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Abstract: Polyphenols sourced from Ilex latifolia Thunb. (PIT) contain high levels of phenolic acids,
tannic acids, triterpenoids and so on, which play important roles in antioxidant function. This study
was conducted to investigate the effects of PIT against intestinal injury in piglets under oxidative
stress. Thirty-two weanling piglets were arranged by a 2 × 2 factorial experiment with diets (basal
diet vs. PIT diet) and oxidative stress (saline vs. diquat). All piglets were injected with saline or
diquat on d 21, respectively. After 7 days, all pigs were slaughtered and intestinal samples were
collected. PIT enhanced jejunal villus heights and crypt depth in the piglets under oxidative stress.
PIT increased the activities of intestinal mucosal lactase, sucrase and maltase in the challenged piglets.
PIT also increased the jejunal ratio of protein to DNA and ileal protein content. PIT increased the
jejunal activities of GSH-PX and GSH content and reduced the ileal MDA amounts. Furthermore, PIT
regulated the expression of ferroptosis mediators, such as TFR1, HSPB1, SLC7A11 and GPX4. These
results indicate that dietary PIT supplementation enhances the histological structure and function of
the intestinal mucosa, which is involved in modulating antioxidant capacity and ferroptosis.

Keywords: antioxidative capacity; ferroptosis; gene expression; histological structure; intestinal
mucosa; oxidative stress; polyphenols; weanling piglets

1. Introduction

In the current intensive swine production, changes in diet ingredients, contamination
of mycotoxins in feeds, use of drugs and vaccines and other factors may lead to an excessive
production of reactive oxide species (ROS), which cause oxidative stress in pigs [1]. Severe
oxidative stress can induce tissue injury, especially intestinal injury [2]. Intestinal epithelial
cells are rich in mitochondria, which are the main sites of ROS production [3]. ROS not
only induce apoptosis and inhibit cell proliferation, but also inhibit intestinal development
and interfere with intestinal function [4,5]. One study showed that oxidative stress led
to histological damage in the jejunum with increased malondialdehyde and endotoxin
concentration in piglets [6]. Moreover, Cao et al. (2020) demonstrated that oxidative
stress resulted in intestinal epithelial barrier injury and mitochondrial damage in porcine
intestinal epithelial cells [7]. Therefore, it is essential to alleviate intestinal injury caused by
oxidative stress via nutritional regulation.

Ferroptosis is an LA test that identifies the type of cell death, which is closely related
to oxidative stress in recent years [8,9]. The main characteristics of ferroptosis are the weak-
ened repair ability of glutathione peroxidase 4 (GPX4) for lipid peroxidation injury, the
accumulation of iron ions in cells, and the oxidation of polyunsaturated fatty acids contain-
ing phospholipids [10]. In terms of morphology, ferroptosis cells have characteristics, such
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as cell membrane integrity destroyed, mitochondrial cristae reduction or disappearance,
and mitochondrial outer membrane rupture [8]. In terms of biochemistry, ferroptosis can
result in the depletion of glutathione and a decrease in GPX4 activity [4].

Ilex latifolia Thunb. is called Da Ye Dong Qing in Chinese and is widely consumed
in China and other Southeast Asia countries [11]. Polyphenols sourced from Ilex latifolia
Thunb. (PIT) are a series type of plant polyphenols. In recent years, plant polyphenols
in fruits, vegetables and seeds have been extensively studied for their excellent antioxi-
dant and antibacterial abilities [12]. Furthermore, it has been found that the polyphenol
extracts of beans, which are rich in tannic acids, have the ability to inhibit the growth
of bacteria, fungi and yeast [13]. It is reported that supplementation with polyphenol
complex in the diets of weanling piglets improved the antioxidant capacity and alleviated
intestinal injury caused by E. coli stimulation [14]. Our lab has studied the protective
effects of PIT on weanling piglets and obtained a series of findings. We found that PIT can
alleviate intestinal inflammation and alter the microbiota composition in LPS-challenged
piglets [15]. Moreover, PIT has a protective effect on hepatic damage in piglets under
oxidative stress [16]. However, there are few reports on the effects of PIT on intestinal
injury induced by oxidative stress in weanling piglets.

In this study, the weanling piglets were fed a basal diet with or without PIT, followed
by an intraperitoneal injection of diquat to trigger intestinal oxidative stress and injury.
The piglet challenged with diquat was a common method to establish an oxidative stress
model [16]. This study aimed to explore whether PIT could improve intestinal health by
regulating antioxidative capacity and the ferroptosis signaling pathway in the intestinal
mucosa of piglets.

2. Materials and Methods
2.1. Experimental Animals and Design

The animal trial was conducted according to the Animal Scientific Procedures Act
1986 (Home Office Code of Practice. HMSO: London January 1997) and EU regulations
(Directive 2010/63/EU). The whole procedure was approved by the Animal Care and
Use Committee of Wuhan Polytechnic University (Wuhan, China). A total of 32 weanling
piglets (Duroc × Landrace × Large White, with an age of 35 ± 1 d, and initial body
weight (BW) of 8.16 ± 0.68 kg) were used in this experiment. Piglets were individually
allotted in stainless steel metabolic cages (1.80 × 1.10 m2) with free access to feed and
water in an environmentally controlled house. The experimental basal diet was formulated
(Table 1) according to the National Research Council requirements (2012). A commercial
polyphenols product, extracted from Ilex latifolia Thunb. (65.5% of the total polyphenols,
mainly including phenolic acids and tannins, were analyzed by high-performance liquid
chromatography), was supplemented with or without 250 mg/kg in the basal diet.

This experiment was designed with a 2 × 2 factorial trial. All pigs were fed a basal or
PIT diet for 21 d and then intraperitoneally injected with diquat (dibromide monohydrate,
Chem Service, West Chester, PA, USA) at the dose of 10 mg/kg BW in saline or the same
volume of saline, respectively. The treatment factors were diet type (basal or PIT diet) and
oxidative stress (diquat or saline).

2.2. Sample Collection

One week after the injection of diquat or saline solution, all piglets were humanely
killed by intramuscular injection of sodium pentobarbital (80 mg/kg bodyweight). The
3-cm and 10-cm segments were cut from the mid-jejunum and mid-ileum in accordance
with our previous study [17]. The 3-cm intestinal segments were gently flushed and stored
in fresh 4% paraformaldehyde/PBS for histological analysis [18]. The 10-cm intestinal
samples were opened longitudinally and flushed gently to remove luminal chyme. The
mucosa samples were collected by scraping with sterile glass slides, then rapidly frozen in
liquid nitrogen and stored at −80 ◦C for measurement of disaccharidase activities, contents
of protein, DNA, RNA, antioxidase activities and mRNA and protein expression levels.
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Table 1. Ingredient composition of experimental diets (%, as-fed basis).

Ingredients Nutrients Level 2

Corn 53.38 Digestible energy (MJ/kg) 14.82
Soybean meal, 44% crude protein 14.55 Crude protein 23.71
Fermented soybean meal 15.00 Calcium 0.80
Fish meal 6.00 Total phosphorus 0.63
Whey powder 5.00 Apparent total tract digestible phosphorus 0.36
Glucose 2.00 Total Lysine 1.59
Soybean oil 1.01 Standardized ileal digestible Lysine 1.35
Dicalcium phosphate 0.37 Total Methionine 0.50
Limestone 0.88 Standardized ileal digestible Methionine 0.44
Salt 0.30 Total Methionine + Cystine 0.86
L-Lysine HCl, 78% 0.34 Standardized ileal digestible Methionine + Cystine 0.72
L-Methionine, 98% 0.09 Total Threonine 0.99
L-Threonine, 98% 0.08 Standardized ileal digestible Threonine 0.79
Vitamin and mineral premix 1 1.00 Total Tryptophan 0.27

Standardized ileal digestible Tryptophan 0.22
1 Premix supplied per kg diet: retinyl acetate, 5512 IU; cholecalciferol, 2200 IU; DL-α-tocopheryl acetate,
30 IU; menadione sodium bisulfite complex, 4 mg; riboflavin, 5.22 mg; D-calcium-pantothenate, 20 mg; niacin,
26 mg; vitamin B12, 0.01 mg; Mn (MnSO4·H2O), 40 mg; Fe (FeSO4·H2O), 75 mg; Zn (ZnSO4·7H2O), 75 mg; Cu
(CuSO4·5H2O), 100 mg; I (CaI2), 0.3 mg; Se (Na2SeO3), 0.3 mg. 2 The nutrients level was analyzed value, except
for digestible energy, apparent total tract digestible phosphorus, standardized ileal digestible Lysine, Methionine,
Methionine + Cystine, Threonine and Tryptophan, which are calculated values.

2.3. Intestinal Mucosal Histology

After a 24 h fixation, the intestinal segments were dehydrated, embedded, and stained
with hematoxylin and eosin. Villus height and crypt depth were measured at 200×mag-
nification with a microscope (Olympus CX31, Tokyo, Japan) according to our previous
study [19]. Ten well-oriented and intact villi were selected and determined using a light
microscope with a computer-assisted morphometric system (BioScan Optimetric; BioScan
Inc., Edmond, WA, USA). Villus height was measured from the tip of the villus to the
villus-crypt junction; crypt depth was defined as the depth of the invagination between
adjacent villi.

2.4. Disaccharidases Activities of the Intestinal Mucosa

Disaccharidase activities in the intestinal mucosa were determined in accordance with
our previous study using glucose kits (No. A082-1 for lactase, No. A082-2 for sucrase and
No. A082-3 for maltase; Nanjing Jiancheng Bioengineering Institute, Nanjing, China) [18].
Briefly, 10 µL of double-distilled water, glucose standard solution (5.5 mmol/L) or test
samples were added to a test tube and incubated with 20 µL of respective substrate for
20 min at 37 ◦C. Then, 10 µL of terminating agent and 1000 µL of a chromogenic agent were
added and incubated at 37◦C for 15 min. Double-distilled water was used to set zero at
505 nm, followed by the reading at the optical density value of each tube. One unit (U) of
enzyme activity was defined as 1 nmol substrate hydrolysed/min under assay conditions
(37 ◦C, pH 6.0).

2.5. Protein, DNA and RNA Contents of the Intestinal Mucosa

Frozen mucosal samples were homogenized in ice-cold NaCl solution at a 1:10 (w/v)
ratio, followed by centrifugation at 2500 rpm for 10 min to collect the supernatant. The
supernatant was used for the measurement of protein, DNA and RNA contents. Protein
contents were measured according to the method of Lowry et al. [20]. DNA contents were
measured by a fluorometric assay [21]. RNA contents were measured by spectrophotometry
with a modified Schmidt–Tannhauser method [22].
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2.6. Antioxidative Capacity of the Intestinal Mucosa

Frozen mucosal samples were pulverized in liquid nitrogen and homogenized in
saline, then centrifuged at 2500 rpm for 10 min to acquire the supernatant. Total an-
tioxidative capacity (T-AOC), activities of glutathione peroxidases (GSH-PX), contents
of reductive glutathione (GSH) and malondialdehyde (MDA) of intestinal mucosa were
determined by spectrophotometric methods following the instructions of the commercial
kits’ manufacturer (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

2.7. Transmission Electron Microscope (TEM) Observation of the Intestinal Mucosa

The intestinal mucosa samples were dissected, fixed, dehydrated, sliced and stained
in sequence. The intestinal mucosal slices were observed and photographed with an
HT7700 TEM (Hitachi Co., Ltd., Tokyo, Japan) at an accelerating voltage of 80.0 kV and a
magnification of 5000 in a blind manner.

2.8. Gene Expression Analysis

The procedure for total RNA isolation, quantification, reverse transcription, and real-
time PCR were in accordance with previous study [19]. The primer pairs for amplification
of target genes were shown in Table 2. The expression of the target genes relative to
housekeeping gene (glyceraldehyde-3-phosphate dehydrogenase; GAPDH) was analyzed
by the 2−∆∆CT method. Relative mRNA abundance of each target gene was normalized to
the piglets fed basal diet and injected with saline.

Table 2. Primer sequence.

Name Forward (5′–3′) Reverse (5′–3′) Annealing
Temperature (◦C)

Size
(bp)

Accession
Numbers

TFR1 CGAAGTGGCTGGTCATCT TGTCTCTTGTCTCTACATTCCT 60 231 NM_214001.1
HSPB1 CTCGGAGATCCAGCAGACT TCGTGCTTGCCCGTGAT 60 120 NM_001007518
SLC7A11 GCCTTGTCCTATGCTGAGTTG GTTCCAGAATGTAGCGTCCAA 60 178 XM_021101587.1
GPX4 CTGTTCCGCCTGCTGAA ACCTCCGTCTTGCCTCAT 60 218 NM_214407.1
GAPDH CGTCCCTGAGACACGATGGT GCCTTGACTGTGCCGTGGAAT 60 194 AF_017079.1

TFR1, transferrin receptor protein 1; HSPB1, heat shock protein beta 1; SLC7A11, solute carrier family 7 member
11; GPX4, glutathione peroxidase 4; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

2.9. Protein Abundance Analysis

The methods for protein abundance analysis in intestinal mucosa were referred to in
previous methods [19]. In brief, the intestinal mucosa samples were homogenized in 600 µL
of lysis buffer containing phenylmethanesulfonyl fluoride, protease and phosphatase in-
hibitors, and centrifuged at 12,000 g for 15 min at 4 ◦C to collect the supernatants. Equal
amounts of intestinal mucosa protein were transferred onto 10–15% polyacrylamide gel and
separated via SDS-PAGE, and then transferred to polyvinylidene difluoride membranes
for immunoblotting. Immunoblots were blocked with 5% nonfat milk in Tris-buffered
saline/Tween−20 for 3 h at room temperature (21–25 ◦C). The membranes were incubated
overnight at 4 ◦C with primary antibodies, and then with the second antibodies for 2 h
at room temperature. Specific primary antibodies included rabbit anti-transferrin recep-
tor protein 1 (TFR1, 1:1000; 86 kDa, #70R-50471; Fitzgerald, Rd. Sudbury, Acton, MA,
USA), goat anti-solute carrier family 7 member 11 (SLC7A11, 1:1000; 55 kDa, #ab60171;
Abcam, Cambridge, MA, USA), rabbit anti-glutathione peroxidase 4 (GPX4, 1:1000; 20 kDa,
#10005258; Cayman Chemical Company, Rd. Ellsworth, Ann Arbor, MI, USA) and mouse
anti-β-actin antibody (1:1000, 43 kDa, #A2228; Sigma-Aldrich, St. Louis, MO, USA). Blots
were developed using an Enhanced Chemiluminescence Western blotting kit (Amersham
Biosciences, Solna, Sweden), and visualized using a Gene Genome bioimaging system.
Brands were analyzed by densitometry using Gene Tools software (Syngene, Frederick,
MD, USA). The relative protein abundance of target proteins (TFR1, SLC7A11, GPX4) was
expressed as the ratio of target protein/β-actin protein.
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2.10. Statistical Analyses

All data were analyzed as a 2 × 2 factorial experiment by ANOVA using the general
linear model procedures (GLM) of SAS (SAS Inst. Inc., Cary, NC, USA). The statistical
model included the effects of the diet type (basal diet or PIT diet), oxidative stress (saline or
diquat) and their interactions. Data were presented as means and SEMs. When there was a
significant interaction between diet and stress or a trend interaction between diet and stress,
post hoc testing was conducted using Duncan’s multiple comparison tests. Differences
were considered to be significant if p < 0.05.

3. Results
3.1. Intestinal Mucosal Histology

As shown in Table 3, there was a significant interaction between diet and stress on
the jejunal villus height and crypt depth (p < 0.05). Supplementation with PIT in the
diet significantly increased the jejunal villus height and crypt depth in the piglets under
oxidative stress (p < 0.05). Oxidative stress significantly reduced the ratio of jejunal villus
height to crypt depth (p < 0.05) and decreased the ileal villus height and crypt depth
(p < 0.05). Compared with the piglets fed on a basal diet, the piglets fed on the PIT diet
had significantly increased villus height, and the ratio of villus height to crypt depth in
the ileum (p < 0.05). Similar to the above results, the histological appearance showed that
supplementation with PIT in the diet alleviated intestinal mucosal injury of the piglets
under oxidative stress (Figures 1 and 2).
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Figure 1. Jejunal mucosal histological appearance (hematoxylin and eosin) of the piglets fed polyphe-
nols sourced from Ilex latifolia Thunb. (PIT) diets under oxidative stress. Original magnification 200×.
Scale bars = 100 µm. (A) Piglets fed the basal diet and treated with saline. (B) Piglets fed the PIT diet
and treated with saline. (C) Piglets fed the same basal diet and treated with diquat. (D) Piglets fed
the same PIT diet and treated with diquat.



Antioxidants 2022, 11, 966 6 of 14

Table 3. The intestinal mucosal histology of the piglets fed polyphenols sourced from Ilex latifolia
Thunb. (PIT) diets under oxidative stress.

Items
Saline Diquat

SEM
p-Value

Basal Diet PIT Diet Basal Diet PIT Diet Diet Stress Interaction

Jejunum
Villus height (µm) 256 a 271 a 215 b 267 a 7 <0.001 <0.001 0.001
Crypt depth (µm) 164 b 170 a,b 147 c 174 a 4 <0.001 0.039 0.002
Villus height/crypt depth 1.58 1.60 1.47 1.54 0.04 0.085 0.003 0.354

Ileum
Villus height (µm) 270 287 243 277 7 <0.001 0.001 0.107
Crypt depth (µm) 172 173 163 168 4 0.352 0.029 0.521
Villus height/crypt depth 1.58 1.67 1.49 1.66 0.05 <0.001 0.134 0.276

N = 8 (1 piglet per pen). The same letter on the shoulder of the mean in the same line indicates that the difference is
insignificant, and the absence of the same letter means that the difference is significant. PIT, polyphenols sourced
from Ilex latifolia Thunb.; SEM, standard error of mean.
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Figure 2. Ileal mucosal histological appearance (hematoxylin and eosin) of the piglets fed polyphenols
sourced from Ilex latifolia Thunb. (PIT) diets under oxidative stress. Original magnification 200×.
Scale bars = 100 µm. (A) Piglets fed the basal diet and treated with saline. (B) Piglets fed the PIT diet
and treated with saline. (C) Piglets fed the same basal diet and treated with diquat. (D) Piglets fed
the same PIT diet and treated with diquat.

3.2. Disaccharidases Activities of the Intestinal Mucosa

There was a significant interaction between diet and stress on jejunal sucrase and
maltase activities (p < 0.05, Table 4). Supplementation with PIT in the diet significantly
increased the activities of jejunal sucrase and maltase in the piglets under oxidative stress
(p < 0.05). Similarly, there was a significant interaction between diet and stress on ileal
lactase, sucrase and maltase activities (p < 0.05). PIT significantly improved ileal lactase,
sucrase and maltase activities in the piglets under oxidative stress (p < 0.05).
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Table 4. The activities of intestinal mucosal disaccharidases of the piglets fed polyphenols sourced
from Ilex latifolia Thunb. (PIT) diets under oxidative stress (U/mg protein).

Items
Saline Diquat

SEM
p-Value

Basal Diet PIT Diet Basal Diet PIT Diet Diet Stress Interaction

Jejunum
Lactase 16.1 14.4 14.3 15.6 1.3 0.854 0.659 0.323
Sucrase 35.3 ab 37.4 a 28.6 b 37.2 a 3.5 0.025 0.410 0.013
Maltase 353 ab 378 a 301 b 364 a 27 0.129 0.048 0.035

Ileum
Lactase 4.04 a 3.89 ab 2.81 b 4.67 a 0.58 0.241 0.488 0.026
Sucrase 65.2 a 63.7 a 50.1 b 59.8 a 4.4 0.157 0.036 0.004
Maltase 150 a 163 a 97 b 143 a 16 0.025 0.007 0.013

N = 8 (1 piglet per pen). The same letter on the shoulder of the mean in the same line indicates that the difference is
insignificant, and the absence of the same letter means that the difference is significant. PIT, polyphenols sourced
from Ilex latifolia Thunb.; SEM, standard error of mean.

3.3. Protein, DNA and RNA Contents of the Intestinal Mucosa

There were significant interactions between diet and stress on the jejunal ratio of
protein to DNA and ileal protein content (p < 0.05, Table 5). For the piglets injected with
diquat, PIT significantly increased the jejunal ratio of protein to DNA and ileal protein
content (p < 0.05). Furthermore, the piglets injected with diquat had a significantly reduced
jejunal protein content and ileal ratio of RNA to DNA ratio (p < 0.05). Compared with the
piglets fed the basal diet, the piglets fed the PIT diet had a significantly increased jejunal
protein content and ileal ratio of RNA to DNA (p < 0.05).

Table 5. The contents of intestinal mucosal protein, DNA and RNA of the piglets fed polyphenols
sourced from Ilex latifolia Thunb. (PIT) diets under oxidative stress.

Items
Saline Diquat

SEM
p-Value

Basal Diet PIT Diet Basal Diet PIT Diet Diet Stress Interaction

Jejunum
Protein (mg/g tissue) 5.48 5.89 4.87 5.13 0.22 0.021 0.017 0.674
RNA/DNA 6.14 6.57 5.87 5.93 0.53 0.376 0.078 0.488
Protein/DNA (mg/µg) 0.12 a 0.14 a 0.09 b 0.14 a 0.01 <0.001 0.653 0.042

Ileum
Protein (mg/g tissue) 5.98 a 6.03 a 5.43 b 5.94 a 0.24 0.030 0.046 0.038
RNA/DNA 3.45 3.65 2.63 3.11 0.20 0.025 <0.001 0.388
Protein/DNA (mg/µg) 0.07 0.07 0.06 0.06 0.01 0.438 0.087 0.864

N = 8 (1 piglet per pen). The same letter on the shoulder of the mean in the same line indicates that the difference is
insignificant, and the absence of the same letter means that the difference is significant. PIT, polyphenols sourced
from Ilex latifolia Thunb.; SEM, standard error of mean.

3.4. Antioxidative Capacity of the Intestinal Mucosa

There were significant interactions between diet and stress on the activities of GSH-
PX and GSH content in the jejunum (p < 0.05, Table 6). For the piglets under oxidative
stress, PIT significantly increased the activities of GSH-PX and GSH content in the jejunum
(p < 0.05). Moreover, the piglets injected with diquat had significantly reduced T-AOC
and increased MDA content in the jejunum (p < 0.05). On the contrary, the piglets fed the
PIT diet had significantly increased T-AOC and reduced MDA content compared with
the piglets fed the basal diet (p < 0.05). There were significant interactions between diet
and stress on the GSH and MDA amounts in the ileum (p < 0.05). For the piglets under
oxidative stress, PIT significantly increased the GSH and reduced the MDA amounts in
the ileum (p < 0.05). The piglets injected with diquat had significantly reduced T-AOC and
GSH-PX activities in the ileum (p < 0.05). On the contrary, the piglets fed the PIT diet had
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significantly increased T-AOC and GSH-PX activities compared with the piglets fed the
basal diet (p < 0.05).

Table 6. The intestinal mucosal antioxidative capacity of the piglets fed polyphenols sourced from
Ilex latifolia Thunb. (PIT) diets under oxidative stress.

Items
Saline Diquat

SEM
p-Value

Basal Diet PIT Diet Basal Diet PIT Diet Diet Stress Interaction

Jejunum
T-AOC (U/mg protein) 0.543 0.665 0.472 0.532 0.046 0.019 0.032 0.564
GSH-PX (U/mg protein) 19.6 b 28.6 a 13.4 c 29.7 a 2 <0.001 0.243 0.036
GSH (mg GSH/g protein) 20.8 b 25.1 a 16.4 c 26.0 a 2.2 <0.001 0.351 0.013
MDA (nmol/mg protein) 1.43 1.21 2.46 1.66 0.28 0.017 <0.001 0.148

Ileum
T-AOC (U/mg protein) 0.274 0.325 0.229 0.287 0.021 0.012 0.015 0.135
GSH-PX (U/mg protein) 21.2 30.0 14.3 26.5 1.9 <0.001 <0.001 0.795
GSH (mg GSH/g protein) 15.0 a 15.1 a 9.5 b 13.4 a 1.8 0.135 0.032 0.047
MDA (nmol/mg protein) 1.84 b 1.73 b 2.67 a 1.98 b 0.25 0.375 0.145 0.021

N = 8 (1 piglet per pen). The same letter on the shoulder of the mean in the same line indicates that the difference
is insignificant, and the absence of the same letter means that the difference is significant. GPX4, glutathione
peroxidase 4; GSH, glutathione; GSH-PX, glutathione peroxidases; MDA, malondialdehyde; PIT, polyphenols
sourced from Ilex latifolia Thunb.; SEM, standard error of mean.

3.5. TEM Observation of the Intestinal Mucosa

There were no obvious characteristics of ferroptosis in the intestinal epithelial cells
of the piglets without oxidative stress (Figure 3A,B). However, characteristics of ferropto-
sis, such as the sparsely arranged microvilli, indistinct tight junction, disconnected tight
junction, mitochondrial pyknosis, mitochondrial cristae reduction and dilatations of rough
endoplasmic reticulum were observed in the piglets fed the basal diet under oxidative
stress (Figure 3C). Interestingly, supplementation with PIT in the diet attenuated epithelial
cells ferroptosis in the piglets under oxidative stress (Figure 3D).
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Figure 3. The epithelial cells ultrastructure in the jejunum of the piglets fed polyphenols sourced
from Ilex latifolia Thunb. (PIT) diets under oxidative stress. Representative ultrastructure is shown.
These pictures were obtained by transmission electron microscopy. (A) Piglets fed the basal diet and
treated with saline. (B) Piglets fed the PIT diet and treated with saline. (A,B) There are no obvious
ferroptosis characteristics. Presented as the closely arranged microvilli (a), normal tight junction (b),
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mitochondria with distinct cristae (c), normal rough endoplasmic reticulum (d). (C) Piglets fed the
same basal diet and treated with diquat. Significant ferroptosis characteristics were observed, such
as the sparsely arranged microvilli (e), indistinct tight junction (f), disconnected tight junction (g),
mitochondrial pyknosis (h), mitochondrial cristae reduction (i) and dilatations of rough endoplasmic
reticulum (j) were found. (D) Piglets fed the same PIT diet and treated with diquat. Original
magnifications 5000×. Scale bars = 2 µm.

3.6. Intestinal Mucosal Gene Expressions of the Key Genes Related to Ferroptosis

There were significant interactions between diet and stress on gene expressions of
jejunal TFR1, SLC7A11 and GPX4 (p < 0.05, Table 7). Supplementation with PIT significantly
reduced jejunal TFR1 gene expressions and improved SLC7A11 and GPX4 gene expres-
sions in the piglets under oxidative stress (p < 0.05). Meanwhile, significant interactions
between diet and stress on gene expressions of ileal TFR1, HSPB1 and GPX4 were observed
(p < 0.05). Supplementation with PIT significantly reduced ileal TFR1 and HSPB1 gene
expressions and improved GPX4 gene expressions in the piglets under oxidative stress
(p < 0.05). Moreover, supplementation with PIT significantly increased ileal SLC7A11 gene
expressions in the piglets under oxidative stress (p < 0.05).

Table 7. The relative gene expressions of ferroptosis-related signals of the piglets fed polyphenols
sourced from Ilex latifolia Thunb. (PIT) diets under oxidative stress.

Items
Saline Diquat

SEM
p-Value

Basal Diet PIT Diet Basal Diet PIT Diet Diet Stress Interaction

Jejunum
TFR1 1.00 b 0.89 b 1.67 a 1.13 b 0.15 0.022 0.015 0.034
HSPB1 1.00 0.94 0.88 0.99 0.10 0.781 0.641 0.332
SLC7A11 1.00 bc 1.16 b 0.75 c 1.48 a 0.17 0.035 0.743 <0.001
GPX4 1.00 c 1.89 c 5.35 b 8.54 a 0.51 <0.001 <0.001 0.015

Ileum
TFR1 1.00 b 0.92 b 1.45 a 0.94 b 0.11 0.138 0.027 0.031
HSPB1 1.00 b 0.76 c 1.35 a 0.83 bc 0.11 <0.001 0.015 0.013
SLC7A11 1.00 1.46 0.31 0.68 0.13 0.019 <0.001 0.320
GPX4 1.00 b 0.82 bc 0.80 c 1.43 a 0.09 0.140 0.676 <0.001

N = 8 (1 piglet per pen). The same letter on the shoulder of the mean in the same line indicates that the difference
is insignificant, and the absence of the same letter means that the difference is significant. GPX4, glutathione
peroxidase 4; HSPB1, heat shock protein beta 1; PIT, polyphenols sourced from Ilex latifolia Thunb.; SEM, standard
error of mean; SLC7A11, solute carrier family 7 member 11; TFR1, transferrin receptor protein 1.

3.7. Intestinal Mucosal Protein Abundance of the Key Proteins Related to Ferroptosis

There were significant interactions between diet and stress on jejunal TFR1 and GPX4
protein abundance (p < 0.05, Figure 4A). Supplementation with PIT significantly reduced
TFR1 abundance while it increased GPX4 abundance in the jejunum of the piglets under
oxidative stress (p < 0.05). Moreover, a significant interaction between diet and stress on
ileal TFR1 protein abundance was observed (p < 0.05, Figure 4B). Supplementation with
PIT significantly reduced TFR1 abundance in the ileum of the piglets under oxidative
stress (p < 0.05). Furthermore, the piglets under oxidative stress had significantly reduced
ileal SLC7A11 abundance (p < 0.05) and PIT supplementation significantly enhanced ileal
SLC7A11 and GPX4 abundance (p < 0.05).
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Figure 4. The jejunal (A) and ileal (B) mucosal protein abundance of ferroptosis-related signals of
the piglets fed polyphenols sourced from Ilex latifolia Thunb. (PIT) diets under oxidative stress. The
bands were the representative Western blot images. Values are mean and pooled SEM, n = 8 (1 piglet
per pen). BAS_S, piglets fed the basal diet and injected with saline; PIT_S, piglets fed the PIT diet and
injected with saline; BAS_D, piglets fed the basal diet and challenged with diquat; PIT_D, piglets
fed the PIT diet and challenged with diquat. Different letters are significantly different between the
treatment groups.

4. Discussion

An oxidative stress model of weanling piglets induced by diquat was established in
this study, which is a mature and widely used method in animal experiments [23,24]. It
has been reported that diquat injection could cause oxidative injury and impair intestinal
absorption function in weanling piglets [25]. It is found that diquat-induced oxidative
stress could damage the intestinal barrier function of piglets, with jejunal mucosal mito-
chondrial dysfunction and mitochondrial autophagy [25]. Plant polyphenols, as secondary
metabolites of plants, have been proved useful in terms of antioxidant, anti-inflammatory
and antiviral effects [26,27]. Therefore, this study was conducted to investigate whether
PIT could alleviate diquat-induced intestinal injury in weanling piglets. In this study,
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it was found that supplementation with PIT improved intestinal mucosal histology and
function, and enhanced the antioxidant capacity of the intestinal mucosa. In addition, PIT
supplementation relieved the extent of intestinal epithelial cells’ ferroptosis by regulating
the expression of genes and proteins related to ferroptosis.

Intestinal integrity is an important basis for assessing intestinal health. Intestinal
integrity can be measured by a series of indicators, such as villus height and crypt depth,
disaccharides activities, mucosal protein and DNA and RNA contents [28]. Villus height
and crypt depth are the most intuitive indicators to reflect the morphological and struc-
tural integrity of intestinal mucosa [29]. Maltase, sucrase and lactase are disaccharides
widely secreted in the intestinal tract. Disaccharides are involved in energy metabolism
and are often used to measure digestive function [19]. Protein, DNA and RNA contents
are important indicators of intestinal mucosa growth and development level, as well as
injury repair status [30]. The ratio of RNA/DNA and protein/DNA can reflect mucosal
protein synthesis level [31]. In this study, diquat injection reduced villus height and dis-
accharides activities, suggesting that diquat induced intestinal structural and functional
impairment, which is consistent with previous studies [24,32]. PIT enhanced intestinal
villus height, disaccharides activities, protein contents and the ratio of protein/DNA, which
is in agreement with previous research [15]. Similar to our results, some studies found
that polyphenols extracted from grape seeds or grape residue could increase the ratio of
villus height/crypt depth, reduce the expression of pro-inflammatory factors, and improve
digestion and absorption function in the intestine of pigs [33,34].

Intestinal injury is closely related to oxidative stress, which is caused by the imbalance
of ROS amounts between production and elimination. ROS can damage cellular compo-
nents, including lipids, DNA, proteins and carbohydrates, leading to tissue injury [35]. In
the present study, diquat challenged decreased intestinal mucosal T-AOC, GSH-PX activi-
ties, and GSH contents, while increasing MDA contents, indicating that diquat successfully
induced intestinal mucosal oxidative injury in piglets. Interestingly, supplementation with
PIT mitigated these series of oxidative injuries. The phenolic hydroxyl structure of polyphe-
nols is easily oxidized into the quinone structure, which consumes oxygen and captures
ROS, causing polyphenols to have a strong antioxidant function [36]. Furthermore, it has
been reported that polyphenols sourced from sorghum could maintain the balance between
oxidants and antioxidants and play a role in alleviating oxidative stress [37]. Several swine
nutrition studies have reported that polyphenol-rich diets could improve antioxidant sta-
tus and reduce ROS levels [38–40]. Dietary chlorogenic acid supplementation improved
the activities of GSH-PX and catalase in plasma and promoted growth performance by
improving the antioxidant capacity of weanling piglets [41]. It was found that dietary
catechin increased SOD activities and reduced H2O2 and MDA contents in the serum of
pregnant sows [42]. Furthermore, it was reported that polyphenols in apples, grape seeds,
green tea and olive leaves effectively improved the antioxidant capacity of weanling piglets,
and reduced infections caused by E. coli [14]. The above results parameters demonstrated
that PIT played a positive role in protecting intestinal histological injury and functional
disorder of weanling piglets under oxidative stress. Although we determined the pro-
ductive performance during this study, no significant difference was observed among
these treatments. The current animal sample size was too small to get an accurate and
productive performance. Maybe our next trial will explore the practical applicability of PIT
by employing a large samples animal trial to determine a productive performance.

Dixon et al. (2012) found a new non-apoptotic mode of cell death driven by lipid
peroxidation, which required intracellular enrichment of available ferrous ions, and asso-
ciated this cell death with ferroptosis [8]. Studies have shown that tissue injury, caused
by oxidative stress, is closely associated with ferroptosis [43]. Lipid peroxidation is the
major feature of ferroptosis, and the organelle lesions of ferroptosis are represented by
mitochondrial pyknosis, mitochondrial outer membrane rupture, mitochondrial cristae
reduction and so on [10,44]. In the present experiment, we observed that the diquat injec-
tion can cause mitochondrial pyknosis, mitochondrial cristae reduction and dilatations
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of rough endoplasmic reticulum in the intestinal epithelial cells of piglets fed a basal diet
under oxidative stress. However, dietary PIT could significantly alleviate organelle injury
to a certain extent. These results suggest that diquat-induced oxidative stress might cause
ferroptosis in intestinal epithelial cells, and PIT had protective effects on intestinal epithelial
cells of piglets by alleviating ferroptosis.

Ferroptosis can be activated by some intracellular as well as extracellular factors. TFR1
is a receptor protein encoded by the transferrin receptor gene [45]. This protein can be used
as a carrier to transfer ferric iron into the inner cell membrane when ferroptosis occurs.
HSPB1 is a chaperone of the small heat shock protein (sHsp) group and it can reduce the con-
tents of ferric iron by inhibiting the expression of TFR1, further alleviating ferroptosis [46].
The SLC7A11 gene codes for a sodium-independent cystine-glutamate antiporter, which
is chloride dependent. As a component of the cysteine-glutamate transporter, SLC7A11
plays a key role in GSH homeostasis, which protects cells from oxidative injury [47]. GPX4
is a phospholipid hydroperoxidase which protects cells from membrane lipid peroxidation,
and it can specifically inhibit ferroptosis [48]. In this study, the gene expressions of TFR1,
HSPB1 and GPX4 increased after the diquat challenge, indicating that diquat induced large
amounts of ferric iron into intestinal epithelial cells to cause oxidative stress. Meanwhile,
the self-protection of the antioxidant system may be triggered as an explanation for the
increased gene expressions of HSPB1 and GPX4. In addition, dietary PIT reduced the
gene expressions of TFR1 and HSPB1 and increased the gene expressions of SLC7A11 and
GPX4. Similar to the gene expression results, the protein abundance results also showed
that supplementation with PIT enhanced GPX4 and SLC7A11 and decreased TFR1 protein
abundance. These genes and protein expression results suggested that PIT could alleviate
ferroptosis by inhibiting ferric iron transport and enhancing intestinal antioxidant capacity,
which is in agreement with previous studies [16].

5. Conclusions

In conclusion, supplementation with PIT can alleviate diquat-induced intestinal mu-
cosal histological and functional injury in the weanling piglets model. PIT can relieve
diquat-induced intestinal ferroptosis by inhibiting the transfer of ferric iron and enhancing
antioxidant capacity.
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