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The histone chaperone complex facilitates chromatin tran-
scription (FACT) plays important roles in DNA repair, replica-
tion, and transcription. In the formation of this complex, struc-
ture-specific recognition protein-1 (SSRP1) heterodimerizes
with suppressor of Ty 16 (SPT16). SSRP1 also has SPT16-inde-
pendent functions, but how SSRP1 functions alone remains
elusive. Here, using analytical ultracentrifugation (AUC) and
small-angle X-ray scattering (SAXS) techniques, we character-
ized human SSRP1 and that from the amoeba Dictyostelium dis-
coideum and show that both orthologs form an elongated
homodimer in solution. We found that substitutions in the
SSRP1 pleckstrin homology domain known to bind SPT16 also
disrupt SSRP1 homodimerization. Moreover, AUC and SAXS
analyses revealed that SSRP1 homodimerization and het-
erodimerization with SPT16 (resulting in FACT) involve the
same SSRP1 surface, namely the PH2 region, and that the FACT
complex contains only one molecule of SSRP1. These observa-
tions suggest that SSRP1 homo- and heterodimerization might
be mutually exclusive. Moreover, isothermal titration calorime-
try analyses disclosed that SSRP1 binds both histones H2A–
H2B and H3–H4 and that disruption of SSRP1 homodimeriza-
tion decreases its histone-binding affinity. Together, our results
provide evidence for regulation of SSRP1 by homodimerization
and suggest a potential role for homodimerization in facilitating
SPT16-independent functions of SSRP1.

In eukaryotes DNA is packaged into nucleosomes, which
consist of 147-bp fragments of DNA wrapped around a histone
octamer comprising two H2A–H2B heterodimers and one

H3–H4 heterotetramer (1). Nucleosomes represent a barrier
for DNA replication, repair, and transcription machinery.
Hence, they need to be reorganized to allow access to DNA.
Nucleosome assembly is a process that occurs during transcrip-
tion and DNA replication. It can be described as a two-step
process where DNA is initially contacted by a histone H3–H4
tetramer and subsequently two histone H2A–H2B dimers
(2–4). This two-step process is carried out by histone chaper-
ones. There are two classes of histone chaperones grouped
according to their mechanism of action. The first class uses
ATP hydrolysis to move or modify histone structure along the
DNA, and the second class reorganizes nucleosomes without
ATP hydrolysis (5–7). Facilitates chromatin transcription
(FACT)5 belongs to the latter group (5–8).

FACT is a heterodimeric complex consisting of structure-
specific recognition protein-1 (SSRP1) and suppressor of Ty 16
(SPT16) (9, 10). It plays important roles in DNA replication,
transcription, and DNA repair by remodeling chromatin struc-
ture, although the mechanism remains elusive (11–14). Early in
vitro studies demonstrated that FACT displaces the histone
H2A–H2B dimer from the nucleosome (9, 15, 16), but Xin et al.
(16) showed that FACT also increases nuclease access to DNA
without H2A–H2B eviction. Based on these data, two models
were proposed to explain FACT’s mechanism of action, the
“dimer eviction and insertion” model and the “accessibility and
tethering” model. In the first model, FACT actively removes
histones H2A–H2B from the nucleosome to enable DNA
accessibility, and in the second model FACT tethers to the
nucleosome components without H2A–H2B eviction and
destabilizes the nucleosome conformation (17).

Several studies showed that FACT binds to all components of
the nucleosome, including histones H2A–H2B and H3–H4,
histone N-terminal tails, and DNA via domains within FACT
subunits SPT16 and SSRP1 (9, 18 –27). SPT16 consists of an
N-terminal domain, a dimerizing domain, and a middle domain
followed by an intrinsic disordered region at the C terminus
(13, 24, 28). The SPT16 N-terminal domain adopts an amino-
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peptidase-like structure that binds histones H3–H4 (21, 23, 26).
The dimerizing domain assumes a pleckstrin homology (PH)-
like fold, important for SPT16 –SSRP1 heterodimerization (20).
The SPT16 middle domain adopts a double PH domain struc-
ture similar to that of Rtt106 and the SSRP1 middle domain and
binds histone H2A–H2B and H3–H4 (20, 27). The C-terminal
acidic region of SPT16 binds a hydrophobic pocket on H2B
(29). SSRP1 consists of two N-terminal PH domains (PH1–
PH2), a middle domain (MD) comprising a double PH domain
(PH3–PH4), and a high-mobility group (HMG) domain flanked
by two intrinsic disordered regions (ID1 and ID2) (Fig. 1). The
homolog of SSRP1 in yeast is the Pob3–Nhp6 complex; Pob3
comprises two N-terminal PH domains and a double PH
domain, whereas Nhp6 comprises a HMG-1 domain. Studies
showed that SSRP1 binds histone H3–H4 (19); the PH2 domain
interacts with the dimerizing domain of SPT16 (20); and SSRP1
MD and HMG domains interact with DNA (30 –32). Interest-
ingly, the C-terminal acidic regions of Pob3 and SPT16 bind
overlapping sites on H2B suggesting that FACT might bind to
the two symmetry–related H2A–H2B dimers in the nucleo-
some (29). In this manner, FACT would break up DNA–
histone interactions to promote nucleosome reorganization.

In cells, the bulk of cellular SSRP1 is found in complex with
SPT16 (9, 33). Thus, SSRP1 and SPT16 functions are tightly
associated with the roles played by FACT in chromatin remod-
eling. However, several studies have shown that in addition to
its FACT function, SSRP1 exhibits SPT16-independent func-
tions. SSRP1 has been shown to associate with transcription
factors such as the serum-response factor and p63 to regulate
their activity (34, 35). Indeed, SSRP1 and SPT16 knockdown
transcriptome analyses revealed a distinct set of genes that are
regulated by SSRP1 (36). Furthermore, SSRP1 has been shown
to facilitate microtubule growth in mitosis (37) and to regulate
DNA demethylation in Arabidopsis (38). It remains unclear
how SSRP1 behaves independently of SPT16. To further eluci-
date the function of SSRP1, we characterized its solution struc-
ture using analytical ultracentrifugation (AUC) and small-angle
X-ray scattering (SAXS), and we showed that SSRP1 self-asso-
ciates to generate an elongated homodimer. Mutational analy-
ses revealed that SSRP1 PH2 and PH3 domains are essential for
homodimerization. Moreover, SSRP1 homodimerization and
SPT16 interaction utilize the same SSRP1 surface suggesting
that both events might be mutually exclusive. Finally, we
showed that optimal histone binding requires SSRP1 homo-
dimerization. Collectively, our results provide a hint for how
SSRP1 could function independently of SPT16.

Results

SSRP1 is a homodimer

To better characterize SSRP1 structure and function, we
expressed and purified human SSRP1 lacking the C-terminal ID
regions and the HMG domain (residues 1– 433; hSSRP1�CTD)
for biochemical and biophysical analysis (Fig. 1). hSSRP1�CTD,
with a predicted molecular mass of 49.8 kDa, eluted between
the 150- and 75-kDa molecular mass markers in size-exclusion
chromatography, suggesting it might form an oligomer or
adopt an elongated conformation (Fig. 2).

To determine the oligomeric state and molecular mass of
hSSRP1�CTD in solution, AUC was performed. Sedimentation
velocity (SV) data showed that hSSRP1�CTD has an infinite
dilution sedimentation coefficient s20, w

0 of 3.32 � 0.21 S. The
frictional ratio (f/f0) provides information about the shape
of the protein: globular proteins have a ratio between 1.2
and 1.3; elongated, asymmetric, or glycosylated proteins lie
between 1.5 and 1.8, and unfolded or linear chains have a
much higher ratio (39, 40). hSSRP1�CTD gave a value of
1.63, suggesting that it is elongated in solution. Sedimenta-
tion equilibrium (SE) data globally fitted with a single species
model yielded a molecular mass of 91.8 � 3.7 kDa, which is
similar to the predicted molecular mass of a homodimer
(99,615 Da; Fig. 3, A and B).

Next, we assessed whether SSRP1 homodimerization is
conserved among different species. Dictyostelium discoideum
SSRP1 (DdSSRP1) adopts a similar domain structure as Pob3
containing N-terminal PH domains followed by a C-terminal
ID region (Fig. 1). We expressed and purified DdSSRP1 lacking
the C-terminal ID region (residues 1– 478; DdSSRP1�CTD).
Sedimentation velocity and equilibrium data confirmed that
DdSSRP1�CTD has an s20, w

0 (3.23 � 0.1 S) similar to that of
hSSRP1�CTD and a molecular mass of 104.8 � 22.7 kDa (Fig.
3, C and D; predicted molecular mass of a dimer is 108,466 Da),
demonstrating that homodimerization is conserved.

Second PH domain and middle domain are required for
homodimerization

SSRP1 consists of two N-terminal PH domains and a middle
domain, which is a double PH domain. For simplicity, we des-
ignate these PH domains as PH1– 4 (Fig. 1). The crystal struc-
ture of the SSRP1–SPT16 heterodimer reveals that SSRP1 PH2
is responsible for heterodimerization with the dimerizing
domain of SPT16 (20). Because the dimerizing domain of
SPT16 adopts a PH-like fold similar to those found in SSRP1,
we hypothesized that homodimerization of SSRP1 may involve
its PH2 domain. DdSSRP1 was used in all subsequent analyses
as it was more stable when mutations were introduced. We
introduced six DdSSRP1 mutations (6mut: C112A, N113A,
W114A, F135R, M172R, and M175R) along the SSRP1 PH2–
SPT16 dimerizing domain– binding interface and assessed
whether this mutant has a defect in homodimerization. AUC
analysis showed that DdSSRP1�CTD_6mut is a monomer in
solution at all tested concentrations in the range of 0.2– 60 �M

(Table 1), suggesting that SSRP1 PH2 is required for
homodimerization. To further probe the mechanism of

Figure 1. Schematic representation of hSSRP1 (top), Pob3 (middle), and
DdSSRP1 (bottom). Nhp6, nonhistone protein 6.
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homodimerization, we generated DdSSRP1 containing only
PH1 and PH2 domains (DdSSRP1_NTD; Fig. 1). AUC analysis
showed that DdSSRP1_NTD is a monomer at all tested concen-
trations in the range of 2.4 to 304 �M (Table 1), suggesting that
the PH1 and PH2 domains are insufficient for homodimeriza-
tion and require the presence of PH3–PH4.

A single point mutation, Q308K, in yeast Pob3 causes
defects in transcription and replication (24). This mutation
has no effect on Pob3 MD structure but alters the surface
charge in that region (24). We next assessed whether
the corresponding substitution, Q306K, in DdSSRP1�CTD
has an effect on homodimerization. We performed AUC
analysis on DdSSRP1�CTD Q306K and found that it is a
monomer at all tested concentrations in the range of 1– 41

�M (Table 1). Together, these results suggest that the SSRP1
homodimerization interface may involve both the PH2 and
PH3 domains.

FACT is a heterodimer of SSRP1 and SPT16

Given that SSRP1 homodimerization and SSRP1–SPT16
heterodimerization require the same SSRP1 PH2 surface, we
investigated the oligomeric state of FACT complex. To address
this question, we performed AUC on the DdFACT complex.
DdFACT was purified as described under “Experimental pro-
cedures.” SV data showed that DdFACT is homogeneous in
solution with an s20, w

0 � 6.09 � 0.52 S, and a frictional ratio of
1.51, suggesting that the complex is elongated. SE data gave a
molecular mass of 162.6 � 18.8 kDa, which agrees with the

Figure 2. Analysis of hSSRP1 by gel-filtration chromatography. A, elution profile from an SD200 10/30 size-exclusion chromatography column of protein
standards: �-amylase (200 kDa), alcohol dehydrogenase (150 kDa), ovalbumin (43 kDa) and conalbumin (75 kDa) (top panel) and hSSRP1�CTD. Peak X contains
hSSRP1�CTD (bottom panel). B, SDS-PAGE of fractions from peak X in A, bottom panel.
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Figure 3. AUC analyses of SSRP1. A, c(s) distribution derived from SV of hSSRP1�CTD at various protein concentrations. B, SE analyses of hSSRP1�CTD. Data
are globally fitted with a single species model. C, c(s) distributions derived from SV of DdSSRP1�CTD revealing similar sedimentation coefficients as hSSRP1
�CTD. D, SE analyses of DdSSRP1�CTD. Data are globally fitted with a single species model. E, c(s) distribution derived from SV of DdFACT showing that the
protein is monodispersed with the same sedimentation coefficient at 0.5 and 0.2 mg/ml. F, SE analyses of DdFACT. Data are globally fitted with a single species
model. Images were made using the software GUSSI (65).

SSRP1 homodimerization has a role in histone binding

10074 J. Biol. Chem. (2018) 293(26) 10071–10083



sequence molecular mass of 162,856 Da (Fig. 3, E and F), indi-
cating that DdFACT does not oligomerize. Our results are con-
sistent with the earlier finding showing that yeast FACT is an
elongated heterodimer (33). Together, the data suggest that
SSRP1 homodimerization and SSRP1–SPT16 heterodimeriza-
tion cannot occur simultaneously.

SAXS analysis

Solutions of DdSSRP1�CTD, of the heterodimeric FACT
complex, and of the DdSSRP1�CTD mutants, 6mut and
Q306K, were studied with synchrotron SAXS to gain insight
into overall SSRP1 structure and oligomeric state. The results
are presented in Fig. 4.

Guinier analysis (see “Experimental procedures”) was per-
formed on the scattering profiles, yielding the radii of gyration
(Rg) and the molecular mass of the proteins, with the latter
based on the scattering intensity extrapolated to zero angle
(I(0)). The Rg and mass values as functions of the protein con-
centration are shown in Figs. S1 and S2, respectively. These
overall parameters suggest that the heterodimeric FACT com-
plex and DdSSRP1�CTD have similar sizes, with estimated Rg
values between 5.5 and 6.0 nm. The estimated mass of the
FACT complex (130 –150 kDa) is relatively close to the mass
calculated from its primary sequence (162.856 kDa). In con-
trast, the mass for DdSSRP1�CTD (90 –110 kDa), points to its
homodimerization, as the mass calculated from the sequence is
54.233 kDa. These overall parameters thus further corroborate
the results from AUC.

The SSRP1�CTD mutants, 6mut and Q306K, are apparently
smaller than DdSSRP1�CTD, with the Rg around 4.5 nm, and
their scattering profiles are similar to each other (Fig. 4A). The
estimated mass values are in the range 50 – 80 kDa, which tend
toward the sequence-calculated values (54.102 kDa for 6mut
and 54.233 kDa for Q306K). Therefore, the overall parameters
from SAXS suggest that the mutants are predominantly mono-
meric. However, the apparent mass and Rg values grew with
concentration pointing to possible dimerization effects.

Table 2 reports the overall parameters obtained after appro-
priate merging of lower and higher concentrations of SAXS
data, including Rg, the maximum particle size Dmax, the Porod
(excluded) volumes, and the mass. The relative differences
between the proteins measured are confirmed, as well as the
indication of a dimeric assembly for the WT DdSSRP1�CTD.
The merged SAXS data for DdSSRP1�CTD are further ana-
lyzed in Fig. 4, B–D. Both the pair distance distribution function
(P(r)) and the dimensionless Kratky plot suggest an elongated
structure for the homodimer, deviating from the overall fold of
typical globular proteins. The good linearity of the Guinier
region confirms the successful removal of low-s concentration
dependences.

The merged profile for the FACT complex was further uti-
lized to obtain the ab initio model of its low-resolution shape
using the program DAMMIF (41) (see “Experimental proce-
dures”). For the WT DdSSRP1�CTD and its two mutants
showing concentration-dependent dimerization, the program
GasborMX was employed to generate the shapes of monomers
and dimers while simultaneously fitting multiple scattering
data sets at different concentrations (see “Experimental proce-
dures”). The resulting ab initio models and fits to the experi-
mental SAXS are displayed in Fig. 4, E and F, and the concen-
tration dependence of the monomer and dimer fractions for
DdSSRP1�CTD WT, 6mut, and Q306K is given in Fig. S3.

From the above ab initio modeling, FACT heterodimer has
an elongated asymmetric shape. Both DdSSRP1�CTD and
its mutants demonstrate a concentration-dependent homo-
dimerization. However, only WT DdSSRP1�CTD reveals sig-
nificant amounts of dimers at low protein concentration. The
mutants are mostly dissociated into monomers at concentra-
tions below 1 mg/ml, with a slight tendency for increased
dimerization at higher concentrations (Fig. S3). Given these
results, at the (low) concentrations used for AUC, an essential-
ly monomeric state is expected. All the DdSSRP1�CTD
homodimers are elongated (Fig. S4), with the length compara-
ble with the FACT heterodimer but with a smaller cross-sec-
tion. Interestingly, the dimers seem to adopt an extended,
V-shaped conformation in solution.

Homodimerization plays a role in histone binding

SSRP1 has been shown to have SPT16-independent function
in gene transcription as knockdown of SPT16 and SSRP1 in
human nonsmall cell lung carcinoma cells revealed a subset of
genes that are regulated by SSRP1 independent of SPT16 (36).
Previous studies showed that SSRP1 binds nucleosomes with
high affinity and has a preference for binding histone H3–H4
(19). We hypothesized that SSRP1 homodimerization contrib-
utes to histone binding. Currently, we do not know how SSRP1
homodimerizes, and therefore it was difficult to generate an
SSRP1 variant that solely affects homodimerization. Given
that DdSSRP1�CTD Q306K and DdSSRP1�CTD_6mut are
monomeric in solution at low concentrations, we tested
their effects on histone binding. We performed ITC analyses
to assess how DdSSRP1�CTD, DdSSRP1�CTD Q306K, and
DdSSRP1�CTD_6mut bind histones. DdSSRP1�CTD bound
histone H3–H4 with a Kd of 0.57 � 0.05 �M (Fig. 5A and Table
3), which is similar to the binding affinity observed between
human SSRP1 and Xenopus laevis histone H3–H4 (19). Inter-
estingly, DdSSRP1�CTD_6mut and DdSSRP1�CTD Q306K
bound histone H3–H4 with a Kd of 3.0 � 0.2 �M and 1.37 � 0.07
�M, respectively (Fig. 5, B and C, and Table 3). Thus, disruption
of homodimerization via Q306K substitution or mutations in
the PH2 domain decreased histone H3–H4 binding affinity by
5- or 2.5-fold, respectively. We also tested SSRP1 binding affin-
ity with histone H2A–H2B. DdSSRP1�CTD bound histone
H2A–H2B with a Kd of 0.82 � 0.05 �M (Fig. 5D and Table 3),
whereas DdSSRP1�CTD_6mut exhibited a slightly weaker
binding affinity with a Kd of 1.57 � 0.14 �M (Fig. 5E and Table
3). The ITC profile for DdSSRP1�CTD Q306K binding is
biphasic (Fig. 5F) suggesting that the Q306K substitution likely

Table 1
Sedimentation equilibrium analysis of DdSSRP1 constructs

Protein Mass � Mass expected

Da Da
DdSSRP1�CTD_6mut 58,417.56 5346.65 54,102.16
DdSSRP1_NTD 20,249.15 2808.91 20,481.08
DdSSRP1�CTD Q306K 54,827.28 4626.82 54,223.44

SSRP1 homodimerization has a role in histone binding
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alters the surface charge thereby initiating a nonspecific H2A–
H2B binding. Together, our ITC analyses show that SSRP1
homodimerization contributes to histone binding.

DdSSRP1 ID1 region binds histone H2A–H2B

Recent studies on Pob3 showed that its acidic ID1 region
binds directly to histone H2A–H2B (29, 42). To investigate

SSRP1 homodimerization has a role in histone binding
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whether the ID1 region of DdSSRP1 also binds histone H2A–
H2B, we performed ITC analyses using full-length DdSSRP1
(DdSSRP1_FL) and DdSSRP1 containing only the ID1 region
(residues 479 –527; DdSSRP1_ID1). Titration of DdSSRP1_FL
against histone H2A–H2B generated an exothermic thermo-
gram with a Kd of 0.31 � 0.03 �M (Table 3) that is different
from the endothermic thermogram generated by titration of
DdSSRP1�CTD against histone H2A–H2B (compare Figs. 5D
and 6A), suggesting that the ID1 region likely binds histone
H2A–H2B, and the interaction is exothermic. Indeed,
DdSSRP1_ID1 bound histone H2A–H2B with a Kd of 0.19 �
0.03 �M, and the thermogram exhibited an exothermic reaction
(Fig. 6B and Table 3). These results showed that the ID1 region
of DdSSRP1 binds to histone H2A–H2B.

Discussion

Little is known about how SSRP1 behaves independent of
SPT16; our present work reveals a role of SSRP1 homo-
dimerization. We show that both human and D. discoideum
SSRP1 self-associate to form an elongated homodimer in solu-
tion using both AUC and SAXS analyses. Homodimerization

likely involves both PH2 and PH3 domains as mutations within
these two domains yield monomeric protein. Notably, the
PH2 surface that interacts with SPT16 also participates in
homodimerization, suggesting that both binding events might
be mutually exclusive. Indeed, we show that the DdFACT com-
plex does not oligomerize, consistent with an earlier study on
yeast FACT (33). Furthermore, we show that disruption of
SSRP1 homodimerization decreases the binding affinity of
SSRP1 for histones H2A–H2B and H3–H4, highlighting a role
for homodimerization in the function of SSRP1.

Homodimerization has been observed in other histone chap-
erones such as Rtt106 (43, 44), yeast nucleosome assembly pro-
tein 1 (Nap1) (45), and vacuolar protein sorting 75 (Vps75) (46,
47). These histone chaperones harbor an N-terminal helical
domain that is involved in dimerization. Homodimerization
plays an important role in their functions as follows. Rtt106
homodimerization is essential for its association with histone
H3–H4 tetramer and its function in transcriptional silencing
(44); Nap1 homodimerization enables it to interact with two
molecules of histones H2A–H2B or H3–H4 (48); and Vps75

Figure 4. SAXS analyses of DdSSRP1�CTD. A, double logarithmic plot showing the merged SAXS profiles used to extract overall parameters and for DAMMIF
modeling of the FACT heterodimer, arbitrarily displaced in the vertical direction for display. B, DdSSRP1�CTD WT pair distance distribution function P(r) (PDDF). C,
Guinier plot; D, dimensionless Kratky plot with a globular protein for comparison of DdSSRP1�CTD WT. E, comparison of the SAXS data used for structural modeling
(symbols) with the calculated scattering curves from DAMMIF and GasborMX (solid lines). For the FACT complex, the DAMMIF modeling employed the merged curve
up to 1.4 nm�1. For DdSSRP1�CTD and mutants, the GasborMX modeling employed the SAXS profiles at the highest concentration (WT 9 mg/ml, 6mut 12.2 mg/ml,
and Q306K 10.9 mg/ml). The pairs of fits are shifted by about 1 order of magnitude along the logarithmic axis for clarity. F, final averaged (“filtered”) ab initio model of
FACT and three representative GasborMX models of DdSSRP1�CTD WT, 6mut, and Q306K in three orthogonal views along the x, y, and z axes. From left to the right:
DdFACT heterodimer (orange), DdSSRP1�CTD WT homodimer (gray), monomer DdSSRP1�CTD_6mut (blue), and monomer DdSSRP1�CTD Q306K (pink).

Table 2
Data collection and SAXS-derived parameters

SSRP1 homodimerization has a role in histone binding
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homodimerization is involved in binding and activating the cat-
alytic activity of histone acetyltransferase Rtt109 (47, 49).
SSRP1 lacks a defined homodimerization domain. We show
that the PH1–PH2 domain is a monomer, and structural stud-
ies of MD from human and Pob3 also reveal a monomer (24,
30). Homodimerization seems to be achieved via multiple sur-
faces involving both PH2 and PH3 domains. The exact molec-
ular details of homodimerization will require future studies.
Here, we show that monomeric forms of SSRP1 mutants are
able to bind both histones H2A–H2B and H3–H4 with low
micromolar affinity, but the presence of a homodimer further

Table 3
ITC analysis of DdSSRP1 constructs against histone H2A–H2B or
H3–H4

SSRP1– histone binding Kd

�M

DdSSRP1�CTD–H2A–H2B 0.82 � 0.05
DdSSRP1�CTD_6mut–H2A-2B 1.57 � 0.14
DdSSRP1�CTD–H3–H4 0.57 � 0.05
DdSSRP1�CTD_6mut–H3–H4 3.0 � 0.2
DdSSRP1�CTD Q306K–H3–H4 1.37 � 0.07
DdSSRP1_FL–H2A–H2B 0.31 � 0.03
DdSSRP1_ID1–H2A–H2B 0.19 � 0.03

Figure 5. ITC profiles of the interaction between DdSSRP1 variants and histones. A, DdSSRP1�CTD-H3–H4 binding profile. B, DdSSRP1�CTD_6mut-
H3–H4 binding profile. C, DdSSRP1�CTD Q306K-H3–H4 binding profile. D, DdSSRP1�CTD-H2A–H2B binding profile. E, DdSSRP1�CTD_6mut-H2A–H2B bind-
ing profile. F, DdSSRP1�CTD Q306K-H2A–H2B binding profile. Raw data (top panel) and integrated data (bottom panel) are shown. The data shown are
representative of two independent experiments except C, E, and F that are representative of one experiment.
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enhances the binding affinity. Given that SSRP1 interacts with
other proteins independent of SPT16, future studies will be
required to elucidate whether homodimerization has a role in
other SSRP1 functions.

In our study, we show that both human and D. discoideum
SSRP1 are homodimers, but whether homodimerization is con-
served in other species remains unclear. Sequence analysis of
SSRP1 from plants, fungi, and mammals shows that SSRP1
comprising N-terminal PH domains and the ID1 region is con-
served. Closer inspection reveals that Gln-306 (in D. discoi-
deum) is conserved from fungi to mammals, but the corre-
sponding residue in plants is a lysine (Fig. 7). In our study,
DdSSRP1�CTD Q306K is predominantly a monomer at low
protein concentrations, but it has the tendency to dimerize at
high protein concentrations. Thus, this criterion alone is not
sufficient to predict its oligomeric state. Future studies are
required to assess the oligomeric state of SSRP1 in other
species.

We showed that SSRP1 homodimerization and SPT16 het-
erodimerization utilize the same SSRP1’s PH2 surface, and the
FACT complex contains one molecule of SSRP1. These data
suggest that both events could compete for the same pool of
SSRP1. This raises the question of how SSRP1 oligomerization
is regulated. In HeLa and yeast cells the FACT complex con-
centration is in the range of 0.1– 0.5 �M, suggesting that the
bulk of SSRP1 is associated with SPT16 (9, 33). Our SAXS anal-
yses showed that SSRP1 homodimerization is concentration-
dependent where the monomeric fraction increases at lower
protein concentrations (Fig. S3). At 1 mg/ml (�18 �M),
DdSSRP1�CTD is predominantly a dimer but with a small frac-
tion in the monomeric state. Thus, it seems that at a low protein
concentration, SSRP1 has a stronger preference to form a com-

plex with SPT16, and the SSRP1 homodimer would be present
when SSRP1 is in excess of SPT16 and at higher protein con-
centration. Future studies are required to understand how
SSRP1 homodimerization is regulated.

Studies have shown that human SSRP1 binds nucleosome,
histone H3–H4, and DNA (19, 30), and Pob3 binds histone
H3–H4 (50). In this study, we show that DdSSRP1 binds his-
tones H2A–H2B and H3–H4 via different mechanisms.
DdSSRP1�CTD bind histone H3–H4 with a binding affinity
similar to that of human SSRP1 (19). Interestingly, both PH1– 4
domains (DdSSRP1�CTD) and the C-terminal ID1 region
(DdSSRP1_ID1) bind histone H2A–H2B independently. A very
recent study showed that the C-terminal acidic ID1 region of
Pob3 containing a (D/E)XX� (where � is Phe or Tyr, and X is
any residue; DEDF in Pob3) motif binds H2B (29), and the
reported binding affinity is similar to the binding affinity of
DdSSRP1_ID1 for histone H2A–H2B observed here. Further-
more, DdSSRP1 harbors a DDDY motif in the ID1 region, sug-
gesting a similar mode of H2A–H2B binding. It is unclear how
DdSSRP1 PH1– 4 domains bind H2A–H2B, and whether the
binding site is distinct or overlaps with the ID1 region requires
future investigation. It is noteworthy that the C-terminal acid
region of yeast Spt16 contains an EVSEY motif that binds to the
same H2B pocket as the acidic ID1 region of Pob3, and their
H2A–H2B binding mode is incompatible with H2A–H2B–
DNA interaction in the nucleosome structure (29). Thus, it was
proposed that the SPT16 and SSRP1 C-terminal acidic regions
of FACT would bind to two symmetry-related H2A–H2B
dimers to compete with DNA thereby promoting nucleosome
reorganization. The distance between the two H2B-binding
pockets in the nucleosome structure is about 60 Å, and the
nucleosome has a dimension of 100 � 100 � 60 Å. With the

Figure 6. ITC profiles of the interaction between DdSSRP1 ID1 region and histone H2A–H2B. A, DdSSRP1_FL-H2A–H2B binding profile. B, DdSSRP1_ID1-H2A–
H2B binding profile. Raw data (top panel) and integrated data (bottom panel) are shown. The data shown are representative of one independent experiment.
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extended V-shaped conformation and Dmax of 200 Å (Table 2),
DdSSRP1 homodimer containing two C-terminal acidic ID1
regions could potentially perform a similar function. SSRP1 has
the characteristic of a histone chaperone because it binds all
components of the nucleosome. Future studies are required to
elucidate how SSRP1 binds histones and to determine whether
it could modulate nucleosome assembly independent of SPT16.

Experimental procedures

Protein expression and purification

Human and D. discoideum (Dd) SSRP1 variants were cloned
into RSF_Duet vector (Novagen) and expressed with an N-ter-
minal hexahistidine (His6) tag followed by a TEV cleavage site.
All proteins were expressed in Escherichia coli BL21 (DE3)
Gold (Stratagene) and purified by using Ni-NTA affinity chro-
matography followed by TEV treatment to remove the His6 tag.
The cleaved proteins were further purified by anion-exchange
and size-exclusion chromatography. Histone core octamers
were purified from chicken blood, as described previously (51),
and separated into H2A–H2B and H3–H4 using cation-ex-
change chromatography. DdFACT complex was obtained by
coexpressing His6-tagged DdSSRP1 residues 1–478 (in RSF_
Duet vector; see above) and GSH–S-transferase (GST)-tagged
DdSpt16 residues 1–955 (in pGEX4T1 vector containing an
N-terminal GST tag followed by a TEV cleavage site) in E. coli
BL21 (DE3) Gold. The DdFACT complex was purified by using
Ni-NTA and GSH-Sepharose affinity chromatography fol-
lowed TEV treatment to remove the tags. The cleaved complex
was further purified by anion-exchange and size-exclusion
chromatography. All proteins where purified in 25 mM Tris-
HCl, pH 7.6, 150 mM NaCl, 1 mM DTT. Protein concentration
was determined at 280 nm using a calculated extinction
coefficient.

Analytical ultracentrifugation

Purified SSRP1 or DdFACT was dialyzed against buffer con-
taining 25 mM Tris-HCl, pH 7.6, 200 mM NaCl, 2 mM tris(2-
carboxyethyl)phosphine and concentrated. AUC was carried
out in a Beckman Coulter Optima XL-I analytical ultracentri-
fuge (Palo Alto, CA). SV experiments were performed at 4 °C at
a rotor speed of 49,000 rpm. Samples (360 �l) at various con-

centrations, were loaded into double-sector centerpieces. Data
were acquired every 7 min with interference and absorbance
optics and were subsequently analyzed using size-distribution
(c(s) versus s) analysis in SEDFIT (52). Partial specific volume,
buffer density, and viscosity at 4 and 20 °C were calculated
using SEDNTERP (53). SE experiments were carried out with
the same range of protein concentrations using 90 �l of sample
with different rotor speeds according to the predicted molecu-
lar mass. Scans were taken every 3 h until equilibrium was con-
firmed using WinMATCH (Jeffrey Lary, University of Con-
necticut, Storrs, CT). SE data were analyzed using SEDPHAT
(54) and fitted with a species analysis model.

Small-angle X-ray scattering

Synchrotron X-ray solution–scattering data were collected
at the EMBL P12 beamline (PETRA III, DESY, Hamburg, Ger-
many) (55) using a robotic sample changer (56). Initially, the
data were reduced and processed using an automatic pipeline of
software developed at EMBL Hamburg, Germany (57). SSRP1
was prepared in 25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1 mM

DTT to obtain concentration series in the range 0.5 and 12.2 mg
ml�1. SAXS data were recorded at 10 or 20 °C using a PILATUS
2M pixel detector (DECTRIS, Baden, Switzerland) at a sample-
detector distance of 3.1 m and a wavelength of 0.124 nm. This
configuration covers a range of momentum transfer of 0.12 	
s 	 5.0 nm�1 (s � 4� sin(�)/�, where 2� is the scattering angle).
The software PRIMUS (58, 59) was used for data processing.
The intensity calibration was performed using the scattering
from BSA at a known concentration as a secondary standard.
The forward scattering I(0) and Rg values were determined
using the Guinier approximation assuming that at very small
angles (s 	 1.3 Rg) the intensity is represented as I(s) �
I(0)�exp(�(s Rg)2/3). To take into account the concentration-
dependent effects in the scattering curves, merged scattering
profiles were obtained by combining the smaller angle portion
(up to about 1.1–1.3 nm�1) of SAXS data collected at low con-
centrations with the higher angle portion (starting from about
0.6 – 0.9 nm�1) of high concentrations of SAXS data. The pair-
distance distribution function P(r), from which the maximum
particle dimension (Dmax) and Rg were estimated, was com-
puted using GNOM (60). The molecular masses were derived

Figure 7. Sequence alignment of SSRP1 from different species. Sequences near DdSSRP1 Gln-306 are shown. Arrow indicates Gln-306 in DdSSRP1. Residue
numbers are indicated.
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from the following: 1) extrapolation to zero scattering angle on
absolute scale; 2) the excluded volume of the hydrated particle
using the Porod invariant (59), and 3) the excluded volumes of
ab initio bead models. The latter were generated from the low
resolution data (s 	1.4 nm�1) for the FACT complex by repeat-
ing 20 DAMMIF runs (61) without symmetry (P1) or anisom-
etry and refined with DAMMIN (41). Both algorithms con-
struct bead models yielding a scattering profile with the lowest
possible discrepancy (�) from the experimental data while
keeping beads interconnected and the model compact. Twenty
independent ab initio reconstructions were performed and
averaged using DAMAVER (62), which also provides a normal-
ized spatial discrepancy as a measure of similarity among dif-
ferent reconstructions. SAXS methods and results are summa-
rized in Table 2.

The homodimerization behavior of SSRP1 WT and mutants,
as well as the structure of the dimers, were analyzed by
GasborMX (59). The program simultaneously fits SAXS pro-
files of the concentration series with a linear combination of the
scattering intensities of monomer and dimer. The monomer
structure is represented as a collection of dummy residues, and
the dimer is generated in a P2 symmetry. To better model the
dimers, prolate anisometry was imposed, with the dyadic axis of
the symmetric dimer being transverse to the major axis of the
model. For the concentration series treated, the modeling was
repeated 10 times, and the best fitting models were selected.
Alignment of the ab initio models for depiction and compari-
son purposes was performed using SUPCOMB (63). The ab
initio models shown in Fig. 4 and in the supporting information
were rendered using the UCSF Chimera package (64).

Isothermal titration calorimetry

SSRP1 binding to histone H2A–H2B or H3–H4 was deter-
mined at 25 °C by using a MicroCal iTC200 microcalorimeter
(Malvern Instruments Ltd., UK). All proteins were buffer-ex-
changed into 20 mM HEPES, pH 7.5, 200 mM NaCl, 1 mM DTT.
Histone H2A–H2B or H3–H4 was loaded into the cell at a con-
centration of 20 –30 �M, and SSRP1 variants were loaded into
the syringe at a concentration 10 times higher than that in the
cell. 20 injections (2 �l each) were added every 180 s to the cell.
For control experiments, buffer or SSRP1 was injected into the
cell containing histone or buffer, respectively. ITC data were
generated by subtracting the raw data from the control experi-
ment and were analyzed using Origin software (version 7,
OriginLab).

Author contributions—G. M. data curation; G. M. and D. T. H. for-
mal analysis; G. M. and D. T. H. supervision; G. M. and D. T. H.
investigation; G. M. and D. T. H. writing-original draft; G. M. and
D. T. H. project administration; G. M., S. D. V., D. I. S., and D. T. H.
writing-review and editing; O. B. methodology; D. T. H. conceptual-
ization; D. T. H. funding acquisition; S. D. V., G. T., and D. I. S. per-
formed and analyzed SAXS experiment.
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