis, to
planning and re-planning, to long-term follow-up and prognosis, while
allowing or benefiting from expert input along the way.

Al can reveal the radiomic signatures in HNC such as tumor char-
acteristics including HPV status [29] or Programmed Death-Ligand 1
expression [30], identification of extranodal extension [31] as well as
cancer control outcomes [32] and larynx/hypopharynx cancers [33].
Radiomics also has the potential to provide a quantitative assessment of
tumor and normal tissue reaction to RT over the course of treatment (i.e.
delta-radiomics) [34]. The emerging use of multi-omics ((Gen-omics,
Epigen-omics, Transcipt-omics, prote-omics, metabol-omics and microbi-
omics) [78-79] in oncology, along with the increasing quantity and
quality of imaging in radiation oncology, represent a clear opportunity
to propule the role of Al in HNC. The integration of daily imaging used
over the course of RT in order to capture dynamically tumor response or
early signs of toxicity could guide therapeutic decision or early in-
terventions more efficiently, as suggested in early work using CBCTs
data in dynamic predictive algorithms [80-81]. The increasing avail-
ability of the MR-Linac technology across institutions will lead to
increased quality and both anatomic and functional information of daily
RT imaging and will further increase the potential to unlock dynamic
imaging-based biomarkers [82-85]. Finally, as the field of liquid biopsy
if expanding rapidly, non invasive biologic serum or salivary HNC bio-
markers [86-88] could be further integrated to these algorithms to in-
crease the precision of dynamic clinical outcomes predictions over the
course of treatment and in post-treatment follow-ups [89-94].

This review has several limitations. First, its non-systematic review
method could cause potential risks of different bias with less trans-
parency. However, this method seemed suitable to offer a general
overview of the current stance of Al in HNC RT. Also, our study did not
include a recently developed radiomics quality score, a tool built by
Lambin et al. in order to determine the validity and completeness of
radiomics studies [98]. For a more comprehensive understanding of the
subject matter, future reviews could include use of this tool as well as an
insight on the ongoing clinical trials evaluating Al and radiomics tools in
HNC RT [99-101].
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Al-models predicting cancel control and toxicity outcomes in HNC
RT have shown promising performance and would be of high clinical
utility for individualized risk-based decision making. These important
challenges to the development and safe clinical implementation of these
models could only be overcome with coordinated collaborative efforts to
standardize, validate and expand these models to large enough datasets
and test in the context of clinical trials.
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