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ABSTRACT Seed germination is characterized by a constant change of gene expression across different time
points. These changes are related to specific processes, which eventually determine the onset of seed
germination. To get a better understanding on the regulation of gene expression during seed germination,
we performed a quantitative trait locus mapping of gene expression (eQTL) at four important seed
germination stages (primary dormant, after-ripened, six-hour after imbibition, and radicle protrusion stage)
using Arabidopsis thaliana Bay x Sha recombinant inbred lines (RILs). The mapping displayed the distinctness
of the eQTL landscape for each stage. We found several eQTL hotspots across stages associated with the
regulation of expression of a large number of genes. Interestingly, an eQTL hotspot on chromosome five
collocates with hotspots for phenotypic and metabolic QTL in the same population. Finally, we constructed a
gene co-expression network to prioritize the regulatory genes for two major eQTL hotspots. The network
analysis prioritizes transcription factors DEWAX and ICE1 as the most likely regulatory genes for the hotspot.
Together, we have revealed that the genetic regulation of gene expression is dynamic along the course of
seed germination.
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Seed germination involves a series of events starting with the tran-
sition of quiescent to physiologically active seeds and ends with the
emergence of the embryo from its surrounding tissues. Germination
is initiated when seeds become imbibed by water, leading to the
activation of seed physiological activities (Bewley et al. 2013b;
Nonogaki et al. 2010). Major metabolic activities occur after seeds
become hydrated, for example, restoration of structural integrity,
mitochondrial repair, initiation of respiration, and DNA repair

(Bewley et al. 2013b; Nonogaki et al. 2010). For some species such
as Arabidopsis thaliana, germination can be blocked by seed dor-
mancy. Dormant seeds need to sense and respond to environmental
cues to break their dormancy and complete germination. In Arab-
idopsis thaliana, seed dormancy can be alleviated by periods of dry
after-ripening or moist chilling (Bewley et al. 2013b). Soon after
dormancy is broken, the storage reserves are broken down, and
germination-associated proteins are synthesized. Lastly, further water
uptake followed by cell expansion leads to radicle protrusion through
endosperm and seed coat, which marks the end of germination
(Bewley et al. 2013b).

A major determinant for the completion of seed germination is
the transcription and translation of mRNAs. The activity of mRNA
transcription is low in dry, mature seeds (Comai and Harada 1990;
Leubner-Metzger 2005), and drastically increases after seeds become
rehydrated (Bewley et al. 2013a). Nevertheless, stored mRNAs of
more than 12,000 genes with various functions are already pre-
sent in dry seeds. These mRNAs are not only remnants from the
seed developmental process, but also mRNAs for genes related to
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metabolism as well as protein synthesis and degradation required in
early seed germination (Nakabayashi et al. 2005; Rajjou et al. 2004).
Later in after-ripened seeds, only a slight change in transcript
composition was detected compared to the dry seeds (Finch-Savage
et al. 2007). The major shift in transcriptome takes place after water
imbibition (Nakabayashi et al. 2005). Interestingly, the transcriptome
at the imbibition stage depends on the status of dormancy. For non-
dormant seeds, most of the transcripts are associated with protein
synthesis, while for dormant seeds, the transcripts are dominated by
genes associated with stress-responses (Finch-Savage et al. 2007; Buijs
et al. 2020). Even the transcript composition in primary dormant
seeds, which occurs when the dormancy is initiated during develop-
ment, is different from that of secondary dormant seeds, which occurs
when the dormancy is reinduced (Cadman et al. 2006). These
findings show the occurrence of phase transitions in transcript
composition along the course from dormant to germinated seed.

As omics technology becomes more widely available, several
transcriptomics studies in seed germination processes have been
conducted on a larger-scale. More developmental stages, e.g., strat-
ification and seedling stage, and even spatial analyses have been
included in these studies, resulting in the identification of gene
co-expression patterns as well as the predicted functions of hub-
genes (Narsai et al. 2011; Silva et al. 2016; Dekkers et al. 2013; Bassel
et al. 2011). Through guilt-by-association, these co-expression based
studies can be used for the identification of regulatory genes that are
involved in controlling the expression of downstream genes. These
regulatory genes can be subjected to further studies by reverse
genetics to provide more insight into the molecular mechanisms
of gene expression in seed germination (e.g., Silva et al. 2016).
Nevertheless, this approach still has limitations. Uygun et al.
(2016) argued that co-expressed genes do not always have similar
biological functions. On the other hand, genes involved in the same
function are not always co-expressed since gene expression regulation
could be the result of post-transcriptional or other layers of regulation
(Lelli et al. 2012). Further, Uygun et al. (2016) emphasized the
importance of combining the expression data with multiple relevant
datasets to maximize the effort in the prioritization of candidate
regulatory genes.

Genetical genomics is a promising approach to study the regu-
lation of gene expression by combining genome-wide expression data
with genotypic data of a segregating population (Jansen and Nap
2001). To enable this strategy, the location of markers associated with
variation in gene expression is mapped on the genome, which results
in the identification of expression quantitative trait loci (eQTLs).
Relative to the location of the associated gene, the eQTL can be locally
or distantly mapped, known as local and distant eQTLs (Rockman
and Kruglyak 2006; Brem et al. 2002). Local eQTLs mostly arise
because of variations in the corresponding gene or a cis-regulatory
element. In contrast, distant eQTLs typically occur due to poly-
morphism on trans-regulatory elements located far away from the
target genes (Rockman and Kruglyak 2006). Therefore, given the
positional information of distant eQTLs, one can identify the possible
regulators of gene expression. However, the eQTL interval typically
spans a large area of the genome and harbors hundreds of candidate
regulatory genes. A large number of candidate genes would cause the
experimental validation (e.g., using knockout or overexpression lines)
to be costly and take a long time. Therefore, a prioritization method is
needed to narrow down the list of candidate genes underlying eQTLs,
particularly on distant eQTL hotspots. A distant eQTL hotspot is a
genomic locus where a large number of distant eQTLs are collocated
(Breitling et al. 2008). The common assumption is that the hotspot

arises due to one or more polymorphic master regulatory genes
affecting the expression of multiple target genes (Breitling et al. 2008).
Therefore, the identification of master regulatory genes becomes the
center of most genetical genomics studies as the findings might
improve our understanding of the regulation of gene expression
(i.e., in Keurentjes et al. 2007; Jimenez-Gomez et al. 2010; Sterken
et al. 2017; Valba et al. 2015; Terpstra et al. 2010).

In this study, we carried out eQTL mapping to reveal loci
controlling gene expression in seed germination. To capture whole
transcriptome changes during seed germination, we included four
important seed germination stages, which are primary dormant seeds
(PD), after-ripened seeds (AR), six-hours imbibed seeds (IM), and
seeds with radicle protrusion (RP). In total, 160 recombinant inbred
lines (RILs) from a cross between genetically distant ecotypes
Bayreuth and Shahdara (Bay x Sha) were used in this study (Loudet
et al. 2002). Our results show that each seed germination stage has a
unique eQTL landscape, confirming the stage-specificity of gene
regulation, particularly for distant regulation. Based on network
analysis, we identify the transcription factors ICE1 and DEWAX
as prioritized candidate regulatory genes for two major eQTL hot-
spots in PD and RP, respectively. Finally, the resulting dataset
complements the previous phenotypic QTL (Joosen et al. 2012)
and metabolite QTL (Joosen et al. 2013) datasets, allowing systems
genetics studies in seed germination. The identified eQTLs are
available through the web-based AraQTL (http://www.bioinforma-
tics.nl/AraQTL/) workbench (Nijveen et al. 2017).

MATERIALS AND METHODS

Plant materials
In this study, we used 164 recombinant inbred lines (RILs) derived
from a cross between the Bayreuth and Shahdara Arabidopsis
ecotypes (Loudet et al. 2002) provided by the Versailles Biological
Resource Centre for Arabidopsis http://publiclines.versailles.inra.fr/.
The plants were sown in a fully randomized setup on 4x4 cm
rockwool plugs (MM40/40, Groudan B. V.) and hydrated with
1 g/l Hyponex (NPK = 7:6:19, http://www.hyponex.co.jp) in a climate
chamber (20� day, 18� night) with 16 hr of light (35 W/m2) at 70%
relative humidity. Seeds from four to seven plants per RIL were bulk
harvested for the experiment (see also Joosen et al. 2012; Joosen et al.
2013). The genotypic data consisting of 1,059 markers per line was
obtained from Serin et al. (2017). However, the genotypic data are
available only for 160 RILs; therefore, we used this number of lines for
eQTL mapping.

Experimental setup
The RIL population was grouped into four subpopulations, each one
representing one of the four different seed germination stages.We used
the designGG-package (Li et al. 2009) in R (version 3.6.0Windows x64)
to aid the grouping so that the distribution of Bay-0 and Sha alleles
between sub-populations is optimized. The first stage is the primary
dormant (PD) stage when the seeds were harvested and stored at -80�
after one week at ambient conditions. The second stage is after-ripened
(AR) seeds that obtained maximum germination potential after five
days of imbibition by storing at room temperature and ambient relative
humidity. The third stage is the 6 hr imbibition (IM) stage. For this
stage, the seeds were after-ripened and imbibed for six hours on water-
saturated filter paper at 20� and immediately transferred to a dry filter
paper for 1 min to remove the excess of water. The fourth stage is the
radicle protrusion (RP) stage. To select seeds at this stage, we used a
binocular to observe the presence of a protruded radicle tip.
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RNA isolation
Total RNA was extracted according to the hot borate protocol
modified from Wan and Wilkins (1994). For each treatment,
20 mg of seeds were homogenized and mixed with 800 ml of
extraction buffer (0.2M Na boratedecahydrate (Borax), 30 mM
EGTA, 1% SDS, 1% Na deoxycholate (Na-DOC)) containing
1.6 mg DTT and 48 mg PVP40 which had been heated to 80�. Then,
1 mg proteinase K was added to this suspension and incubated for
15 min at 42�. After adding 64 ml of 2 M KCL, the samples were
incubated on ice for 30 min and subsequently centrifuged for 20 min
at 12,000 g. Ice-cold 8 M LiCl was added to the supernatant in a final
concentration of 2 M, and the tubes were incubated overnight on ice.
After centrifugation for 20 min at 12,000 g at 4�, the pellets were
washed with 750 ml ice-cold 2 M LiCl. The samples were centrifuged
for another 10min at 10,000 g at 4�, and the pellets were re-suspended
in 100 ml DEPC treated water. The samples were phenol-chloroform
extracted, DNAse treated (RQ1 DNase, Promega), and further pu-
rified with RNeasy spin columns (Qiagen) following the manufac-
turer’s instructions. The RNA quality and concentration were
assessed by agarose gel electrophoresis and UV spectrophotometry.

Microarray analysis
RNA was processed for use on Affymetrix Arabidopsis SNPtile array
(atSNPtilx520433), as described by the manufacturer. Briefly, 1 mg of
total RNA was reverse transcribed using a T7-Oligo(dT) Promoter
Primer in the first-strand cDNA synthesis reaction. Following RNase
H-mediated second-strand cDNA synthesis, the double-stranded
cDNA was purified and served as a template in the subsequent
in vitro transcription reaction. The reaction was carried out in the
presence of T7 RNA polymerase and a biotinylated nucleotide
analog/ribonucleotide mix for complementary RNA (cRNA) ampli-
fication and biotin labeling. The biotinylated cRNA targets were then
cleaned up, fragmented, and hybridized to the SNPtile array. The
hybridization data were extracted using a custom R script with the
help of an annotation-file based on TAIR10. Intensity data were log-
transformed and normalized using the normalizeBetweenArrays
function with the quantile method from Bioconductor package limma
(Ritchie et al. 2015). Then, for each annotated gene, the log-intensities
of anti-sense exon probes were averaged.

Clustering analysis
Principal component analysis for log-intensities of all parents and RIL
population samples was done using the pr.comp function in R where
the unscaled log intensities are shifted to be zero centered. For
hierarchical clustering, we only selected genes with a minimal fold
change of 2 between any pair of consecutive stages (PD to AR, AR to
IM, or IM to RP). Then, the distance matrices of filtered genes and all
samples were calculated using the absolute Pearson correlation. These
matrices were clustered using Ward’s method. We manually set the
number of clusters to eight and performed gene ontology enrichment
for each of the clusters using the weight algorithm of the topGO
package in R and used 29,913 genes detected by hybridization probes
as the background (Alexa et al. 2006).

eQTL mapping
For eQTL mapping, we used 160 RILs separated into four subpop-
ulations, each representing one specific seed germination stage. For
each stage separately, eQTLs were mapped using a single-marker
model, as in Sterken et al. (2017). The gene expression data were fitted
to the linear model

yi;j � xj þ ej

where y is the log-intensity representing the expression of a gene i
(i = 1, 2, ..., 29,913) of RIL j (j = 1, 2, ..., 160) explained by the parental
allele on marker location x (x = 1, 2, ..., 1,059). The random error in
the model is represented by ej.

To account for the multiple-testing burden in this analysis, we
determined the genome-wide significant threshold using a permu-
tation approach (e.g., see Sterken et al. 2017). A permuted dataset was
created by randomly distributing the log-intensities of the gene under
study over the genotypes. Then, the previous eQTL mapping model
was performed on this permuted dataset. This procedure was re-
peated 100 times for each stage. The threshold was determined using:

FDS
RDS

#
m0

m
q:logðmÞ;

where, at a specific significance level, the false discoveries (FDS) were
the averaged permutation result, and real discoveries (RDS) were
the outcome of the eQTL mapping using the unpermuted dataset.
The number of true hypotheses tested (m0) was 29,913 -RDS; and the
number of hypotheses (m) tested was the number of genes, which was
29,913. For the q-value, we used a threshold of 0.05. As a result, we got
a threshold of 4.2 for PD and AR, 4.1 for IM, and 4.3 for RP.

The confidence interval of an eQTL was determined based on a
-log10(p-value) drop of 1.5 compared to the peak marker (as in
Keurentjes et al. 2007; Cubillos et al. 2012). We determine an eQTL
as local if the peak marker or the confidence interval lies within 1 Mb
or less from the target gene location (as in Cubillos et al. 2012). All
eQTLs that did not meet this criterion were defined as distant.

We defined a region as an eQTL hotspot if the number of distant-
eQTLs mapped to a particular genomic region significantly exceeded
the expectation. First, we divided the genome into bins of 2 Mb. Then,
we determined the expected number of distant-eQTLs per genomic
bin by dividing the total number of distant-eQTLs by the total
number of bins. Based on a Poisson distribution, any bin having
an actual number of distant-eQTLs larger than expected (P, 0.0001)
was then considered as an eQTL hotspot.

Gene regulatory network inference and candidate genes
prioritization of eQTL hotspot
We used a community-based approach to infer regulatory networks
of genes with an eQTL on a hotspot location using expression data. In
this approach, we assume the hotspot is caused by a polymorphism in
or near one or more regulatory genes causing altered expression that
can be detected as a local eQTL (Joosen et al. 2009; Breitling et al.
2008; Jimenez-Gomez et al. 2010; Serin et al. 2017). Based on this
assumption, we labeled all genes with a local eQTL on a hotspot as
candidate regulators and genes with a distant eQTL as targets. The
expression of these genes was subjected to five different network
inference methods to predict the interaction weight. The methods
used were TIGRESS (Haury et al. 2012), Spearman correlation, CLR
(Faith et al. 2007), ARACNE (Margolin et al. 2006), and GENIE3
(Huynh-Thu et al. 2010). The predictions from GENIE3 were used
to establish the direction of the interaction by removing the one
that has the lowest variable importance to the expression of the
target genes between two pairs of genes. For instance, if the impor-
tance of genei – genej is smaller than genej – genei, then the former is
removed. By averaging the rank, the predictions of all inference
methods were integrated to produce a robust and high performance
prediction (Marbach et al. 2012). The threshold was determined as
the minimum average rank where all nodes are included in the
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network. Finally, the network was visualized using Cytoscape (version
3.7.1) (Shannon et al. 2003), and network properties were calculated
using the NetworkAnalyzer tool (Assenov et al. 2008). The candidate
genes for each eQTL hotspot were prioritized based on their out-
degree and closeness centrality (Pavlopoulos et al. 2011).

Data availability
The list of genetic markers, genotype, and gene expression data used
in this study are given in Table S7, Table S8, and Table S9, re-
spectively. Cel files of microarray data have been deposited in the
ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-9080. The phenotype and metab-
olite measurement can be found in Table S10 and Table S11. The list
of differentially expressed genes is in Table S12. All QTL mapping
results are given in Table S13 (expression QTL), Table S14 (pheno-
type QTL), and Table S15 (metabolite QTL). The code for the analysis
and visualization is available in the form of R scripts at the Wage-
ningen University GitLab repository (https://git.wur.nl/harta003/
seed-germination-qtl). Supplemental material available at figshare:
https://doi.org/10.25387/g3.12844358.

RESULTS

Major transcriptional shifts take place after water
imbibition and radicle protrusion
To visualize the transcriptional states of the parental lines and the
RILs at the four seed germination stages, we performed a principal
component analysis using the log-intensities of all expressed genes
(Figure 1). The first principal component explains 55.6% of the
variation and separates the samples into three groups. Germination
progresses from left to right with the PD and AR seeds grouping
together, indicating that the after-ripening treatment does not induce
a considerable change in global transcript abundance. The large-scale
transcriptome change only happens after water imbibition and radicle
protrusion. This event was also observed by Finch-Savage et al. (2007)
and Silva et al. (2016). The second principal component on the PCA
explains 14.2% variance in the data and separates the RILs within
each of the three clusters but not the parents. The source of this
variation may be the genetic variation among samples and shows
transgressive segregation of gene expression in RILs due to genetic
reshuffling of the parental genomes during crossing and generations
of selfing.

To identify specific expression patterns among genes in the course
of seed germination, we performed an additional analysis of the
transcriptome data using hierarchical clustering (Figure 2). For this
analysis, we only selected the 990 genes with a minimal fold change of
two between any two consecutive stages (PD to AR, AR to IM, IM to
RP). We then clustered both the genes and the seed samples. As
shown in the figure, the clustering of samples shows similar grouping
as in the previous PCA plot; three clusters were formed with one
cluster containing both PD and AR, while IM and RP form separate
clusters.

The clustering of genes shows at least three distinctive gene
expression patterns. In the first pattern, transcript abundance is
highest in the last stage, radicle protrusion. A GO enrichment test
suggests that transcripts with this expression pattern are involved in
the transition from the heterotrophic seed to the autotrophic seedling
stage, with enriched processes such as photosynthesis, response to
various light, and response to temperature. This is in agreement with
Rajjou et al. (2004), who showed that genes required for seedling
growth are expressed after water imbibition. The second pattern
shows an opposite trend with higher transcript abundances in the first
three stages and lower expression at the end of the seed germination
process. Some of these transcripts may be the remnant of seed
development since the GO term related to this process is over-
represented. Moreover, transcripts involved in response to hydrogen
peroxide were also overrepresented, which provides more evidence
for the importance of reactive oxygen species in seed germination (for
review see Wojtyla et al. 2016). The last pattern represents genes that
are upregulated at the IM stage. Genes with this pattern are func-
tionally enriched in the catabolism of fatty acids, a likely source of
energy for seedling growth (Bewley et al. 2013c). Altogether, these
results suggest that co-expression patterns of genes reflect particular
functions during the seed germination process.

Distant eQTLs explain less variance than local eQTLs and
are more specific to a seed germination stage
To map loci associated with gene expression levels, we performed
eQTL mapping of 29,913 genes for each seed population representing
four seed germination stages (Table 1). We found eQTLs, numbers
ranging from 1,335 to 1,719 per stage (FDR = 0.05), spread across the
genome. Among the genes with an eQTL, only a few (less than 1%)
had more than one. We then categorized the eQTLs into local and
distant based on the distance between the target gene and the eQTL

Figure 1 Principal component plot de-
rived from transcriptome measurements
of 164 RILs, and the Bay-0 and Sha paren-
tal lines taken at primary dormant seed
(PD), after-ripened seed (AR), six-hours
after imbibition (IM), and at the time when
the radicle is protruded (RP).
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peak marker or the confidence interval. Based on this criterion, over
72% of the eQTLs per stage were categorized as local (located within
1 Mb of the gene), while the remainder were distant. Although the
total of the identified eQTLs was different between the stages, the
ratio of distant to local eQTLs was relatively similar for all stages. We
then calculated the fraction of the total variation that is explained by
the simple linear regression model for each eQTL. By comparing the
density distributions (Figure S1), we showed that local eQTLs gen-
erally explain a more substantial fraction of gene expression variation
than distant eQTLs. Finally, we determined the number of specific
and shared eQTLs across stages (Figure 3). Here, we show that distant
eQTLs are more specific to seed germination stages. Local eQTLs, on
the other hand, are commonly shared between two or more stages,
which is in line with previous experiments showing overlapping local
eQTLs and specific distant eQTLs across different developmental
stages (Vinuela et al. 2010), environments (Snoek et al. 2012; Snoek
et al. 2017; Lowry et al. 2013) and populations (Cubillos et al. 2012).

An eQTL hotspot on chromosome 5 is associated with
genes related to seed germination and collocates with
multiple metabolic and phenotypic QTL
To get an overview of how the eQTLs were mapped over the genome,
we visualized the eQTL locations and their associated genes on a
local/distant eQTL plot (Figure 4A). Here, the local eQTLs are aligned
across the diagonal and spread relatively equally across the genome,
while it is not the case for the distant eQTLs. Furthermore, specific
loci show clustering of eQTLs, which could indicate the presence of
major regulatory genes that cause genome-wide gene expression
changes. We identified ten so-called (distant-) eQTL hotspots, with
at least two hotspots per stage (Table 2). The number of distant eQTLs

located within these hotspots ranges from 16 to 96. The major
eQTL hotspots are PD2, IM2, and RP4, with 69, 69, and 96 distant
eQTLs co-locating, respectively. Moreover, the landscape of the eQTL
hotspots (Figure 4B) differs for every stage, including PD and AR,
which is surprising since these two stages have a relatively similar
transcriptome profile (Figure 1).

We remapped the QTL for previously studied seed germination
phenotypes (Joosen et al. 2012) and metabolites (Joosen et al. 2013)
using the RNA-seq based genetic map (Serin et al. 2017). We then
visualized the resulting QTL count histograms alongside the eQTL
histogram (Figure 5). The histogram shows that several eQTL
hotspots collocate with hotspots for phenotype and metabolite
QTL (phQTLs and mQTLs, respectively). The most striking example
is the collocation of QTL on chromosome 5 around 24—25 Mb (IM2
and RP4) at the last two stages of seed germination. We performed
gene ontology (GO) term enrichment analysis for genes with an eQTL

Figure 2 Hierarchical clustering of Bay-0, Sha, and 164 RILs transcriptome samples measured at four different seed germination stages (top) and
990 genes differentially expressed between two consecutive stages (left). Listed genes are the sample of genes for each cluster. Some enriched
gene ontology terms for gene clusters are listed on the right.

n■ Table 1 Summary of the eQTL mapping for the four different
seed germination stages

stage eQTLs
genes with
an eQTL

eQTL
type total proportion

primary dormant 1,335 1,328 local 955 0.72
distant 380 0.28

after-ripened 1,395 1,377 local 1,089 0.78
distant 306 0.22

six hours after
imbibition

1,719 1,702 local 1,320 0.77
distant 399 0.23

radicle protrusion 1,426 1,418 local 1,096 0.77
distant 330 0.23
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mapping to these hotspots, and found ‘seed germination’ enriched
among other terms (Table 2). These findings taken together indicate
that the IM2 and RP4 hotspots harbor one or more important genes
affecting gene expression during seed germination. Therefore, the
identification of the regulatory gene(s) for one of these hotspots can
give us more insight into the trans-regulation of gene expression
during seed germination.

Transcription factors were prioritized as the candidate
genes for major eQTL hotspots
To prioritize the candidate regulatory genes underlying eQTL hot-
spots in this study, we constructed a network based on the expression
of genes with eQTLs on the hotspot location.We built the network for
two hotspots: RP4, where QTL for expression, metabolite, and
phenotype are collocated; and PD2, another major eQTL hotspot
in this study. For RP4, the total number of genes used to construct the
network was 116, of which 20 had a local eQTL at the hotspot,
whereas for PD2, 114 genes were identified, of which 45 with a local
eQTL. The genes with local eQTLs were then labeled as candidates.
The networks were constructed by integrating predictions from
several gene regulatory network inference methods to ensure the
robustness of the result (Marbach et al. 2012). The direction of the
edges in the network is predicted using the GENIE3 method (Huynh-
Thu et al. 2010). For each candidate gene, we calculated the out-
degree, indicating the number of outgoing edges of a gene to other
genes in the network, and the closeness centrality of the candidate
gene nodes, which shows the efficiency of the gene in spreading
information to the rest of the genes in the network (Pavlopoulos et al.
2011). Finally, these two network properties were used to prioritize
the most likely regulator of the distant eQTL hotspot.

In the resulting network, genes encoding the transcription factors
DECREASE WAX BIOSYNTHESIS/DEWAX (AT5G61590), and
INDUCER OF CBP EXPRESSION 1/ICE1 (AT3G26744) were pri-
oritized as the most likely candidate genes for RP4 (Figure 6) and PD2
(Figure 7), respectively. As many as 15 genes were predicted to be
associated with DEWAX and 32 genes with ICE1. Note that these
numbers depend on the chosen threshold; nonetheless, the current
candidates are robust to changes when the parameter was changed
(Table S3 and Table S4). Furthermore, these two genes also had the
highest closeness centrality among the other candidates, showing that

these genes have a strong influence within the network. We assessed
the Bay x Sha SNP data (Genomes Consortium. Electronic address
and 1001 Genomes Consortium 2016) and found several SNPs
between the Bay and Sha parents in both the DEWAX and ICE1
genes, including two that affect the amino acid sequence of the
corresponding proteins (Table S5 and Table S6). Also, querying
for DEWAX and ICE1 on AraQTL showed a local eQTL for both
genes in an experiment using the same RIL population on leaf tissue
(West et al. 2007). This evidence supports the hypothesis that
polymorphisms between the Bay and Sha alleles of DEWAX and
ICE1 are responsible for the steadily occurring local eQTLs at three
stages (PD, IM, RP) for DEWAX and all four stages for ICE1.

DISCUSSION

The function ofDEWAXmay be related to seed cuticular
wax biosynthesis
In this study, we constructed a network of genes associated with the
RP4 eQTL hotspot and showed that DEWAX was prioritized as the
candidate gene for the hotspot. DEWAX encodes an AP2/ERF-type
transcription factor that is well-known as a negative regulator of
cuticular wax biosynthesis (Go et al. 2014; Suh and Go 2014; Cui
et al., 2016; Li et al., 2019) and a positive regulator of defense response
against biotic stress (Froschel et al. 2019; Ju et al. 2017). This gene also
seems to be involved in drought stress response (Huang et al. 2008) by
inducing the expression of genes that confer drought tolerance
(Sun et al. 2016), some of which (LEA4-5, LTI-78) have a distant eQTL
at the RP4 hotspot. Moreover, the overexpression of DEWAX in
Arabidopsis increases the seed germination rate (Sun et al. 2016). The
role of DEWAX in seed germination is still unknown but may be
related to cuticular wax biosynthesis.

Wax is a mixture of hydrophobic lipids, which is part of the plant
cuticle together with cutin and suberin (Yeats and Rose 2013).
Previous studies have demonstrated that the biosynthesis of wax
in the cuticular layer of stems and leaves is negatively regulated by
DEWAX (Go et al., 2014; Suh and Go 2014; Cui et al., 2016; Li et al.,
2019). Although the function of this gene has never been reported in
seeds, the presence of a cuticular layer indeed plays a significant role
in maintaining seed dormancy (Nonogaki 2019; De Giorgi et al.
2015). In Arabidopsis seeds, the thick cuticular structure covering the

Figure 3 Shared local and distant eQTLs per seed germination stage.
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endosperm prevents cell expansion and testa rupture that precede
radicle protrusion. Besides, this layer also reduces the diffusion of
oxygen into the seed, thus preventing oxidative stress that may cause
rapid seed aging and loss of dormancy (De Giorgi et al. 2015).

BesidesDEWAX,MUM2 is another possible regulatory gene for the
RP4 hotspot based on QTL confirmation of an imbibed seed size
phenotype using a heterogeneous inbred family approach (Joosen et al.
2012). In our study, we also discovered that most eQTLs on the RP4
hotspot peak at the marker located closely to the MUM2 location
(Figure S2), which provides more evidence for this gene as the regulator
for the hotspot.MUM2 encodes a cell-wall modifying beta-galactosidase
involved in seed coat mucilage biosynthesis, and the mum2 mutant is
characterized by a failure in extruding mucilage after water imbibition
(Dean et al. 2007). In our analysis,MUM2 did not have a distant eQTL
on the RP4 hotspot; thus, it is not prioritized as a prominent candidate,

pointing out a limitation of our approach in prioritizing candidate
eQTL hotspot genes which will be discussed later. Nonetheless, we
found some evidence connecting DEWAX to MUM2. First, Shi et al.
(2019) found out that the mutant of CPL2, another gene involved in
wax biosynthesis, showed a delayed secretion of the enzyme encoded by
MUM2 that disrupts seed coat mucilage extrusion. In the same study,
they revealed that CPL2 encodes a phosphatase involved in secretory
protein trafficking required for the secretion of extracellular matrix
materials, including wax and the cell wall-modifying enzyme MUM2.
Although no direct connection between DEWAX and CPL2 has been
reported, a recent study by Xu et al. did identify DEWAX as a putative
regulator of cell-wall-loosening EXPANSIN (EXPA) genes involved in
germination (Xu et al. 2020). These findings provide a link between
wax biosynthesis and cell-wall modifying enzymes, and possibly be-
tween the genes involved in these processes.

Figure 4 eQTL mapping from four dif-
ferent seed germination stages. The
local-distant eQTL plot is shown on
top (A). The positions of eQTLs are
plotted along the five chromosomes
on the x-axis and the location of the
genes with an eQTL is plotted on the
y-axis. The black dots (d) represent
local eQTLs (located within 1 Mb of
the associated gene) and the colored
dots represent distant eQTLs (located
far from the associated gene). The gray
horizontal lines next to each dot in-
dicate the confidence interval of the
eQTL location based on a 1.5 drop in
-log10(p-value). The histogram of the
number of eQTLs per genomic loca-
tion is shown at the bottom (B). The
horizontal dashed black lines mark the
significance threshold for an eQTL
hotspot.
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Second, the expression of DEWAXmay be the consequence of the
disruption of seed mucilage extrusion. Penfield et al. (2001) suggest
that seed mucilage helps enhance water uptake to ensure efficient
germination in the condition of low water potential. This is supported
by the evidence that the mucilage-impaired mutant showed reduced
maximum germination only on osmotic polyethylene glycol solutions
(Penfield et al. 2001). Therefore, the absence of mucilage in imbibed
seed under low water potential may cause osmotic stress in the seed
and, in turn, induce the expression of DEWAX, which is known to
play a role in the response of plants against osmotic stress (Sun et al.
2016). If this is the case, then a scenario could be that DEWAX acts
downstream of MUM2, and the expression variation of these two
genes lead to the emergence of the RP4 eQTL hotspot.

Network analysis shows the involvement of ICE1 as a
regulator of gene expression during seed germination
ICE1 is an MYC-like basic helix-loop-helix (bHLH) transcription
factor that shows pleiotropic effects in plants. Earlier studies of ICE1

mostly focus on the protein function in the acquisition of cold
tolerance (Lee et al. 2005; Chinnusamy et al. 2003) and stomatal
lineage development (Kanaoka et al. 2008). Recently, ICE1 was also
shown to form a heterodimer with ZOU, another bHLH transcription
factor, to regulate endosperm breakdown required for embryo growth
during seed development (Denay et al. 2014). At a later stage, ICE1
negatively regulates ABA-dependent pathways to promote seed
germination and seedling establishment (Liang and Yang 2015). This
process involves repressing the expression of transcription factors in
ABA signaling, such as ABI3 and ABI5, and ABA-responsive genes,
such as EM6 and EM1, thus initiating seed germination and sub-
sequent seedling establishment (Hu et al. 2019; MacGregor et al.
2019). Loss of ice1 has been reported to lead to reduced germination
(MacGregor et al., 2019)

In this study, we performed a network analysis for genes having
distant eQTLs on the PD2 hotspot and prioritized ICE1 as the most
likely regulator using network analysis. The high connectivity of ICE1
with the other genes in the network could reflect an essential

n■ Table 2 Distant eQTL hotspots of the four seed germination stages. These hotspots were identified by dividing the genome into bins of
2 Mbp and performing a test to determine whether the number of distant eQTLs on a particular bin is higher than expected (P > 0.0001)
assuming a Poisson distribution. Seed germination phenotype and metabolite data were taken from Joosen et al. (2012) and Joosen et al.
(2013), respectively. Detailed information about enriched GO terms, metabolite, and phenotype can be seen on Supplemental Table S2 in
the Supplementary Material

hotspot ID position distant eQTLs enriched GO terms metabolite QTL phenotype QTL

PD1 ch1:6-10 Mb 43 11 1 4
PD2 ch3:8-12 Mb 69 3 2 1
AR1 ch2:12-14 Mb 16 0 0 0
AR2 ch3:2-4 Mb 20 9 1 1
IM1 ch5:6-8 Mb 19 2 24 1
IM2 ch5:22-26 Mb 69 6 6 31
RP1 ch1:0-2 Mb 23 1 0 1
RP2 ch1:6-8 Mb 18 0 0 3
RP3 ch5:14-16 Mb 21 29 0 1
RP4 ch5:24-26Mb 96 18 20 25

Figure 5 Hotspots for phQTLs, mQTLs, and eQTLs. A region of interest is located on chromosome 5 (around 24—26 Mb) where hotspots from
different QTL levels collocate.
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regulatory function of this gene during seed germination. However,
we did not find any of the known ICE1 target genes (e.g., ABI3, ABI5,
EM1, and EM6) nor seed germination phenotype (Figure 5) having a
QTL at the ICE1 locus. It could be that the ICE1 polymorphism is not
severe enough to cause considerable trait variation, especially to break
a robust biological system where several buffering mechanisms exist
to prevent small molecular perturbation from propagating to the
phenotypic level (Signor and Nuzhdin 2018; Fu et al. 2009).

A good strategy to validate that a predicted candidate gene indeed
causes a QTL hotspot would be to test one parent’s allele of the gene in
the genetic background of the other parent. This could be achieved by
generating near-isogeneic lines, although rapid developments in site
directed mutagenesis might offer a more feasible high-throughput
approach for future studies. Next, being able to convert one parent’s
gene into the other parent’s gene one SNP at a time would even allow
identification of causal SNPs.

Figure 6 The prioritization of candidate genes for RP4 eQTL hotspot. The network of genes associated with RP4 is visualized in A. The genes in the
network are represented by nodes with various sizes according to the outdegree. The unlabeled gray nodes are the targets (genes with a distant
eQTL) and the labeled green nodes are the candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node
is DEWAX (AT5G61590). The list of top ten candidate genes for the hotspot is shown in B. The expression of DEWAX in 160 RILs across the four seed
germination stages is visualized in C. The RILs with the Sha allele of the gene are depicted in blue, the ones with the Bay-0 allele of DEWAX are
depicted in red.

Figure 7 The prioritization of candidate genes for the PD2eQTL hotspot. The network of genes associatedwith PD2 is visualized in A. Thegenes in the
network are represented by nodes with various sizes according to the outdegree. The unlabeled gray nodes are the targets (genes with a distant eQTL)
and labeled green nodes are the candidates (genes with a local eQTL). Nodes with a red border are transcription factors. The yellow node is ICE1
(AT3G26744). The list of top ten candidate genes for the hotspot is shown in B. The expression of ICE1 in 160 RILs across the four seed germination
stages is visualized in C. The RILs with the Sha allele of the gene are depicted in blue, the ones with the Bay-0 allele of ICE1 are depicted in red.
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Limitations of co-expression network in identifying
candidate genes of eQTL hotspots
The construction of a co-expression network is a promising approach
to prioritize candidate eQTL genes (Serin et al. 2016). Despite its
potential, there is a major limitation in using a co-expression
network. The network is based on gene expression data; hence the
identified causal genes are those that directly affect gene expression.
For example, as we described above, our approach did not prioritize
MUM2 for the RP4 hotspot, possibly because the gene does not cause
variation in the target gene expression but rather causes differences at
another level of target gene regulation (e.g., enzyme biosynthesis)
between two parental alleles in the RIL population. Other studies
reported similar results where a known causal gene was not detected
as a hub in the network (Jimenez-Gomez et al. 2010; Sterken et al.
2017). To overcome this, future work should focus on networks that
are built upon multi-omics data by including metabolic, proteomic,
and, more importantly, phenotypic measurement data (Hawe et al.
2019). Moreover, prior biological knowledge, including protein-
protein interaction (Szklarczyk et al. 2017), transcription factor
binding-site (Kulkarni et al. 2018), and other types of interactions
(for review see Kulkarni and Vandepoele 2019) can be incorporated
to construct data-driven interaction networks. Nevertheless, our
approach offers a simple and straightforward way to prioritize
candidate genes underlying eQTL hotspots from a limited amount
of resources.
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