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Extracellular vesicles (EVs) have emerged as a novel intercellular communication system. 
By carrying bioactive lipids, miRNAs and proteins they can modulate target cell func-
tions and phenotype. Circulating levels of EVs are increased in inflammatory conditions,  
e.g., cardiovascular disease patients, and their functional contribution to atherosclerotic 
disease development is currently heavily studied. This review will describe how EVs can 
modulate vascular cell functions relevant to vascular inflammation and atherosclerosis, 
particularly highlighting the role of EV-associated proteolytic activity and effector proteins 
involved. Furthermore, we will discuss key questions and challenges, especially for 
EV-based therapeutics.
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inTRODUCTiOn

Extracellular vesicles (EVs) play a crucial physiological and pathophysiological role, as they have 
been identified as regulators of cell-to-cell communication (1).

Extracellular vesicles are small spherical vesicles, consisting of a lipid bilayer membrane encas-
ing a small organelle-free cytosol, that are released by cells into the extracellular environment 
(2). It has been shown that most cell types can release EVs, originating from various subcellular 
membrane compartments (3). Nowadays, EVs are generally classified into three main classes,  
i.e., exosomes, microvesicles (MVs), and apoptotic bodies (3). Exosomes arise from intracellular 
compartments called multivesicular bodies (MVBs) and are released by an active process, lead-
ing to fusion of these MVBs with the plasma membrane (4). Exosomes typically have a size of 
30–100 nm, i.e., representing the smallest subgroup of EVs, and are enriched for tetraspanins (CD9, 
CD63, and CD81) or other markers, such as flotillin and tumor susceptibility gene 101, which are 
often used to distinguish them from other populations of EVs (5). The second class of EVs is MVs, 
which are typically larger in size (ranging from 100 to 1,000 nm) and are produced by budding off 
directly from the plasma membrane in a process called microvesiculation (5). Microvesiculation 
involves the externalization of phosphatidylserine (PS) followed by cytoskeleton rearrangement 
and the formation of membrane curvatures (6, 7). Therefore, MVs membranes are also enriched in 
PS (detectable by Annexin A5) and the membrane composition resembles that of the parental cell 
(8). The third type of EVs is apoptotic bodies with a size of >1 μm. These vesicles are released from 
apoptotic cells through membrane blebbing and therefore contain apoptotic nuclear material (9). 
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FigURe 1 | Reported roles of EVs in vascular inflammation and atherosclerosis. Brief schematic representation of the reported effects of circulating cell-derived  
and plaque-derived EVs on different processes in atherosclerosis development. The mentioned effector molecules are merely examples, and it should be noted  
that many more exist. White vesicles are of unknown origin/parental cell. EC, endothelial cell; EV, extracellular vesicle. Please refer to Table 1 for more detailed 
information.
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However, although the field is rapidly evolving, it is still quite 
challenging to specifically isolate, characterize, and classify the 
different populations of vesicles as discussed below.

Extracellular vesicles can cargo a large variety of biomolecules, 
such as various DNA, RNA, and microRNA species, bioactive 
lipids, and proteins. The latter include receptor ligands, by which 
EVs can interact with target cells (2), and proteolytically active 
enzymes, by which these vesicles can influence many cellular 
functions (10). This review will give a brief overview on how 
EVs can modulate vascular cell functions relevant to vascular 
inflammation and atherosclerosis, particularly highlighting the 
role of EV-associated proteolytic activity and effector proteins 
involved. Furthermore, we will discuss key questions and chal-
lenges, especially for EV-based therapeutics.

evs in vASCULAR inFLAMMATiOn AnD 
ATHeROSCLeROSiS

Recent years, great efforts have already been made to elucidate 
the role of EVs in cardiovascular diseases (CVDs), which is 

still the major cause of mortality worldwide. CVDs are mainly 
caused by atherosclerosis, a chronic inflammatory disease 
initiated by a continuous damage of the vascular endothe-
lium leading to endothelial dysfunction (11). It has already 
been clearly shown that inflammation and endothelial injury 
augment the release of EVs (12, 13), generally reflecting the 
pro-inflammatory state of the parental cell. In addition, EVs 
influence thrombus formation which can occur after plaque 
rupture (3). Indeed, atherosclerotic lesions contain and release 
EVs, derived from leukocytes, platelets, smooth muscle cells 
(SMCs), and endothelial cells, during all stages of atherosclero-
sis development (14, 15) (Figure 1). As a consequence, patients 
with CVD mediated by endothelial damage show significantly 
elevated levels of circulating cell-derived EVs (16). This obser-
vation has therefore also been the starting point to investigate 
EVs as potential prognostic and diagnostic biomarkers. While 
most research has focused on the presence and function of MVs,  
also exosomes have been observed in human atherosclerotic 
lesions (17), although their functional roles remain largely 
unexplored.
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Several in  vitro studies clearly show that platelet and 
leukocyte-derived MVs from unstimulated cells increase the 
release of pro-inflammatory cytokines from endothelial cells 
and leukocytes, especially interleukin (IL)-6 and IL-8 (18, 19). 
Release of these cytokines will inherently promote monocyte 
adhesion to the endothelium and migration into the ath-
erosclerotic lesions. MVs released from human atherosclerotic 
plaques were shown to increase the expression of endothelial 
adhesion molecules such as intercellular adhesion molecule 1 
and monocyte adhesion molecule receptors, like CD11a, thereby 
further augmenting monocyte adhesion (18, 20). Furthermore, 
CCL5 (RANTES) is transferred from healthy platelet MVs to 
activated endothelial cells and can thereby enhance leukocyte 
adhesion (21). Endothelial and leukocyte MVs have also been 
shown to induce endothelial cell dysfunction, by decreasing the 
production of nitric oxide (NO) (22, 23). This is the result of an 
inhibition of the endothelial NO synthase and/or an increase 
in caveolin-1, increasing local oxidative stress (24, 25). Besides 
this mediator, MVs can act as potential markers of endothelial 
dysfunction, as nicely reviewed in Ref. (26). Together, these 
data clearly show that MVs, derived from various (vascular) 
cell types, can greatly influence the initiation of atherosclerosis 
development.

Microvesicles derived from macrophages and fibroblasts 
have also been implicated in later stages of lesion development, 
as they can stimulate foam cell formation by lipid/cholesterol 
uptake in macrophages (27). Furthermore, several reports have 
indicated that T cell-derived MVs can contribute to monocyte 
and macrophage apoptosis, via two proposed mechanisms  
(28, 29). The first mechanism involves the phagocytosis of 
MVs by monocytes and macrophages, leading to an increased 
cellular content of membrane phospholipids. These phospho-
lipids are likely cleaved by phospholipase A2 into arachidonic 
acid, which will subsequently result in an increased amount of 
proapoptotic ceramides inside the cells (28, 29). The second 
mechanism involves MVs containing caspase-1 or caspase-3, 
which can induce target cell apoptosis (30, 31). Several studies 
have shown that MVs also play an important role in lym-
phocytes, as both human atherosclerotic plaque and in  vitro 
generated dendritic cell MVs can stimulate T cell proliferation 
(32, 33). Most likely this influence is mediated by the pres-
ence of major histocompatibility complex class II presence 
on the MVs secreted from macrophages and dendritic cells 
(32). Furthermore, endothelial cell-derived MVs can promote 
lymphocyte differentiation toward a more proatherogenic  
T helper-1 phenotype as shown by priming of naive T cells with 
dendritic cells which were matured with endothelial MVs (34). 
On their turn, activated T  cells release MVs that can induce 
mast cell activation, degranulation, and cytokine release (35). 
Mast cells are also present in the arterial wall, where they can 
contribute to atherosclerosis development (36).

Furthermore, MVs have significant effects on plaque stabil-
ity as they can influence SMC proliferation and migration, via 
protease-activated receptor interaction or various microRNAs 
(37, 38). In addition, plaque MVs can contribute to matrix 
degradation as they contain several active proteases (39), which 
will be discussed in more detail later. This influence on matrix 

degradation is also one of the mechanisms by which MVs 
could potentially contribute to intraplaque neovascularization. 
It has also been shown that human plaque MVs can increase 
endothelial proliferation, a crucial step in neovascularization, 
in vitro as well as in vivo in matrigel plugs (40). During human 
atherosclerosis development, intimal calcification occurs at dif-
ferent stages of lesion development (41). Moreover, endothelial, 
SMC, and macrophage-derived EVs are present at the sites of 
calcification (3), nicely reviewed in Ref. (42). EVs released from 
SMCs have the potential to stimulate calcification by these same 
SMCs, mediated by sortilin-dependent regulation of alkaline 
phosphatase trafficking (43). In addition, EVs enriched in bone 
morphogenetic protein 2 released from endothelial cells can 
promote calcification in vascular SMCs (44).

In the latest stages of atherosclerosis, i.e., plaque rupture and 
thrombosis, MVs can also play an important role. MVs/EVs carry 
various proteolytic factors that likely contribute to matrix deg-
radation, as shown in cancer (45) and could thereby potentially 
also influence plaque destabilization. In addition, human plaque 
MVs have been shown to be particularly prothrombogenic (15). 
Plaque MVs can contribute to the coagulation pathway via two 
different pathways: the presence of tissue factor on the surface 
of MVs and the exposure of PS on the outer membrane layer  
(3, 46). In contrast to MVs, exosomes seem to have antithrombotic 
effects. Platelet aggregation was suppressed by platelet-derived 
exosomes by inhibiting platelet CD36 (47). The procoagulant 
role of MVs is more elaborately reviewed in Ref. (48).

Besides communication between different cells within an 
atherosclerotic plaque, it is generally assumed that EVs, as they 
are relatively stable, mediate cross talk with cells at relatively 
large distances. This is particularly relevant for CVDs, which is 
widely acknowledged to be a systemic disease, and the basis for 
the “vulnerable patient concept” (49, 50). Indeed, it has already 
been long recognized that clinical symptoms in CVD patients 
(e.g., myocardial infarction or stroke) are often followed by 
secondary CVD events. Moreover, CVDs are often associated 
with several comorbidities, e.g., diabetes, chronic kidney disease, 
non-alcoholic steatohepatitis, small cerebral vessel disease, and 
heart failure. It is likely, yet it remains to be determined, that EVs 
play a crucial role in this systemic intercellular communication.

PROTeOLYTiC enZYMeS/eFFeCTOR 
MOLeCULeS in evs

Extracellular vesicles are known to carry a large amount of bio-
active molecules, including proteins/enzymes. Still, relatively 
little is known on the influence of various (atherogenic) stimuli 
on EV composition and thus EV function. Proteomic analysis 
recently identified several proteolytical enzymes in EVs, such 
as the cell surface-bound sheddases a disintegrin and metal-
loproteinases (ADAMs), soluble ADAMs with thrombospondin 
motifs (ADAMTSs), as well as cell surface-bound and soluble 
matrix metalloproteinases (MMPs) (51).

A disintegrin and metalloproteinases are involved in ectodo-
main shedding of various transmembrane proteins, thereby regu-
lating cell adhesion, migration, and cell–cell communication (52).  
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ADAM10 and ADAM17 are the best studied members of this 
family. ADAM17 is considered the primary enzyme for shedding 
of tumor necrosis factor (TNF), and its receptors (TNFR1 and 
2), and the epidermal growth factor receptor ligands (53). On 
the other hand, ADAM10 is physiologically critical for Notch 
signaling via receptor cleavage (54). ADAMs have been reported 
to mediate various exosome/MV functions, e.g., by cleavage of 
EV surface molecules, releasing them as soluble factors in the 
target cell microenvironment. Indeed, ADAM17 is present on 
MVs released from atherosclerotic lesions and shown to cleave 
pro-TNF from these vesicles, which could provide a means to 
locally release pro-inflammatory mediators at large distances 
from the cell/site from which the MVs are released (39). In addi-
tion, plaque MVs have been shown to increase the shedding of 
TNF and its receptor (TNFR) from the surface of endothelial 
cells in an ADAM17-dependent manner (39), further supporting 
a role for ADAM17+ MVs in the regulation of (systemic) vascular 
inflammation.

Little is known on the role of other EV-associated ADAMs in 
relation to atherosclerosis. In exosomes, secreted from ovarian 
carcinoma cells, especially ADAM10 has been shown to be cru-
cially involved in the cleavage of CD171 (L1) and CD44 (55), two 
important cell adhesion molecules. Cleavage did not only occur 
in the released exosomes but also already in the earlier phases 
of vesicle formation in the endosomal compartment. ADAM17 
is also able to cleave CD171, although this occurs only at the 
cell surface demonstrating that different ADAMs are involved 
in distinct cellular compartments (55), and thus potentially in 
different EV populations. Other ADAMs such as ADAM15 
(56), have also been identified in exosomes. Tumor cell-derived 
exosomes, enriched in ADAM15, display a high binding affin-
ity for integrin αvβ3 and suppress cell adhesion, migration and 
growth (56). Exosomes derived from macrophages have also been 
shown to express ADAM15 and demonstrate described tumor 
inhibitory effects (56). The functional contribution of ADAM 
proteases in EVs to CVD disease progression, however, remains 
to be determined.

ADAMs with thrombospondin motifs are relatively compa-
rable to ADAMs, but have thrombospondin-like motifs instead 
of transmembrane and cytoplasmic domains and are therefore 
generally secreted as soluble proteins (45). A large subgroup of 
ADAMTSs is known as aggrecanases, because they can proteo-
lytically cleave proteoglycans and are involved in cartilage deg-
radation (57). This degradation of cartilage by aggrecanases has 
been associated with the progression of arthritis (58). Recently, 
it has been shown that rheumatoid synovial fibroblasts secrete 
MVs containing aggrecanase activity, most likely mediated by 
ADAMTS1, ADAMTS4, or ADAMTS5 (59). Synovial fluids in 
rheumatoid arthritis also contain T cell- and monocyte-derived 
MVs, which can induce the synthesis of several MMPs in fibro-
blasts (60). Considering the role of various ADAMTS proteases 
in inflammation and vascular biology (61, 62), it is likely that 
EV-associated ADAMTSs are implicated in CVD. However, there 
are no clear indications for such a role of ADAMTSs in EVs in 
other pathologies, such as CVDs, yet.

Matrix metalloproteinases are a family of zinc-dependent 
endopeptidases, which are also crucial to extracellular matrix 

degradation and cleavage of surface proteins. It has already been 
shown that EVs released from mouse melanoma cells and human 
colorectal carcinoma cells have gelatinolytic and collagenolytic 
activity, indicating the presence of active MMPs (63, 64). Indeed, 
more recently several MMPs have been detected in EVs derived 
from tumor cells (45). Interestingly, there is also a positive cor-
relation between the quantity of shed vesicles, the amount of 
vesicle bound lytic enzymes and the in vitro invasive capability 
of different human cancer cell lines (65). Since MMPs also play a 
role in CVD (66), a role of MMPs in EVs in CVD can be expected 
but has surprisingly not been evaluated so far.

CLiniCAL POTenTiAL AnD CHALLengeS

Targeting EVs seems like a promising novel therapeutic option, 
where EVs containing RNA, DNA, or proteins involved in 
disease pathogenesis can be blocked. Blockage of EVs and 
especially the delivery of their cargo to the target cell can be 
achieved in various ways, e.g., by inhibiting the vesicle release, 
uptake or formation [reviewed by El Andaloussi et  al. (67)]. 
Vesicle formation can be suppressed by inhibiting crucial cel-
lular compartments, for instance by ceramide or syndecan pro-
teoglycans blockage. Furthermore, the release of vesicles can be 
blocked by inhibiting GTPases, which are needed for the fusion 
of MVBs with the plasma membrane. In addition, EVs could 
be used as therapeutic delivery tools. For this purpose, both 
endogenously produced EVs and EVs, which are deliberately 
packaged with specific components can be used (68). For exam-
ple, a recent proof of concept study has shown that EVs could 
deliver specific siRNA to mouse brains (69). In the context of 
CVD, a recent study has shown that in vitro generated endothe-
lial EVs could reduce atherosclerosis formation by the transfer 
of miRNAs (38). The first clinical trials using EVs have also 
already been started in the field of antitumor immunotherapy. 
Two separate phase I trials used Good Manufacturing Practice 
compatible protocols to isolate EVs from dendritic cells and 
could show a good feasibility and safety of EV administration in 
patients (70). The phase II trial that followed unfortunately did 
not give the expected positive outcomes, but combined these 
results clearly show the therapeutic potential of EVs.

In addition to their therapeutic use, EVs could also be used 
as biomarkers as they are also found in several body fluids, such 
as blood (71) and urine (72), making them easily accessible for 
prognostic or diagnostic purposes. Emphasizing the prognostic 
potential, it has already been shown that Cystatin C, Serpin F2, 
and CD14 MV levels correlate with an increased risk for cardio-
vascular event and mortality (73). In addition, miRNA content 
of EVs has already been clearly linked with disease outcome (74). 
More details about the clinical potential of EVs and their use as 
biomarkers are recently elaborately reviewed in Ref. (75).

The field of EV research is rapidly progressing, although the 
EV research complexity and challenges are still considerable 
(76). EVs represent a very heterogeneous population, both in size 
and composition. This has led to some confusing and variable 
nomenclature, although as described before some consensus has 
already been achieved. Another major difficulty is the presence 
of non-EV components in preparations of EVs, which have 
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TAbLe 1 | Summarizing described studies supporting the role of EVs in vascular inflammation and atherosclerosis.

Cell origin Species 
origin

Study type Activation stimuli Main findings Reference

ECs Mouse/
human

Ex vivo/in vitro n.a. MVs attenuate EC-mediated vasodilation ex vivo and reduced NO release in vitro (24)

ECs Human In vitro/in vivo Hydrogen peroxide Elevated levels of CD144+ EVs reflect EC injury in vitro and correlate with  
CVD risk in vivo

(16)

ECs Human In vitro/in vivo n.a. MVs correlate with decreased arterial function in vivo and decreased NO  
release in vitro

(22)

ECs Human Ex vivo n.a. MVs impaired vasorelaxation and NO production by rat aortic rings (23)

ECs Human In vivo/in vitro High glucose MVs derived from high-glucose ECs impaired endothelial function and increased 
macrophage infiltration after injection into mice and increased NADPH oxidase 
activity and ROS levels in vitro (compared with MVs from untreated ECs)

(25)

ECs Human In vitro Various apoptosis  
inducer

MVs from apoptotic ECs contain caspase-3 (30)

ECs Human In vitro TNF DCs matured with MVs resulted in priming of naïve T cells toward more 
proatherogenic T helper-1 phenotype

(34)

ECs Human In vitro/in vivo KLF2 or shear stress EVs are enriched in miR-143/145 and control SMC gene expression and  
phenotype in vitro and reduce atherosclerotic lesion formation in mice

(38)

ECs Human In vitro TNF EVs enriched in bone morphogenetic protein 2 promote calcification in SMCs (46)

SMCs Human In vitro n.a. EVs stimulate calcification of SMCs in a sortilin-dependent manner (45)

PMNs Human In vitro Formyl peptide and  
phorbol ester

MVs stimulate EC activation and cytokine release (19)

Monocytes Human In vitro Endotoxin Monocyte-derived MVs contain caspase-1 and induce cell death of SMCs (31)

Fibroblasts Mouse In vitro n.a. MVs stimulate macrophage foam cell formation, which is enhanced by TLR 
stimulation

(27)

DCs Human In vitro LPS Released MVs from activated DCs can fuse with resting DCs and activate T cells (33)

T cells Human In vitro Apoptosis inducers MVs increase macrophage apoptosis and stimulated macrophage MV release (28)

T cells Human In vitro IL-2 MVs perturb lipid homeostasis of macrophages and thereby induce apoptosis (29)

T cells Human In vitro PMA T cells release MVs that induce mast cell activation, degranulation and cytokine 
release

(35)

Platelets Human In vitro n.a. MVs increased monocyte adhesion to ECs and chemotaxis (18)

Platelets Human In vitro n.a. MVs enhance monocyte rolling/arrest by depositing RANTES on ECs (21)

Platelets Human In vitro Thrombin Exosomes inhibit atherothrombotic processes by reducing CD36-dependent  
lipid loading of macrophages and by suppressing platelet thrombosis

(49)

Plaques Human Ex vivo n.a. MV are more abundant and thrombogenic in plaques compared with plasma (15)

Plaques Human Ex vivo n.a. First ultrastructural evidence of plaque exosomes (17)

Plaques Human Ex vivo n.a. MVs stimulate intercellular adhesion molecule 1-dependent monocyte adhesion (20)

Plaques Human In vitro n.a. MVs express MHC-I and MHC-II and induce T cell proliferation (32)

Plaques Human In vitro n.a. ADAM17, present on plaque MVs cleaves pro-TNF from these vesicles
Plaque MVs increase TNF shedding and its receptor (TNFR) from ECs

(40)

Plaques Human In vitro/in vivo n.a. MVs increased EC proliferation in vitro and stimulated in vivo angiogenesis  
in matrigel assays in mice

(41)

Plaques Human Ex vivo n.a. Plaque MVs contribute to the coagulation pathway via two different pathways:  
the presence of tissue factor on the surface of MVs and the exposure of PS

(48)

Plasma Human Ex vivo n.a. Cystatin C, Serpin F2, and CD14 MV levels correlate with an increased risk for 
cardiovascular event and mortality

(75)

Plasma Human Ex vivo n.a. MVs containing miR-126 and miR-199a predict the occurrence of  
cardiovascular events

(76)

DC, dendritic cell; EC, endothelial cell; KLF2, Krüppel-like factor 2; LPS, lipopolysaccharide; MHC, major histocompatibility complex; MV, microvesicle; NO, nitric oxide; PMA, 
4-beta-phorbol 12-myristate 13-acetate; PMN, polymorphonuclear leukocytes; PS, phosphatidylserine; SMC, smooth muscle cell; TLR, toll-like receptor; TNF, tumor necrosis factor; 
EV, extracellular vesicle; IL, interleukin; n.a., not applicable.
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