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Background. The distinction between right-sided and left-sided colon adenocarcinoma has recently received considerable. This
study aims to identify key MicroRNA (miRNA) and mRNAs in right-sided colon adenocarcinoma (RSCOAD) and left-sided
colon adenocarcinoma (LSCOAD) by TCGA integration analysis. Methods. The miRNA and mRNA expression profiles of a large
group of patients with RSCOAD and LSCOAD were obtained from TCGA. The differentially expressed miRNAs (DEmiRNAs)
and mRNAs (DEmRNAs) were identified by TCGA integration analysis. The optimal diagnostic miRNA biomarkers for RSCOAD
and LSCOAD were identified by Boruta algorithm. We established classification models to distinguish RSCOAD and LSCOAD.
Protein-protein interaction (PPI) network analysis, DEmiRNA-DEmRNA interaction analysis, and functional annotation were
performed. The expression of selected DEmiRNAs and DEmRNAs was validated by qRT-PCR. Results. A total of 2534 DEmRNAs
(940 downregulated and 1594 upregulated mRNAs) and 54 DEmiRNAs (22 downregulated and 32 upregulated miRNAs) between
RSCOAD and LSCOAD were identified. The feature selection procedure was to obtain 22 optimal diagnostic miRNAs biomarkers
in RSCOAD compared to LSCOAD. The AUC of the random forests model was 0.869 and the specificity and sensitivity of
this model were 79% and 84.6%, respectively. Three DEmiRNAs (hsa-miR-224-5p, hsa-miR-155-5p, and hsa-miR-31-5p) and five
DEmRNAs (CXCR4, SMAD4,KRAS, FITM2, andPLAGL2)were identified keyDEmiRNAs andDEmRNAs inRSCOADcompared
to LSCOAD. The qRT-PCR results of CXCR4, FITM2, TFAP2A, ULBP2, hsa-miR-224-5p, and hsa-miR-155-5p were consistent
with our integrated analysis. Conclusion. A total of three DEmiRNAs (hsa-miR-224-5p, hsa-miR-155-5p, and hsa-miR-31-5p) and
five DEmRNAs (CXCR4, SMAD4, KRAS, FITM2, and PLAGL2) may be involved in the pathogenesis of RSCOAD and LSCOAD
which maymake a contribution for understanding mechanisms and developing therapeutic strategies for RSCOAD and LSCOAD.

1. Introduction

Colorectal cancer is recognized as one of the most common
malignant tumors of cancer-related deaths in worldwide [1].
The human colon has two sides: a right side, containing the
ascending and transverse colon, and the left, which is com-
prised of the descending and sigmoidal colon [2–4]. Many
publications pointed out some differences between RSCOAD
and LSCOAD regarding epidemiology, clinical presentation,
pathology, and genetic mutations [3]. The patients with
RSCOAD were older and had more advanced tumor stages,

increased tumor sizes, more often poorly differentiated
tumors, and different molecular biological tumor patterns.
RSCOAD is more prominent in women and LSCOAD is
more common in men [5]. Many of studies reported a poorer
survival in RSCOAD compared to LSCOAD [6–8]. Hence,
it is urgently required to identify accurate indicators in the
diagnostic and therapeutic targets in RSCOAD compared to
LSCOAD.

MicroRNAs (miRNAs) are a class of small noncoding
RNAswith a length of about 18-25nt. miRNAs are recognized
as important regulators of gene expression by interacting
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with the 3󸀠-URT of the target mRNA to inhibit translation
or induce degradation [9, 10]. More and more studies have
shown that miRNA can be used as an ideal biomarker
prognosis for cancer detection and accurate prediction, as
well as therapeutic targets [11, 12]. miRNAs regulate the
occurrence and development of cancer, including cell pro-
liferation, apoptosis, migration, and invasion [13]. Therefore,
identification of RSCOAD and LSCOAD related miRNAs is
essential for understanding the occurrence and development
of RSCOAD and LSCOAD.

In this study, we used the TCGA integration analysis to
study the miRNA and mRNA expression data and uncovered
the functional significance of differentially expressed miRNA
and mRNA in RSCOAD and LSCOAD.

2. Materials and Methods

2.1. miRNA and mRNA Gene Expression Profiles in TCGA.
The miRNA and mRNA gene expression profiles and
clinical data of RSCOAD and LSCOAD were down-
loaded by the Cancer Genome Atlas (TCGA) (http://tcga-
data.nci.nih.gov/). The inclusion criteria for the present study
were as follows: (1) Histological Type is colon adenocar-
cinoma. (2) Anatomic neoplasm subdivision Type includes
Ascending Colon, Sigmoid Colon, Cecum, and Descending
Colon.

2.2. Identification of DEmiRNAs and DEmRNAs between
RSCOAD and LSCOAD. The undetectable miRNAs and
mRNAs (with read count value = 0 in more than 20%
RSCOAD case or in more than 20% LSCOAD) were filtered
and deleted. The differentially expressed miRNAs (DEmiR-
NAs) and mRNAs (DEmRNAs) in RSCOAD compared
to LSCOAD were performed by R-bioconductor package
DESeq2. We used multiple comparisons by using the Ben-
jamini and Hochberg approach to acquire the false discovery
rate (FDR). DEmiRNAs and DEmRNAs were defined with
the thresholds of FDR < 0.01. Hierarchical clustering analysis
ofDEmiRNAs andDEmRNAswas further produced by using
R package.

2.3. Functional Annotation. In order to analyze the function
and the potential pathway of DEmiRNAs and target DEmR-
NAs of DEmiRNAs, the online software GeneCodis was used
to conduct the functional annotation, including Gene Ontol-
ogy (GO) classification and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment. FDR<0.05 was
defined as the criteria of statistical significance.

2.4. Protein-Protein Interaction (PPI) Network Construction.
The top100 DEmRNAs were used to build the PPI net-
work by using Biological General Repository for Interaction
Datasets (BioGRID) (http://thebiogrid.org/) and Cytoscape
(http://www.cytoscape.org/). We used nodes to represent
the proteins and edges to represent interactions between
two proteins. The nodes and edges indicate proteins and
interactions between two proteins, respectively.

2.5. Features Selection. Feature selection can readily remove
redundant and irrelevant features that contribute to further
improving the performance of a classifier. Boruta algorithm
was used to minimize errors of random forest model. The
optimal feature subset was obtained by using Boruta algo-
rithm (https://cran.r-project.org/web/packages/Boruta/). In
the algorithm of Boruta, we used the Z-score as measurement
criteria.

2.6. DEmiRNA-DEmRNA Interaction Analysis. As miRNAs
tend to decrease the expression of their target mRNA, target
genes were selected from DEmRNAs expressed inversely
with that of miRNA, to subject to further investigation.
DEmiRNA-DEmRNA interaction pairs in RSCOAD vs
LSCOAD were obtained. Firstly, the correlation between the
22 DEmiRNAs and all of DEmRNAs was analyzed by the
pairwise Pearson correlation coefficient. The threshold for
DEmiRNA-DEmRNA coexpression pairs was p<0.05 and
R<0.Then, the confirmed targeted DEmRNAs of DEmiRNAs
were obtained from by miRTarBase. Finally, DEmiRNA-
DEmRNA significant negative coexpression pairs overlapped
with miRNA-target mRNAs pairs were used to construct
the DEmiRNA-DEmRNA coexpression network by using the
Cytoscape software (http://www.cytoscape.org/).

2.7. Confirmation by qRT-PCR. Fourteen tissues samples of
RSCOAD patients (n = 7) and LSCOAD patients (n = 7)
were obtained. Informed written consent was obtained from
all participants, and research protocols were approved by the
ethical committee of our hospital.

Total RNA was extracted with a RNA simple total RNA
kit (Tiangen, China). Complementary DNAs were generated
using the Fast Quant RT Kit (Tiangen, China). Quantitative
real-time PCR were conducted using the Super Real PreMix
Plus SYBR Green (Tiangen, China) on ABI 7500 real-time
PCR system. Relative quantification of mRNA and miRNA
levels was analyzed by using the 2-��Ct method. The PCR
primers used are listed in Table 1.

3. Results

3.1. DEmiRNAs and DEmRNAs between RSCOAD and
LSCOAD. We obtained the mRNA and miRNA expression
profiles of 151 RSCOAD and 149 LSCOAD patients from
TCGA. A total of 2534 DEmRNAs (940 downregulated and
1594 upregulated mRNAs) and 54 DEmiRNAs (22 down-
regulated and 32 upregulated miRNAs) between RSCOAD
and LSCOAD were identified with FDR<0.01. Hierarchical
clustering analysis of the top 100 DEmRNAs and all of
DEmiRNAs is displayed in Figures 1(a) and 1(b), respectively.
The 100 DEmRNAs and all of DEmiRNAs are shown in
Supplementary Tables 1 and 2, respectively.

3.2. Functional Annotation of DEmRNAs. All of DEmRNAs
were used to perform the GO and KEGG enrichment analy-
sis. According to GO enrichment analysis, regulation of tran-
scription, DNA-dependent (FDR=1.56204E-21), signal trans-
duction (FDR=1.0492E-20), cytoplasm (FDR=1.40992E-78),
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Figure 1: Hierarchical clustering analysis of top 100 DEmRNAs and all of DEmiRNAs between RSCOAD and LSCOAD. (a) DEmRNAs. (b)
DEmiRNAs. Row and column represented DEmRNAs/DEmiRNAs and tissue samples, respectively. Orange and light blue color mean the
RSCOAD and LSCOAD, respectively.The color scale represented the expression levels. Red color represents that the relative expression level
of genes was higher than mean, and green color represents that the relative expression of genes was lower than mean.

Table 1: Primer sequences used for qRT-PCR.

Name Sequence (5󸀠to 3󸀠)
GAPDH-F GGAGCGAGATCCCTCCAAAAT
GAPDH-R GGCTGTTGTCATACTTCTCATGG
CXCR4-F ACGCCACCAACAGTCAGAG
CXCR4-R AGTCGGGAATAGTCAGCAGGA
FITM2-F CATTCTGACTTTCATCTGGGTGT
FITM2-R GCTCAGCAAACCAAACAAGGTG
TFAP2A-F AGGTCAATCTCCCTACACGAG
TFAP2A-R GGAGTAAGGATCTTGCGACTGG
ULBP2-F GTGGTGGACATACTTACAGAGC
ULBP2-R CTGCCCATCGAAACTGAACTG
hsa-miR-224-5p TCAAGTCACTAGTGGTTCCGTTTAG
hsa-miR-155-5p TTAATGCTAATCGTGATAGGGGTT

and protein binding (FDR=8.76318E-60) were significantly
enriched GO terms. KEGG pathway enrichment analy-
sis displayed that pathways in cancer (FDR=3.11 E-12),
intestinal immune network for IgA production (FDR=1.12E-
07), colorectal cancer (FDR=6.51E-05), and pathogenic
Escherichia coli infection (FDR=2.28E-03) were four signifi-
cantly enriched pathways. Top 15 most significantly enriched
GO and KEGG pathways of DEGs are demonstrated in
Figure 2.

3.3. PPI Network Construction. The PPI network of top
100 DEmRNAs consisted of 221 nodes and 194 edges (Fig-
ure 3). C8orf33 (degree=13), LMO4 (degree=10), TFAP2A
(degree=9), PIGU (degree=8), TM9SF4 (degree=8), and
ULBP2 (degree=7) were considered the hub proteins.

3.4. Features Selection. We obtained 22 DEmiRNAs by algo-
rithms of Boruta (Table 2). Hierarchical clustering analysis
of these 22 DEmiRNAs between RSCOAD and LSCOAD

is displayed in Figure 4(a). A 10-fold cross-validation result
demonstrated that the AUC of the random forests model was
0.869 and the specificity and sensitivity of this model were
79% and 84.6%, respectively (Figure 4(b)).

3.5. DEmiRNA-DEmRNA Interaction Network. miRNAs are
negative regulators of their target genes; the expression of
targets was negatively associated with miRNAs. According
to the miRNA-mRNA expression correlation analysis, we
obtained 17563DEmiRNA-DEmRNApairs whichwere nega-
tively correlated (p<0.05, r<0). The 134 upregulated miRNA-
mRNA pairs and 124 downregulated miRNA-mRNA pairs
were verified by miRTarBase. After overlapping these 258
miRNA-target mRNA pairs and 17564 negative DEmiRNA-
DEmRNA coexpression pairs, we obtained 116 DEmiRNA-
target DEmRNA pairs including 109 DEmRNAs and 18
DEmiRNAs. Based on the DEmiRNA-target DEmRNA inter-
action network, hsa-miR-31-5p (degree=13), hsa-miR-224-5p
(degree=12), hsa-miR-625-5p (degree=11), and hsa-miR-155-
5p (degree=6) were four hub DEmiRNAs (Figure 5).
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Table 2: 22 DEmiRNAs screened by Boruta.

Symbol log2FoldChange P.value FDR Up Down
hsa-miR-10b-5p 9.17E-01 1.78E-24 8.62E-22 Up
hsa-miR-10b-3p 9.87E-01 2.07E-19 5.00E-17 Up
hsa-miR-155-5p 7.42E-01 2.25E-13 3.62E-11 Up
hsa-miR-146a-5p 7.06E-01 1.04E-10 1.26E-08 Up
hsa-miR-625-5p 6.84E-01 1.26E-09 1.22E-07 Up
hsa-miR-296-5p -9.27E-01 1.75E-08 1.41E-06 Down
hsa-miR-592 -8.27E-01 8.22E-08 5.67E-06 Down
hsa-miR-625-3p 5.79E-01 9.55E-08 5.76E-06 Up
hsa-miR-96-5p 4.82E-01 1.22E-07 5.89E-06 Up
hsa-miR-10a-5p 5.21E-01 8.40E-07 3.38E-05 Up
hsa-miR-31-3p 9.87E-01 7.81E-07 3.38E-05 Up
hsa-miR-31-5p 9.38E-01 1.95E-06 6.73E-05 Up
hsa-miR-10a-3p 5.03E-01 7.51E-06 2.27E-04 Up
hsa-miR-224-5p -4.51E-01 2.25E-05 5.17E-04 Down
hsa-miR-552-3p -5.51E-01 5.35E-05 9.72E-04 Down
hsa-miR-1247-5p -6.40E-01 5.83E-05 9.72E-04 Down
hsa-miR-1247-3p -6.46E-01 7.13E-05 1.15E-03 Down
hsa-miR-224-3p -4.52E-01 7.50E-05 1.17E-03 Down
hsa-miR-409-5p -3.66E-01 4.16E-04 4.46E-03 Down
hsa-miR-452-5p -3.40E-01 4.34E-04 4.46E-03 Down
hsa-miR-127-5p -3.30E-01 4.31E-04 4.46E-03 Down
hsa-miR-552-5p -4.53E-01 6.62E-04 6.37E-03 Down
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Figure 2: The enrichment GO terms and KEGG pathways of DEmRNAs between RSCOAD and LSCOAD. The x-axis shows -log FDR and
y-axis shows GO terms and KEGG pathways. (a) Biological process. (b) Cellular component. (c) Molecular function. (d) KEGG pathways.
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Figure 4: Identification of optimal miRNA biomarkers between RSCOAD and LSCOAD. (a) Hierarchical clustering analysis of 22
DEmiRNAs. Row and column represent DEmiRNAs and tissue samples, respectively. Orange and light blue color mean the RSCOAD and
LSCOAD, respectively. The color scale represents the expression levels. Red color represents that the relative expression level of genes was
higher than mean, and green color represents that the relative expression of genes was lower than mean. (b) The ROC results of these 22
diagnostic miRNA biomarker based on random forest model.

3.6. Functional Annotation of miRNA Targets. After GO
enrichment analysis (Figures 6(a)–6(c)), the miRNA
targets were significantly enriched in negative regulation
of cell proliferation (FDR=0.00490687), cytoplasm (FDR=
0.0000024104), and protein binding (FDR=0.00000171927).
According to the KEGG pathway enrichment analysis
(Figure 6(d)), endocytosis (FDR=0.000168671) and VEGF

signaling pathway (FDR=0.0261759) were significantly
enriched pathway.

3.7. QRT-PCRConfirmation. Weperformed the confirmation
of four DEmRNAs (CXCR4, FITM2, TFAP2A, and ULBP2)
and two DEmiRNAs (hsa-miR-224-5p and hsa-miR-155-5p)
by qRT-PCR. Among them, FITM2, TFAP2A, and ULBP2
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Figure 6: The enrichment GO terms and KEGG pathways of DEmiRNA targets DEmRNAs between RSCOAD and LSCOAD. The x-axis
shows -log FDR and y-axis shows GO terms and KEGG pathways. (a) Biological process. (b) Cellular component. (c) Molecular function. (d)
KEGG pathways.
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Figure 7: Validation DEmRNAs and DEmiRNAs by qRT-PCR. Fourteen tissues samples of RSCOAD patients (n = 7) and LSCOAD patients
(n = 7) were used to perform the validation by qRT-PCR assay. All of the assays were performed three times independently at least. The
x-axis shows DEmRNAs or DEmiRNAs and y-axis shows log2(Foldchange). The log2(Foldchange)>0 and log2(Foldchange) <0 indicate
upregulation and downregulation, respectively. Statistical significance was assessed by Student’s t-test. ∗P <0.05, ∗∗P <0.01.

were top 10 up/down DEmRNAs, hsa-miR-224-5p and hsa-
miR-155-5p top 10 up/down DEmiRNAs. Based on TCGA,
FITM2 and hsa-miR-224-5p were downregulated while the
other four DEmRNAs or DEmiRNAs (CXCR4, TFAP2A,
ULBP2, and hsa-miR-155-5p) were upregulated in RSCOAD
to LSCOAD. According to the qRT-PCR results, except for
ULBP2, FITM2 and hsa-miR-224-5p were downregulated
and CXCR4, TFAP2A, and hsa-miR-155-5p were upregulated
which was consistent with the results of TCGA, generally
(Figure 7).

4. Discussion

Thedistinction between RSCOAD and LSCOADhas recently
received considerable attention [14]. In this study, we
performed miRNA and mRNA integrated analysis and
obtained 2534 DEGs and 54 DEmiRNAs in RSCOAD
patients compared to LSCOAD. A total of 22 DEmiRNAs
between RSCOAD and LSCOAD were identified by algo-
rithms of Boruta. According to the functional annotation
and DEmiRNA-DEmRNA interaction network, five DEGs
(CXCR4, SMAD4, KRAS, FITM2, and PLAGL2) upon the
regulation of three DEmiRNAs (hsa-miR-224-5p, hsa-miR-
155-5p, and hsa-miR-31-5p) were associated with RSCOAD
and LSCOAD.

Hsa-miR-224-5p was downregulated in both TCGA inte-
gration analysis and qRT-PCR validation, which was consis-
tent with reports in other cancers of other researchers [15],
indicating the TCGA integration analysis results are convinc-
ing. According toDEmiRNA-DEmRNA interaction network,
hsa-miR-224-5p was coexpressed with CXCR4, SMAD4, and
KRAS. C-X-C chemokine receptor type 4 (CXCR4), the
receptor for the chemokine stromal cell-derived factor, is one
of the members of the chemokine and plays a key role in
cancer progression and metastasis [16]. Several reports have
found that CXCR4 was upregulated in a variety of cancers,
including lung cancer, breast cancer colorectal cancer, and
prostate cancer [17–19]. It has been found that the expression
levels of CXCR4 correlate with the stage of the tumor, lymph

node, and liver metastasis and with a higher expression in
the most advanced stages of colorectal cancer [16]. In this
study, CXCR4 was upregulated in both TCGA integration
analysis and qRT-PCR validation, indicating that the TCGA
integration analysis data were reliable. Salovaara et al. have
found a strong correlation between the high frequency of
SMAD familymember 4 (SMAD4) genemutations and colon
cancer distant metastasis [20]. SMAD4 inhibits lymphangio-
genesis and migration colon cancer [21]. Recent study has
shown that SMAD4 mutation is independently associated
with worse outcomes among patients undergoing resection
of colorectal liver metastases [22]. KRAS is one of the most
common mutated oncogenes in cancer, a powerful promoter
of tumorigenesis, a strong induction factor for malignant
tumors, and a predictive biomarker of therapeutic response
[23]. Hsa-miR-224 was downregulated in the feces from the
colorectal cancer patients, which could be an informative
biomarker for screening and early diagnosis of colorectal can-
cer [15]. CXCR4, SMAD4, and KRAS coexpressed with hsa-
miR-224-5p were enriched in pathway of Intestinal immune
network for IgA production and colorectal cancer. Hence, we
inferred that hsa-miR-224-5p-CXCR4/SMAD4/KRAS inter-
actions play a pivotal role in the development of RSCOAD
and LSCOAD by regulating pathway of intestinal immune
network for IgA production and colorectal cancer.

Hsa-miR-155-5p was upregulated in both TCGA integra-
tion analysis and qRT-PCR validation, which was consistent
with reports in other cancers of other researchers [24]. MiR-
155 directly regulates 𝛽-catenin at the transcriptional level
and promotes the invasion potential of colon cancer cell,
which suggests that miR-155 may have a unique potential as
a novel biomarker candidate for diagnosis and treatment of
tumor metastasis [24]. According to DEmiRNA-DEmRNA
interaction network, hsa-miR-155-5p was coexpressed with
Fat storage-inducing transmembrane protein 2 (FITM2).
FITM2 is a 262-amino acid protein in mammals having six
transmembrane domains with both N and C termini facing
the cytoplasm. FITM2 causes lethal enteropathy and plays
an essential role in regulating intestinal health [24]. In our
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study, FITM2 was downregulated in both TCGA integration
analysis and qRT-PCR validation.Therefore, we hypothesized
that hsa-miR-155-5p/FITM2 interactions contributed to dis-
tinguishing RSCOAD and LSCOAD.

Hsa-miR-31-5p has been reported as a prognostic
biomarker for stage II and III colon cancer [25]. Herein, hsa-
miR-31-5p was upregulated in TCGA integration analysis.
According to DEmiRNA-DEmRNA interaction network,
hsa-miR-31-5p was coexpressed with proto-oncogene,
pleomorphic adenoma gene-like 2 (PLAGL2). PLAGL2 is
involved in a variety of cancers including colon cancer,
acute myeloid leukemia, malignant glioma, and lung adeno-
carcinoma, and PLAGL2 can function as a tumor suppressor
by initiating cell cycle arrest and apoptosis [26]. Hence, we
speculated that hsa-miR-31-5p PLAGL2 interactions play a
key role in the development of RSCOAD and LSCOAD.

In summary, we identified 2534 DEmRNAs and 54
DEmiRNAs in RSCOAD compared to LSCOAD.The feature
selection procedure was to obtain 22 optimal diagnostic miR-
NAs biomarkers in RSCOAD compared to LSCOAD, among
which three DEmiRNAs (hsa-miR-224-5p, hsa-miR-155-5p,
and hsa-miR-31-5p) and five DEmRNAs (CXCR4, SMAD4,
KRAS, FITM2, and PLAGL2)were identified keyDEmiRNAs
and DEmRNAs in RSCOAD compared to LSCOAD. How-
ever, there are limitations to our study. Firstly, the sample
size in the confirmation by qRT-PCR was small and large
numbers of samples of RSCOAD and LSCOAD are needed
for further research. Secondly, these key DEmRNAs and
DEmiRNAswere identified and the function was not studied.
Thence, in vivo and in vitro experiments were necessary to
illuminate the biological roles of DEmRNAs and DEmiRNAs
in the future work.
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