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The formation and motion features of self interstitial atom (SIA) clusters in tungsten are studied by
molecular dynamics (MD) simulations. The static calculations show that the SIA clusters are stable with
binding energy over 2 eV. The SIA clusters exhibit a fast one dimensional (1D) motion along Æ111æ. Through
analysis of the change of relative distance between SIAs, we find that SIAs jump in small displacements we
call creeping motion, which is a new collective diffusion process different from that of iron. The potential
energy surface of SIAs implicates that the creeping motion is due to the strong interaction between SIAs.
These imply that several diffusion mechanism for SIA clusters can operate in BCC metals and could help us
explore deep insight into the performance of materials under irradiation.

B
ody-centered cubic (BCC) metals, such as iron and tungsten which have been widely applied in the nuclear
industry, are studied extensively during the past decades1–3. The microstructure evolution of material under
irradiation is always a major concern depending on the structure and mobility of self-interstitial atom (SIA)

defect(s)4,5. Single SIA in BCC metals could have various configurations6. There is a special configuration called
crowdion originally proposed by Paneth which describes a linear compression region induced by a SIA7.
Crowdion has some peculiar characteristics, for example, crowdion can move rapidly along the closed packed
direction Æ111æ with very low activation energy7,8.

When a SIA cluster is made up of two or more Æ111æ SIAs, it can be regarded as a bundle of crowdions9. The SIA
clusters also show some peculiar characteristics like the single crowdion. Similar to the fast motion of crowdions
along Æ111æ, SIA clusters in Fe also exhibit one dimensional (1D) fast migration along Æ111æ direction indicated by
molecular dynamics (MD) simulations9–13, which has been confirmed by the experiment of Fe under electron
irradiation14. The migration barrier corresponding to this 1D motion is very low and always in the magnitude of
tens of meV. A main character of SIA cluster motion is that the migration barrier is nearly independent of the size
of cluster10,12,13. Osetsky et al. have shown that the SIA cluster is a set of crowdions with their individual centers in a
flexible configuration, which means that the movement of one crowdion along Æ111æ only weakly change the SIA
cluster’s energy12. This diffusion mechanism also explains that why individual crowdion jumps away about 2D to

4D (for BCC structure D~
ffiffiffi
3
p

a0

.
2, a0 is the lattice constant.) from the mass center of cluster12. A question arises:

is this picture universal for other BCC metals, taking W as an example. In another aspect, the multistring Frenkel-
Kontorova (FK) model developed by Dudarev and coworkers15–17 is a coarse-grained model based on that
crowdions are synchronized. The temporal fluctuation of crowdion around the mass center is ignored in the
FK model. In this paper, we focus on the motion style of small SIA clusters (N-SIA clusters within the range of 2 #

N # 7) in W using MD simulation, especially on the fluctuation of crowdions in one SIA cluster. Our results show
that the crowdions in W are tightly bound together and drag each other in small steps along Æ111æ during their
motion. The reason is that the potential energy of SIA clusters strongly depends on the relative distance between
the SIAs.

Methods
All atomistic simulation results are obtained with MD11 code21 using a Finnis-Sinclair (FS)22 type potential modified by Ackland and
Thetford23, which is widely used in the simulation of W, including cascades18, dislocation motion19, dislocation-vacancy interaction20, etc. In
addition, the results of the formation energy and vibration spectrum of crowdion calculated using Ackland-Thetford23 and Derlet-Nguyen-
Manh-Dudarev8 potentials show a similar trend24. The simulation box for perfect crystal contains 6, 4 and 12 unit cells along the 1�10½ �, 11�2½ �
and [111] direction, respectively. The stacking sequence of {111} plane of body-centered cubic (BCC) structure is ABCABC � � � . We build a
N-SIA cluster by first choosing N nearest neighbor atoms belonging to three adjacent {111} planes and then replace each of them by two

OPEN

SUBJECT AREAS:
METALS AND ALLOYS

ATOMISTIC MODELS

Received
17 February 2014

Accepted
7 May 2014

Published
28 May 2014

Correspondence and
requests for materials

should be addressed to
Z.Z. (zzeng@theory.

issp.ac.cn)

SCIENTIFIC REPORTS | 4 : 5096 | DOI: 10.1038/srep05096 1



atoms along [111] direction, which is the same way as in Fe by Osetsky et al. in Ref. 9.
Detailed MD simulation processes can be found elsewhere24.

Generally, the position of SIA is used to monitor the motion of SIA and often
obtained by Wigner-Seitz (WS) cell method25, where the motion of SIA can be
regarded as a series of discrete jumps. For bcc structure, the crystal can be represented
as an ensemble of atomic strings parallel to the [111] direction. If we adopt the relative
distance between mass center (RDMC) of two neighboring atomic strings containing
one SIA respectively to describe the motion of SIA, the RDMC will change con-
tinuously. The connection between the two methods is that when one SIA jumps D
from its neighboring SIAs, the RDMC between them increases/decreases 0.058D
(50.016 nm). For tungsten D 5 0.2741 nm if we choose a0 5 0.31652 nm22.
Hereafter, we use jump and move to describe the discrete and continuum diffusion
processes respectively.

Results and Discussion
The stability of SIA clusters is revealed by the binding energy of SIA
clusters, Eb, which is defined as26

Eb Nð Þ~Ef N{1ð ÞzEf 1ð Þ{Ef Nð Þ ð1Þ

where Ef(N), Ef(N 2 1), Ef(1) are the formation energies of SIA
cluster with N SIAs, N 2 1 SIAs and single SIA respectively. The
minimum energy states of clusters are obtained by using simulated
annealing method27 in conjunction with steepest descent relaxation.
Table II shows the formation energies and binding energies of SIA
clusters concerned in this work. The binding energies are all over
2 eV, which suggests that the N-SIA (2 # N # 7) clusters are very
stable. Actually, during the simulation time (3 ns) at 900 K, all the
SIA clusters neither dissociate nor change their motion direction. For
Fe, one SIA in a cluster can jump away about 2D to 4D from its
neighboring SIAs and the energy change is small12. In order to verify
whether this diffusion mechanism is applicable for SIA clusters in W,
we analyze the evolution of RDMC between two SIAs in one cluster
which fluctuates around an average value during the simulation.

The average value of RDMC, ÆRDMCæ, can be regarded as the
most probable distance between two neighboring SIAs at specific
temperature. It can not be used to describe the relative movement
of SIAs nor the absolute value of RDMC. The deviation relative to the
average value d 5 RDMC 2 ÆRDMCæ is a proper quantity reflecting
the relative movement of SIAs. Obviously, when SIA jumps D, d will
be 60.058D (6means different jump direction). Fig. 1 shows the
evolution of d of 2-SIA cluster at 300 K. From this figure, only one
data point exceeds the black dashed line, implying that the SIA jumps
D away from its neighboring SIAs only once. Actually there are
several points exceeding the black dashed line and no points exceed-
ing two times 60.058D during the whole simulation time (3 ns),
which indicates that the jump distance between SIAs does not reach
2D. This tendency can also be seen from the small value of variance of
RDMC of 1.8 3 1025 at 300 K as listed in Table I.

The RDMCs of a 2-SIA cluster at 600 K and 900 K are similar to
the case of 300 K, which are listed in Table I. The variance of RDMC
does not change much as the temperature increases, which implies
that the atomic motion process does not change with temperature.
Through analyzing the RDMCs of other size cluster, we find that the
tendency of RDMCs is the same as that of 2-SIA cluster and we could
safely infer that all SIA clusters have similar motion style to the 2-SIA
cluster. We call this motion style ‘‘creeping motion’’, that is, the SIA
cluster jumps to the next stable configuration by a successive small
steps of constituent SIAs along Æ111æ. This motion picture is different
from the case of Fe where the crowdions can jump independently
over a range from 2D to 4D obtained by Osetsky et al.12. They found
that the interaction energy between the crowdion and its neighboring
crowdions is weakly dependent on their relative distance along the
crowdion line12. The creeping motion in our case suggests that there
is a strong interaction between crowdions. We ascribe the different
motion picture of SIAs to the different interactions in Fe and W.

The interaction between crowdions in one SIA cluster can be
revealed by the potential energy surface (PES) as a function of d.
Generally, the probability density function P(d) of finding system
with d between SIAs is related with the Landau free energy F(d) by28

F dð Þ~{kBT ln P dð Þ ð2Þ

where kB is the Boltzmann’s constant and T is the absolute temper-
ature. Then the free energy difference between F(d) and F(0) can be
described by

DF~F dð Þ{F 0ð Þ~kBT ln
P 0ð Þ
P dð Þ : ð3Þ

The above formula provides us a method to estimate the free energy
difference if we know the probability density function P(d) which can
be readily obtained from the results of MD simulations. F(0) is a
reference point and we choose F(0) 5 0. Fig. 2 shows the P(d) as a
function of d and it can be fitted well by a Gaussian type function

P dð Þ~Aexp {
d2

2s2

� �
. Taking this into Eq. 3 we can obtain

DF~kBT
d2

2s2
as shown in Fig. 2. For solids under low temperature,

we can make an approximation like DF 5 DU 1 TDS < DU, where
DU 5 U(d) 2 U(0) is the potential energy change due to the variation
of d. For the migration entropy of SIA is only several kB, we can safely
ignore the contribution of migration entropy to the free energy dif-
ference29. Consequently, we could find that the potential energy
increases rapidly as a parabolic function of d. From this strong inter-
action between SIAs, we could infer that when one crowdion jumps

Table II | Formation and binding energy of SIA clusters

N Ef(N) (eV) Eb(N) (eV)

2 15.439 2.311
3 21.020 3.294
4 25.772 4.123
5 30.508 4.139
6 34.994 4.389
7 37.709 6.160
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Figure 1 | Evolution of d 5 RDMC 2 ÆRDMCæ between two SIAs
of a 2-SIA cluster at 300 K. The black dashed line with the value of

d 5 60.058D (60.016 nm) corresponds to that one SIA jumps D

individually.

Table I | Average and variance of RDMC for 2-SIA cluster at dif-
ferent temperatures

Temperature (K) Average (nm) Variance

300 0.110 1.8 3 1025

600 0.111 3.8 3 1025

900 0.111 5.6 3 1025
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away, its neighboring crowdions follow it tightly to keep the d at a
small value to minimize the interaction energy. Since the relative
distance between crowdions can not be very large, the jump distance
made by one crowdion can not be large either. In order to describe
the motion quantitatively, we make an estimation of the jump length
in discrete diffusion hops. As an approximation, we assume the
movement of crowdion is like an oscillator vibration under the har-

monic potential U dð Þ~ 1
2

Kd2. Comparing this with the expression

of DF above, we obtain K 5 kBT/s2. According to the equipartition
theorem30, the energy of an oscillator is kBT, which is related to the

amplitude dA by the equation
1
2

Kd2
A~kBT . Then we obtain the

amplitude dA~
ffiffiffi
2
p

s<0:004 nm corresponding to the SIA jump
aboutD/4 in discrete motion picture which is a reasonable estimation
of the upper limit of SIA jump length.

Conclusion
The formation and motion of N-SIA (2 # N # 7) clusters are simu-
lated within MD approach. Our results show that the SIA clusters are
very stable with binding energy over 2 eV and exhibit a 1D fast
motion along Æ111æ during the whole simulation process (3 ns).
The diffusion process of SIA clusters is characterized by a creeping
motion, i.e., when one crowdion jumps a small distance then simul-
taneously its neighboring crowdions jump a small distance in coor-
dinated fashion. The whole cluster jump to the next stable
configuration by a series of small distance jumps with an upper limit
about D/4 in comparing with that the crowdion in Fe can jump about
2D to 4D away from neighboring crowdions. This new diffusion
mechanism is resulted from the strong interaction between crow-
dions in W. More detailed studies of SIA clusters are needed to check
whether the picture is suitable for other BCC metals, such as V, Mo
etc. The effects of this motion style on the atom transport, jump
frequency and migration barrier of SIA clusters in W will be per-
formed in the near future.
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Figure 2 | Probability density function P(d) as a function of d 5 RDMC
2 ÆRDMCæ at 300 K of 2-SIA cluster. Data points are obtained from the

MD simulations. The fitting function is P dð Þ~Aexp {
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with A 5
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