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Abstract: It is quite important to develop sensitive, simple, and convenient methods for the si-
multaneous determination of Hydroquinone (HQ) and Catechol (CC) due to their wide existence,
the difficulty of degradation, and the high toxicity. Herein, Cu-TCPP nanosheets were prepared
in N,N-dimethylformamide (DMF) through the solvent exfoliation method. The morphology and
electrochemical performance of Cu-TCPP were characterized, revealing its stacked sheet structure
with abundant pores, a fast electron transfer ability, and a large electrode active area. Using Cu-TCPP
nanosheets as the sensitive material to modify the glassy carbon electrodes (Cu-TCPP/GCEs), it was
found that they had an obvious enhancement effect on the electrochemical oxidation currents of
HQ and CC. The signal enhancement mechanism was explored. The Cu-TCPP nanosheets not only
enhanced the accumulation abilities of HQ and CC, but also improved their apparent catalytic rate,
displaying high sensitivity for HQ and CC. The values of the detection limit were calculated to be
3.4 and 2.3 nM for HQ and CC. A satisfactory recovery was obtained when this method was used in
measuring HQ and CC in the water samples.

Keywords: hydroquinone; catechol; electrochemical sensor; Cu-TCPP; 2D MOFs

1. Introduction

Hydroquinone (HQ) and Catechol (CC) are two main isomers of benzenediol com-
pounds, widely used in the production of cosmetics, medicines, textiles, and pesticides.
They often coexist in the wastewater of these factories. On account of its high toxicity and
the difficulty in degradation [1,2], it is essential to develop a rapid, sensitive, and accurate
environmental analysis method for the determination of HQ and CC. Many methods have
been established for their simultaneous determination, including chromatography [3,4],
spectrophotometry [5], chemiluminescence [6], and fluorescence [7,8]. In addition, due
to the advantages of low price, easy operation, quick response, and high sensitivity, the
electrochemical method has attracted more attention. A variety of modified electrodes
have been constructed [9–15]. However, the simplicity and sensitivity of these reported
electrochemical methods still need to be improved.

Developing new electrochemical sensitive materials is crucial for the exposition of
highly sensitive and selective electrochemical sensing mechanisms and the construc-
tion of high-performance electrochemical sensors. Metal–organic frameworks (MOFs),
a special class of multifunctional porous material, are assembled by the coordination of
metal ions or clusters with organic ligands. MOFs have good applications in electro-
chemical sensing because of their large surface area, ultrahigh porosity, and unsaturated
metal sites [16,17]. Among that, the Cu-MOFs are widely used due to the excellent redox
activity of Cu2+. For example, Cu-BTB (BTB: benzene-1,3,5-tribenzoate), N-Cu-BTC (BTC:
1,3,5-Benzenetricarboxylic acid), Cu-BTC, and Cu-BDC (BDC: 1,4-Benzenedicarboxylic
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acid) have been successfully used in developing the electrochemical sensors for nitrite,
dopamine, sulfanilamide, malachite green, and estradiol [18–21]. However, at present, most
of the MOFs used are 3D bulk materials with large sizes or thicknesses, and the performance
has not been fully achieved [18,22]. 2D MOF nanosheets are new members of 2D materials
and possess an ultrathin thickness morphology and more accessible active sites, allowing
for an ultrahigh surface area, rapid mass transport, superior electron transfer, and high
catalytic activity [23,24]. The electrochemical sensing efficiency will effectively improve.

Having said all of above, this study aims to evaluate a novel electrochemical method
for the simultaneous determination of HQ and CC based on the Cu-TCPP nanosheets. The
Cu-TCPP nanosheets provide a faster electron transfer ability, larger surface area, better
adsorption ability, and higher electrocatalytic rate for the oxidation of HQ and CC. Finally,
using Cu-TCPP nanosheets as sensing material, a simple and highly sensitive sensor has
been constructed for HQ and CC. The method was successfully applied in lake water
samples with a satisfactory recovery. Simple materials were used and good results were
achieved. This work will open a new thought for the rapid detection of trace pollutants in
complex water environment samples. It is helpful to construct superior electrochemical
sensing systems.

2. Materials and Methods
2.1. Reagents and Solutions

Copper(II) nitrate trihydrate (Cu(NO3)2·3H2O) and DMF were bought in Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Tetrakis(4-carboxyphenyl)porphyrin
(H2TCPP), Hydroquinone (HQ), and Catechol (CC) were purchased from Aladdin Chem-
istry Co., Ltd. (Shanghai, China). All chemicals were used without further purification.

2.2. Instruments

The X-ray diffraction (XRD, X’Pert PRO diffractometer, Cu Ka, Panalytical Company,
Almelo, The Netherlands) was employed to characterize the crystal structure. A Fourier
transform infrared (FT-IR) was analyzed on an Avatar 360 Nicolet instrument (Thermo
Fisher Scientific, Shanghai, China). Scanning electron microscopic images and transmission
electron microscopic images were measured using a Nova Nano SEM 450 system and
the Tecnai G2 F30 system, respectively (FEI Company, Eindhoven, The Netherlands).
A micromeritics ASAP 2020 analyzer (Norcross, GA, USA) was used to test Nitrogen
adsorption–desorption isotherms.

A CHI 660E electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd.,
Shanghai, China) was used for electrochemical measurements. The Cu-TCPP modified
glassy carbon electrode (GCE, diameter: 3 mm), saturated calomel electrode (SCE), and
platinum wire were used as the working electrode, reference electrode, and counter
electrode, respectively.

2.3. Construction of Cu-TCPP Nanosheets Modified Electrode

In a typical process, 0.2174 g of Cu(NO3)2·3H2O and 0.2372 g of H2TCPP were dis-
solved in 45.0 mL of DMF and 15.0 mL of ethanol. Then, the above solution was heated in
an oven at 80 ◦C for 24 h. The resulting precipitates were centrifuged, washed with ethanol
three times, and then dried in a vacuum chamber at 60 ◦C for 12 h. After that, 6.0 mg of
the samples were dispersed into 6.0 mL of DMF with the aid of ultrasonication (2 h). After
centrifuging (2000 rpm, 20 min), the supernatant was collected as Cu-TCPP nanosheets
suspension.

For the modification, the GCE was first polished with 0.05 µm of Al2O3 slurry and
was then ultrasonically washed in ethanol and ultrapure water. Then, 3.0 µL of Cu-TCPP
nanosheets suspension was coated on the GCE to prepare a Cu-TCPP nanosheets modified
GCE (Cu-TCPP/GCE).
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3. Results
3.1. Characterization of Cu-TCPP Nanosheets

The XRD pattern of the Cu-TCPP nanosheets was recorded in Figure 1A. Four typical
peaks at 7.8◦, 8.8◦, 12.2◦, and 19.6◦ were found, which were corresponding to the featured
(110), (002), (210), and (004) plane. The phenomenon was in good agreement with the results
of Cu-TCPP prepared by the reported method [25], indicating the successful preparation of
Cu-TCPP. Then, FTIR was used to analyze the binding mode of the Cu-TCPP nanosheets.
As shown in Figure 1B, a strong peak at approximately 1700 cm−1 in the FTIR spectrum of
H2TCPP was observed, which was corresponding to the C=O stretching band. However,
the peak became almost invisible in Cu-TCPP, and two new peaks exhibited near 1617
and 1402 cm−1 represented the OC-O-Cu bond [25–27]. This confirms the formation of
coordination bonds between Cu2+ and the carboxyl groups of Cu-TCPP.
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Figure 1. (A) XRD pattern of the obtained Cu-TCPP by the reported method (A) and this work (B);
(B) FTIR spectra of H2TCPP and the prepared Cu-TCPP nanosheets.

SEM and TEM were used to investigate the morphological features of the synthetic
Cu-TCPP nanosheets systematically. Firstly, the morphology of the original bulk Cu-TCPP
was characterized. As shown in Figure S1, the bulk Cu-TCPP MOFs had a closely packed
multilayer structure. After the ultrasonic exfoliation, a sheet-like morphology was observed,
and the degree of stacking between the layers was significantly reduced (Figure 2A,B).
It is interesting to note that many pores were observed on the nanosheets (Figure 2C).
Furthermore, as given in Figure 2D, N2 adsorption–desorption experiments were applied
to further characterize the porous structures of the as-prepared Cu-TCPP samples. The
average pore diameter evaluated by the Barrett–Joyner–Halenda (BJH) equation on the
desorption branching was 2.12 nm, and the total pore volume was 0.43 cm3/g. The
specific surface area was calculated to be 410.4 m2/g according to the Brunauer–Emmett–
Teller (BET) equation. The result was comparable to its reported values of 391.2 m2 g−1,
478 m2 g−1, and 485 m2 g−1 [28–30]. Undoubtedly, the abundant porous structure and high
specific surface area would endow large electrochemical active areas and many active sites.
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Figure 2. SEM (A) and TEM images (B,C) of Cu-TCPP nanosheets; (D) Nitrogen sorption isotherms
and pore size distribution (inset) of Cu-TCPP.

Employing K3[Fe(CN)6] as the redox probe, the electrochemical properties of the
Cu-TCPP nanosheets were investigated. As Figure 3A shows, a pair of redox peaks was
observed on both GCEs and the signals increased on the surface of the Cu-TCPP/GCE,
indicating an enlarged active area. Furthermore, it is worth noting that the oxidation
peak shifted to the left and the reduction wave shifted to the right on the surface of Cu-
TCPP/CPE, suggesting the enhanced electron transfer ability. Electrochemical impedance
spectroscopy (EIS) was applied to further confirm the electron-transfer abilities of the
Cu-TCPP nanosheets. As shown in Figure 3B, a large semicircle in good shape was found
on the GCE (curve a) and the semicircle decreased on the surface of the Cu-TCPP/GCE
(curve b). According to the Randles equivalent circuit, the values of the charge transfer
resistance (Rct) were fitted to be 963.5 and 648.9 Ω on the GCE and Cu-TCPP/GCE. The
smaller Rct indicates that the porous Cu-TCPP nanosheets facilitated the electron transfer.

Then, the chronocoulometry method was used to further check the electrochemically
active area of the bare GCE and Cu-TCPP/GCE. As presented in Figure 4A,B, the curves
of charge (Q)-time (t) are given and then converted to Q-t1/2 straight lines. Based on the
Cottrell equation [31]:

Q = 2nFAcD1/2 π−1/2 t1/2 + Qdl + Qads (1)

the electrochemically active area (A) was easily calculated to be 0.061 and 0.102 cm2 for
the GCE and Cu-TCPP/GCE through the slope of the linear equation. The enlarged elec-



Materials 2022, 15, 4625 5 of 12

trochemically active area probably originated from the porous sheet-like structure, which
further provided more catalytic active sites and accumulation efficiency towards targets.
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Figure 3. (A) CV curves of 5.0 mM of K3[Fe(CN)6] (1.0 M KCl) on GCE (a) and Cu-TCPP/GCE (b);
(B) Nyquist impedance plots of GCE (a) and Cu-TCPP/GCE (b) in 0.1 M KCl containing 5 mM of
K3/K4Fe(CN)6, frequency range: 100 kHz to 0.1 Hz; amplitude: 5 mV.
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3.2. Enhanced Oxidation of HQ and CC on Cu-TCPP/GCE

The CV behaviors of HQ and CC on different GCEs were analyzed (Figure 5A,B).
Curve a represents the CV response in 0.1 M phosphate buffer solution (pH = 7.0); no
peak was observed. After 100 µM of HQ or CC was added, the response is shown as
curves b and c, and a pair of redox peaks was noticed. When 100 µM of HQ and CC
were added at the same time, the CV response is given as curve d. One overlapping
oxidation peak was found on the GCE, indicating poor sensitivity and selectivity for
the simultaneous determination of HQ and CC. However, there were still two peaks on
the surface of the Cu-TCPP/GCE, which were consistent with the signals of the single
addition. By comparing the GCE and Cu-TCPP/GCE, it can be seen that the oxidation
peaks of HQ and CC on the surface of the Cu-TCPP/GCE had a good shape and degree of
separation. This was mainly due to the larger specific surface area, porous structure, and
faster electron transfer ability of Cu-TCPP, which was good for the selective accumulation
and oxidation of HQ and CC. Moreover, the peak currents increased, and the peak potentials
shifted negatively, indicating that Cu-TCPP showed a high catalytic ability toward the
oxidation of HQ and CC. As previously reported, Cu2+ can be seen as the catalytic activity
center [32,33]. In conclusion, the Cu-TCPP nanosheets can be used as sensitization material
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for the simultaneous determination of HQ and CC. The CV curves of HQ and CC with
different concentrations on the Cu-TCPP/GCE were studied, and the results are shown
in Figure S2A. The oxidation peak enhanced linearly with concentrations over the range
from 1 to 200 µM. The linear correlation equation and the correlation coefficient are given
in Figure S2B,C, indicating a good linear relationship.
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Cu-TCPP/GCE 

Figure 5. CV behaviors of GCE (A) and Cu-TCPP/GCE (B) in pH 7.0 PBS: (a) blank solution; (b) with
100 µM of HQ; (c) with 100 µM of CC; (d) with 100 µM of HQ and CC, scan rate of 100 mV s−1;
(C) DPV curves of 2 µM of HQ and CC on GCE (a) and Cu-TCPP/GCE (b) in pH 7.0 PBS.

Then, the voltammetric determination of 2.0 µM of HQ and CC was studied using DPV.
The response of HQ and CC on different GCEs is compared in Figure 5C. A little bump was
found on the GCE (curve a). After the modification of the Cu-TCPP nanosheets on the GCE,
two obvious peaks were presented, the oxidation peak currents obviously increased, and
the oxidation waves shifted negatively. The significantly enhanced oxidation currents and
the left shift of the oxidation potentials indicated that the prepared Cu-TCPP nanosheets
exhibited excellent electrochemical reactivity toward the oxidation of HQ and CC.

The adsorption behaviors of HQ and CC on different GCEs were studied using chrono-
coulometry to discuss the origin of the signal enhancement effects of the Cu-TCPP/GCE.
The Q-t1/2 straight lines of the GCE (A) and Cu-TCPP/GCE (B) shown in Figure 6 were
transferred from the recorded Q-t curves. Based on the integrated Cottrell equation
(Equation (1)), Qdl is the intercept of the Q-t1/2 plot in blank pH 7.0 PBS (curve a) while
the intercept value in the presence of HQ or CC (curve b or c) represents the summation of
Qdl and Qads. Therefore, the Qads of HQ and CC on the GCE and Cu-TCPP/GCE are easily
calculated from Figure 6. The results are given in Table 1. The bigger Qads on the surface of
Cu-TCPP indicates the increased accumulation abilities, and led to the enhanced signals.



Materials 2022, 15, 4625 7 of 12

Materials 2022, 15, 4625 6 of 12 
 

 

TCPP nanosheets exhibited excellent electrochemical reactivity toward the oxidation of 

HQ and CC. 

  

 

 

Figure 5. CV behaviors of GCE (A) and Cu-TCPP/GCE (B) in pH 7.0 PBS: (a) blank solution; (b) with 

100 μM of HQ; (c) with 100 μM of CC; (d) with 100 μM of HQ and CC, scan rate of 100 mV s−1; (C) 

DPV curves of 2 µM of HQ and CC on GCE (a) and Cu-TCPP/GCE (b) in pH 7.0 PBS. 

The adsorption behaviors of HQ and CC on different GCEs were studied using 

chronocoulometry to discuss the origin of the signal enhancement effects of the Cu-

TCPP/GCE. The Q-t1/2 straight lines of the GCE (A) and Cu-TCPP/GCE (B) shown in Figure 

6 were transferred from the recorded Q-t curves. Based on the integrated Cottrell equation 

(Equation (1)), Qdl is the intercept of the Q-t1/2 plot in blank pH 7.0 PBS (curve a) while the 

intercept value in the presence of HQ or CC (curve b or c) represents the summation of 

Qdl and Qads. Therefore, the Qads of HQ and CC on the GCE and Cu-TCPP/GCE are easily 

calculated from Figure 6. The results are given in Table 1. The bigger Qads on the surface 

of Cu-TCPP indicates the increased accumulation abilities, and led to the enhanced sig-

nals. 

  

Figure 6. Q-t1/2 plots on different GCEs in pH 7.0 phosphate buffer (curve a) and in the presence of 

2 µM of HQ (curve b) or 2 µM of CC (curve c). 

 

Table 1. Comparison of Qads for HQ and CC on the GCE and Cu-TCPP/GCE. 

Cu-TCPP/GCE 

Figure 6. Q-t1/2 plots on different GCEs in pH 7.0 phosphate buffer (curve a) and in the presence of
2 µM of HQ (curve b) or 2 µM of CC (curve c).

Table 1. Comparison of Qads for HQ and CC on the GCE and Cu-TCPP/GCE.

Electrode
Qads (µC)

HQ CC

GCE 0.0268 0.0554
Cu-TCPP/GCE 0.1989 0.3405

Then, in order to further understand the significantly increased response signals, the
chronoamperometry experiment was used to explore the electrochemical kinetics. Figure 7
gives the I-t plot of the GCE (A) and Cu-TCPP/GCE (B) in 0.1 M 7.0 PBS (a) or in the
presence of 1 mM of HQ (b) or 1 mM of CC (c). According to the bottom equation, the
apparent catalytic rate constant (kcat) can be calculated [27]:

Icat/IL = (πkcatCot)1/2 (2)

where Icat is the catalytic current in the presence of analytes and IL is the limiting current
in the absence of analytes. The linear relationship between Icat/IL and t1/2 is plotted in
the inset of Figure 7B. The kcat on the Cu-TCPP/GCE was calculated to be 1.527 × 103 for
HQ and 3.327 × 103 for CC, which is larger than those of the GCE (65.92 for HQ and 152.3
for CC). The results indicate that the electro-oxidation of HQ and CC on the surface of the
Cu-TCPP/GCE showed a higher electrocatalytic rate. The possible reasons are summarized
as follows: (1) the large specific surface area and abundant porous structure were beneficial
to the efficient accumulation of HQ and CC; (2) the porous structure could facilitate the
electron transfer of the electrochemical oxidation of HQ and CC; (3) the Cu2+ in Cu-TCPP
nanosheets could be seen as the catalytic activity center, having a high catalytic ability
toward the oxidation of HQ and CC.

3.3. Electrochemical Reaction Mechanism of HQ and CC on Cu-TCPP/GCE

As given in Figure 8A, in different buffer solutions, the oxidation behaviors of HQ
and CC on the Cu-TCPP/GCE were compared using linear sweep voltammetry (LSV).
The relationship between the different pH values and oxidation peak potentials (Epa)
was studied. As shown in the inset of Figure 8A, both Epa and pH had a good linear
relationship. The slope values were 63.3 mV pH−1 and 58.5 mV pH−1, suggesting that
the involved electrons and protons in the process of HQ and CC oxidation were equal in
number. Moreover, with the pH value increased from 5.8 to 7.0, the oxidation peak currents
(Ipa) on the Cu-TCPP/GCE gradually increased and then steadily decreased. Therefore,
pH 7.0 PBS was used for the subsequent studies.
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In order to further explore the reaction mechanism of HQ and CC on the Cu-TCPP/GCE,
their electrochemical behaviors were studied using CV under different scan rates (from
100 to 400 mV s−1). As shown in Figure 8B, two pairs of redox waves were found, and the
Ip linearly increased with the square root of the scan rates, suggesting a diffusion-controlled
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electrode process. Furthermore, Epa moved positively and Epc moved negatively with the
scan rate increasing. As given in Figure 8C,D, the plot of Ep-ln(ν) was a straight line. Thus,
according to the Laviron theory [31], the αn value was obtained to be 1.07 and 1.24 for HQ
and CC. Here, α was considered as 0.5, so the value of n was two. Therefore, as shown in
Scheme 1, the oxidation of HQ and CC was both a two-proton and two-electron process.
which is in good agreement with the reported results [8].
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3.4. Simultaneous Determination of HQ and CC

The analytical performance of a Cu-TCPP/GCE toward the simultaneous determina-
tion of HQ and CC was explored using DPV. The DPV curves with different concentrations
of HQ and CC were recorded, and the Ipa moved linearly with their concentrations (C)
(Figure 9); the linear regression equations are given in Figure 9B,D. As a result, the linear
range and detection limit (based on three signal-to-noise ratios) was 0.01–12 µM and 3.4 nM
for HQ, and 0.01–12 µM and 2.3 nM for CC. In comparison with the other systems (Table 2),
the Cu-TCPP/GCE exhibited lower detection limits.

The reproducibility of the fabricated electrochemical platform of the Cu-TCPP/GCE
was studied. The relative standard deviations (RSD) of the twelve tests were 3.5% (HQ)
and 5.3% (CC), suggesting high reproducibility. The interference of some inorganic ions
and possibly coexisting organic compounds on the simultaneous determination of 2 µM of
HQ and CC was examined. A 2000-fold concentration of NO3

−, Cl−, SO4
2−, Na+, K+, and

Ca2+, a 100-fold concentration of 4-chlorophenol, p-nitrophenol, and bisphenol A, and a
30-fold concentration of resorcin and phenol were added respectively, and no noticeable
change (less than 5%) was found in the detected signals. The above results indicate that the
Cu-TCPP-DMF/GCE had outstanding reproducibility and selectivity for the simultaneous
determination of HQ and CC.

Table 2. Comparison of different methods for the determination of HQ and CC.

Modified Electrode
Linear Range (µM) LOD (nM)

Ref.
HQ CC HQ CC

Co3O4@C/GNPs/GCE 0.04–30 0.5–30 14.7 169 [7]
OV-LDHs/H-MWCNTs/GCE 0.5–150 0.5–150 76 74 [8]

BNC/GCE 0.099–8400, 8400–43,340 0.049–1750, 1750–5110 33.3 16.3 [9]
MCPBAC/GCE 0.6–100, 100–600 0.6–100, 100–600 200 200 [10]
WBC/Au/GCE 0.008–1.0, 1.0–7.0 0.01–1.0, 1.0–7.0 2.0 4.0 [12]

AuNPs-MPS/CPE 10.0–1000.0 30.0–1000.0 1200 1100 [13]
CS/MWCNTs/PDA/AuNPs/GCE 0.1–10 0.1–10 35 47 [14]

Cu-TCPP/GCE 0.01–12 0.01–12 3.4 2.3 This work
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Furthermore, to evaluate the feasibility of a Cu-TCPP/GCE, the newly developed
sensing platform was applied to analyze local lake water samples by spike and recovery
experiments. Before testing, the samples were filtered and diluted one time using pH
7.0 PBS. Each sample was measured in parallel three times and the RSDs for these mea-
surements were below 5.0%. A recovery range between 95.72% and 106.1% is shown in
Table 3, indicating that the Cu-TCPP/GCE can be used for practical applications accurately
and reliably.

Table 3. Determination of HQ and CC in lake water samples.

Samples Added (nM) Found (nM) Recovery (%)

HQ CC HQ CC HQ CC

A
50.00 50.00 47.92 48.12 95.84 96.24
250.0 250.0 258.7 263.2 103.5 105.3
500.0 500.0 486.3 478.6 97.26 95.72

B
1000 1000 1045 1032 104.5 103.2
3000 3000 2894 2963 96.47 98.77
5000 5000 5227 5304 104.5 106.1
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4. Conclusions

A sensitive and simple electrochemical sensor was constructed for the simultaneous
determination of HQ and CC by using a Cu-TCPP nanosheets modified electrode. The Cu-
TCPP nanosheets showed a signal enhancement effect toward HQ and CC. It was derived
from its increased electron transfer ability, electrode active area, accumulation ability, and
apparent catalytic rate. The newly developed method had low detection limits, good
reproducibility, and excellent selectivity. Moreover, the sensor was successfully applied to
analyze HQ and CC in lake water samples, indicating good sensing application prospects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15134625/s1, Figure S1: SEM image of the original bulk Cu-
TCPP; Figure S2: (A) CV behaviors of HQ and CC with different concentrations on Cu-TCPP/GCE.
(a) 1, (b) 5, (c) 10, (d) 50, (e) 100, and (f) 200 µM; (B) Calibration plots for HQ; (C) Calibration plots for
CC.
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