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ABSTRACT The zoonotic pathogen Streptococcus suis can cause septicemia and
meningitis in humans. We report five complete genomes of Streptococcus suis sero-
type 2 and serotype 9, covering the complete phylogeny of serotype 9 Dutch por-
cine isolates and zoonotic isolates. The isolates include the model strain S10 and the
Dutch emerging zoonotic lineage.

Streptococcus suis is an opportunistic pathogen in pigs which can cause zoonotic
infections. Human infections are predominantly caused by S. suis serotype 2 (1) and

can lead to septicemia and meningitis (2). We recently identified a zoonotic S. suis
serotype 2 clone belonging to clonal complex 20 (CC20), which emerged from a
nonzoonotic serotype 9 CC16 clone (3) in the Netherlands. To facilitate further research
on the zoonotic potential of S. suis, we sequenced the genomes of S. suis serotype 9
CC16 and CC20 strains, isolated from diseased pigs, and three serotype 2 strains,
including strain S10 (CC1, pig) and two CC20 strains, one each from human and porcine
infections (Table 1). Data were generated using Illumina and Nanopore MinION se-
quencing technologies.

S. suis was grown overnight in Todd-Hewitt broth supplemented with yeast extract
(THY), and genomic DNA was isolated using the Qiagen MagAttract high-molecular-
weight (HMW) DNA extraction kit. The sequence library was constructed using the
native barcoding (catalog number EXP-NBD114) and ligation sequencing (catalog
number SQK-LSK109) kits (Oxford Nanopore). DNA was repaired and A tailed using
NEBNext formalin-fixed, paraffin-embedded (FFPE) DNA repair mix and the NEBNext
Ultra II end repair/dA-tailing module (New England BioLabs). A barcode was ligated to
the A-tailed DNA using blunt/TA ligase master mix (New England Biolabs). Sequence
adapters were ligated to barcoded samples pooled by equal mass with Quick T4 DNA
ligase (New England BioLabs). The library was loaded on the flow cell (FLO-MIN106D
[R9]) and sequenced using MinKNOW fast base calling version 3.5.5. Default parameters
were used for all tools except where noted otherwise. Illumina data were available from
our previous study (Table 1) (3).

Illumina read filtering was performed using fastp version 0.20.0 (4). MinION reads
were filtered for quality and length using Filtlong version 0.2.0 (5), using the filtered
Illumina reads as reference. FastQC version 0.11.8 was used for quality control (6).
Illumina and MinION reads were used in a hybrid assembly using Unicycler version
0.4.8, which also performs assembly trimming, circularizing, and rotating (7). Assembly
statistics were collected using Quast version 4.6.3 (8). Coverage was assessed using
Minimap2 version 2.17 (9), SAMtools version 1.9 (10), and BEDTools version 2.29.0 (11).
The complete genomes were annotated using Prokka version 1.14.0 (12). Multilocus
sequence typing (MLST) was performed using mlst version 2.17.6 (13). For workflow
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management, Snakemake version 5.7.1 (14) was used. The pipeline is freely available
from https://github.com/boasvdp/MRA_Streptococcus_suis.

Genomes of all five strains consisted of a single chromosome ranging from 2,042,889
to 2,292,626 bp with a GC content of 41.10 to 41.43% and a coverage of 23 to 72�,
determined using Nanopore data (Table 1).

Draft assemblies of the five strains were 46 to 74 kbp smaller than the complete
genomes. Mapping the draft genomes to the complete genomes revealed no missing
regions in the draft genomes. The draft genomes are likely smaller than the complete
genomes due to the collapse of repeats, which has been described before (15).

Data availability. Nanopore, fastq, and fast5 data, as well as the assembled genome
sequences, have been deposited in ENA under the accession numbers listed in Table 1
and study number PRJEB35407.
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