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Abstract Sedimentation velocity analytical ultracentri-

fugation has experienced a significant transformation, pre-

cipitated by the possibility of efficiently fitting Lamm

equation solutions to the experimental data. The precision

of this approach depends on the ability to account for the

imperfections of the experiment, both regarding the sample

and the instrument. In the present work, we explore in more

detail the relationship between the sedimentation process,

its detection, and the model used in the mathematical data

analysis. We focus on configurations that produce steep and

fast-moving sedimentation boundaries, such as frequently

encountered when studying large multi-protein complexes.

First, as a computational tool facilitating the analysis of

heterogeneous samples, we introduce the strategy of partial

boundary modeling. It can simplify the modeling by

restricting the direct boundary analysis to species with

sedimentation coefficients in a predefined range. Next, we

examine factors related to the experimental detection,

including the magnitude of optical aberrations generated by

out-of-focus solution columns at high protein concentra-

tions, the relationship between the experimentally recorded

signature of the meniscus and the meniscus parameter in the

data analysis, and the consequences of the limited radial and

temporal resolution of the absorbance optical scanning

system. Surprisingly, we find that large errors can be caused

by the finite scanning speed of the commercial absorbance

optics, exceeding the statistical errors in the measured

sedimentation coefficients by more than an order of mag-

nitude. We describe how these effects can be computa-

tionally accounted for in SEDFIT and SEDPHAT.

Keywords Analytical ultracentrifugation �
Hydrodynamics � Direct boundary modeling �
Lamm equation

Introduction

In the 1980s, analytical ultracentrifugation reemerged as an

important tool of physical biochemistry, partly due to the

development of computerized data acquisition systems and

the commercial availability of a new generation of ana-

lytical ultracentrifuges (Schachman 1989). Building on this

advance, in the last decade, modern computational methods

of data analysis have substantially expanded the capabili-

ties and widened the application in particular of sedimen-

tation velocity (SV) analytical ultracentrifugation, chiefly

due to the ability to more efficiently and more accurately

solve the Lamm equation (Lamm 1929) (the partial

differential equation that describes the evolution of the

macromolecular concentration distributions) (Philo 1997;

Schuck 1998; Schuck et al. 1998; Demeler et al. 2000;

Behlke and Ristau 2002; Stafford and Sherwood 2004; Cao

and Demeler 2005; Dam et al. 2005; Brown and Schuck

2008), and the consideration of sample heterogeneity

through diffusion-deconvoluted size-distribution approa-

ches (Schuck 2000; Schuck et al. 2002; Balbo et al. 2005;

Brown and Schuck 2006) that allow one to distinguish with

unprecedented resolution the contributions from diffusion,

heterogeneity, and chemical reactions to the evolution of

the shape of the sedimentation boundary. In the biological

sciences, examples for areas of significant interest in the
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Lamm equation modeling of SV data include protein self-

and hetero-associations and the characterization of multi-

protein complex assemblies with regard to the number,

populations, and stoichiometry of species; the binding

energy and kinetics; the hydrodynamic shape of proteins,

protein complexes, and other biomacromolecules; the

characterization of drug delivery nano-particles; and the

quality control of protein pharmaceuticals. For recent,

more general reviews on this technique, see Lebowitz et al.

(2002), Howlett et al. (2006), Schuck (2007), and Brown

et al. (2008a, b).

It is obvious that in order to obtain reliable and detailed

results, it is necessary to apply close scrutiny to the limi-

tations of the experimental data and their faithful repre-

sentation in the data analysis model. For example, a key for

the detailed direct modeling of the experimental signal

profiles was the introduction of the explicit systematic

time-invariant (TI) and radial-invariant (RI) noise offsets

into the mathematical model (Schuck and Demeler 1999).

Similarly, inclusion of the acceleration phase of the rotor

allowed for the model to better match the actual experi-

ment (Schuck et al. 2000), as did the consideration of

pressure gradients from solvent compressibility (Schuck

2004). With these tools, in conjunction with size-distribu-

tion methods that account for imperfections in the sample,

it is frequently possible to fit the experimental data within

the error of data acquisition. However, with increasingly

detailed questions being addressed by SV and increasingly

sophisticated analysis models being applied, it is necessary

to critically reassess the relationship between experiment

and theoretical model and to refine their correspondence in

order to obtain accurate results. Accordingly, many recent

studies have explored the limitations of detection of SV

from theoretical and experimental perspectives and were

aimed at identifying potential factors that when properly

controlled or accounted for could further improve SV

methodology (Gonzalez et al. 2003; Liu et al. 2006;

Gabrielson et al. 2007a, b; Pekar and Sukumar 2007;

Brown et al. 2008a, b; Gabrielson et al. 2009).

In the present work, we have focused on several aspects

that currently appear to be limiting the precision or that

impact the practical application of SV analysis of steep,

fast-moving boundaries. These are among the most chal-

lenging experimental SV configurations, yet also promise

to provide the highest resolution sedimentation coefficient

distributions and the highest precision of sedimentation

coefficients.

An experimental concern for such configurations is the

finite radial and temporal resolution of the commercial

absorbance optical system caused by its relatively slow

scanning speed. One distortion immediately apparent is the

movement of the boundary during the time required by the

scanner to record the boundary shape. A perhaps not as

apparent, but equally important problem is that the time-

stamp of the scans generally does not reflect the time when

the boundary position is actually recorded. One of the goals

in the present work was to test the magnitude of these

effects experimentally and to derive corrections in the

mathematical model of SV analyses that allow describing

the recorded data more faithfully.

Another experimental concern when generating steep

boundaries is aberrations in the optical system from

refractive index gradients, which unavoidably always

accompany the macromolecular sedimentation boundary.

By bending the path of light through the solution (‘‘Wiener

skewing’’, Wiener 1893), the imaged radial positions

experience a distortion dependent on the magnitude of the

refractive index gradient and the focus of the optical sys-

tem (see below). The effect on the recorded data has been

shown to be minimal when the optical system is focused to

the 2/3 plane of the solution column, a condition usually

fulfilled when using standard 12-mm centerpieces. Unfor-

tunately, this is not easily possible for the 3-mm center-

pieces that are commonly used at higher protein

concentrations, requiring either refocusing the optical

system or the use of custom-made spacers, neither being

practical to apply. In the present work, we describe

experiments that explore the permissible magnitude of

refractive index gradients in the standard experimental

configuration.

For further developing the data analysis models, one

current practical limitation is the ubiquitous presence of

trace populations of aggregates and other degradation

products in protein samples. They also become most

apparent when the macromolecule of interest forms a well-

defined, narrow boundary. The exquisite sensitivity of SV

does allow for the detection of trace species, and in fact,

requires their incorporation into the model such that they

do not bias the parameters of interest. While for some

studies, such as the quality control of protein pharmaceu-

ticals, this is the result of primary interest (Berkowitz 2006;

Liu et al. 2006; Gabrielson et al. 2007a, b; Pekar and

Sukumar 2007; Brown et al. 2008a, b), for other applica-

tions their description is more cumbersome and a nuisance

in the modeling. In the present work, we describe an

alternative strategy to accomplish this, termed ‘‘partial

boundary modeling’’ (PBM). It is based on the idea of

setting different fitting limits for each measured concen-

tration profile at different time-points, such that species

whose sedimentation takes place outside the main sedi-

mentation boundary of interest (e.g., the faster sedimenting

aggregates) do not need to be considered in the model. As

will be shown in the present work, PBM lends itself par-

ticularly well to modeling steep boundaries. Because it can

be applied to the same data subsets, PBM also allows for a

detailed comparison with the approach of analyzing SV
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data in a transformed data space using a g(s*) ‘‘data

transformation.’’

Finally, we addressed what currently seem to be two

major experimental limitations, one being the possible

effect of low level convection on the sedimentation pro-

cess, and one arising from the inability to determine

experimentally the precise meniscus position. The diffi-

culty of determining the meniscus position is due to both

the presence of significant local optical artifacts at the

liquid/air interface and the limited radial resolution of the

experimental scans (Gropper 1964; Philo 1997; Pekar

and Sukumar 2007). As has been emphasized by Philo

(1997), it is not clear how to determine the true meniscus

parameter, yet it seems an essential model parameter for

predicting the boundary position. From experiments con-

ducted under conditions promoting exaggerated convec-

tion, we were able to demonstrate that the meniscus

problem and the convection problem can be interrelated,

and that it can be advantageous not to attempt incorpo-

rating a graphically determined meniscus position into the

analysis. This topic is also closely related to the problem of

the finite temporal resolution of the absorbance system, as

well as the choice of data analysis mode: treating the

meniscus parameter as a freely adjustable fitting parameter

can compensate for offsets in the apparent boundary

positions introduced by the finite speed of the absorbance

scanner. Further, we found that, in contrast to g(s*), using

PBM or whole boundary modeling allows incorporating

sufficiently large numbers of scans spanning the whole

experiment such that the meniscus parameter is well-

determined from the time-course of the observed boundary

displacement.

The goal of the present work was to study these inter-

related problems, clarify experimental limitations, and

develop tools to improve the reliable data interpretation in

SV analytical ultracentrifugation.

Theory

Modeling the central slope of the sedimentation

boundary

The initial motivation was to develop a modern analogue

to the analysis of the area/height ratio of Schlieren peaks

in terms of apparent diffusion coefficients, in order to

obtain a very robust tool for boundary analysis in the

presence of significant sample heterogeneity. We were

inspired by the use of this analysis as a highly sensitive

approach to study, for example, the lifetime of com-

plexes in systems with ligand-induced conformational

changes such as aspartate transcarbamoylase (Werner and

Schachman 1989). In this sense, the approach should

serve as a ‘‘model-free’’ tool to quantitatively assess the

degree of boundary spreading.

The Schlieren optical detection system directly detects

concentration gradients, whereas the absorbance and Ray-

leigh interference optical systems measure concentrations

or concentration differences, respectively. In order to apply

the area/height ratio approach from Schlieren analysis to

the latter detection systems, it is desirable to translate the

area/height ratio of the gradient peaks into the data space of

concentrations. (The alternative approach of radial differ-

entiation to transform the concentration data computa-

tionally to Schlieren peaks would unavoidably result in

severe noise amplification.) In the data space of the

absorbance and the interference system, the area of a

Schlieren peak corresponds to the plateau concentration,

and the height of the Schlieren peak corresponds to the

maximum slope of the sedimentation boundary. The pla-

teau concentration can be easily determined from the

concentration profiles. In order to extract the maximum

slope, we can fit a straight line to a narrow region in the

center of the sedimentation boundary. A sufficiently linear

portion of the sedimentation boundary may be, for exam-

ple, the central 20% of the boundary (i.e., data points with

concentration values between 0.4 and 0.6-fold the plateau

concentration); in our implementation in SEDPHAT, the

boundary portion can be refined by the user after inspection

of the fit for sufficient linearity of the boundary region

used.

We globally fit the central scan section of all scans with

straight lines with the slopes

dc

dr
¼ cp

1

2

m

rb

1
ffiffiffiffiffiffiffiffiffiffi

pD�t
p ð1Þ

(with the rotor angular velocity x, plateau concentration cp,

meniscus position m, time t, radial coordinate r, boundary

position rb ¼ mex2st, sedimentation coefficient s, and

apparent diffusion coefficient D*). Equation 1 represents

the radial derivative of the first term of the Faxén solution

to the Lamm equation (Faxén 1929). The apparent

diffusion coefficient D* describes the broadening of the

boundary, i.e., its decreasing slope, as it migrates towards

the bottom of the cell. It corresponds to the true molecular

diffusion coefficient only for ideally sedimenting,

monodisperse samples. In this case, one could apply the

Svedberg equation

M� ¼ sRT

D�ð1� �vqÞ ð2Þ

to estimate the molar mass M*. However, in practice this

estimate can be a substantial underestimate for heteroge-

neous systems (which exhibit boundary broadening in

significant excess over that caused by diffusion), or an

overestimate in the presence of repulsive nonideality
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(which will cause steeper boundaries) or optical artifacts

from Wiener skewing (which will cause steepening and

translation of the signal gradients).

A disadvantage of this model for interference optical

data is that it is not compatible with the algebraic deter-

mination of TI and RI noise. Incompatibility arises when

the central boundary portions of sequential scans are not

overlapping, thus not providing an opportunity to distin-

guish the concentration signal from the systematic noise.

Further, the algorithm for the algebraic noise subtraction

developed in Schuck and Demeler (1999) thus far requires

all scans to be analyzed over identical radial ranges.

Therefore, an empirical TI and RI noise subtraction method

does need to be applied prior to the central slope model

when using interference optical data (such as the applica-

tion of another ad hoc model to prefit the data for the

analysis of TI and RI signals). To overcome this drawback,

we developed a strategy of calculating TI and RI noise

parameters when using wider radial analysis windows,

modeled with numerical Lamm equation solutions (Brown

and Schuck 2008) instead of Eq. 1. This was achieved with

the new approach of PBM.

Partial boundary modeling and systematic noise

decomposition

For very heterogeneous samples, it can be desirable to

confine the analysis to just the main boundary component,

but to characterize that in great detail and with high pre-

cision. A very useful and rational way to define the radial

limits of the moving data window is to follow the transport

flux of ideally sedimenting nondiffusing particles. For each

scan n, the smallest radius value ln and highest radius value

un are described by hypothetical particles sedimenting with

a lower and upper s-value, sl and su, respectively, propa-

gating from the meniscus according to the well-known

expressions ln � m expðslx2tÞ and un � m expðsux2tÞ
(with the approximation sign meant to indicate that we take

the closest point on the radial grid of experimental data

points). With this design of the radial analysis illustrated in

Figs. 1 and 2, we would need to consider in our boundary

model only species with s-values in the range between sl

and su if it were not for diffusion and attractive or repulsive

intermolecular interactions taking place. Since the diffu-

sion of small particles can be very high, leading to

migration comparably fast to the sedimentation of large

particles, we envision that the most useful models to be

applied in PBM may likely describe species with s-values

from 0 to su, but not species sedimenting much faster

than su.

Provided that this design leads to overlapping radial

regions covering each radial position with at least two

scans, the data do provide information for calculating TI

Fig. 1 a Sedimentation profiles of thyroglobulin sedimenting at

50,000 rpm. For clarity, TI and RI noise contributions initially

estimated from a standard c(s) analysis of the whole profiles were

subtracted. Highlighted in red are the partial boundary segments

defined with the apparent s-values of 17 and 20 S. In order to

demonstrate the shape of the boundary and the relative location of the

slow- and fast-moving boundaries at a single point in time, one profile

is highlighted in blue. b The PBM region of the raw data (black lines)

being fit with the partial boundary model (dashed red lines) using a

single-species model. The residuals are shown in c. d A larger

analysis window in PBM (15–21 S) is used for PBM accounting

directly for TI and RI noise. The data are shown in black, the fit as red
dashed line. The first several scans are eliminated due to insufficient

overlap. The best-fit TI noise profile is shown as a green line, which

can be compared to the TI noise estimate from the whole boundary

c(s) model in gray. After eliminating the RI noise from scan

alignment with a preliminary whole boundary analysis, the TI noise

estimate derived from PBM is shown as a blue solid line. e Residuals

from d
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and RI signal offsets. (Otherwise the systematic noise

contributions must be predetermined and/or absent.) The

following describes an approach for determining the sys-

tematic TI noise contributions bi = b(ri) at the radial points

ri ðwith i ¼ 1; . . . ; IÞ; and the systematic RI noise contri-

butions bn = b(tn) at the time of the nth scan, tn ðwith n ¼
1; . . . ;NÞ; given data an,i in a moving radial window

reaching from the lower radial limit i = ln to an upper limit

i = un. The systematic noise will be part of a boundary

model and added to the model for the sedimenting species,

which may be expressed in general as M pf g; tn; rið Þ which

is dependent on a set of parameters {p}. For example, for

the case of TI noise, this leads to the minimization problem

Min
bi;fpg

X

n

X

un

i¼ln

an;i � Mn;iðfpgÞ þ bi

� �� �2 ð3Þ

As outlined in Schuck and Demeler (1999), the best

minimization strategy for fitting the data in a least-squares

sense in the presence of systematic noise is the separation

of linear and nonlinear parameters (Ruhe and Wedin 1980).

Briefly, this strategy recognizes that the TI noise variables

are linear and therefore can be analytically eliminated. For

the full boundary model, this leads to bi ¼ �ai � �Mi pf gð Þ,
with �ai being the signal at radius ri averaged over all scans,

and �Mi pf gð Þ being the model at radius ri averaged over all

scans, which allows us to rephrase the minimization

problem as

Min
fpg

X

n

X

i

an;i � �ai

� �

� Mn;iðfpgÞ � �MiðfpgÞ
� �� �2 ð4Þ

It is noteworthy that this appears as a fitting problem where

both the data and the model appear as differences in indi-

vidual profiles compared to the average profile. Once this

is solved, explicit values for the systematic noise profiles

bi can be calculated. (The case is similar for RI noise

variables).

For PBM, a more complicated procedure has to be

adopted, which we will illustrate for the case of RI and TI

noise and a sedimentation model that consists of a linear

combination of Lamm equation terms,
P

k ckL
ðkÞ
ni , with

unknown coefficients ck ðwith k ¼ 1; . . . ;KÞ; analogous to

the problem of determining sedimentation coefficient dis-

tributions such as c(s). (However, any other explicit

boundary model can be substituted, such as a single-species

model, or a set of Lamm equation solutions coupled with

reaction terms describing the sedimentation of rapidly

interacting systems.) For this least-squares minimization

problem of PBM,

Min
ck ;bn;bi

X

n

X

un

i¼ln

an;i � bn þ bi þ
X

k

ckL
ðkÞ
n;i

 !" #2

ð5Þ

an optimal value of a specific RI parameter bp can be found

by setting the partial derivative with regard to this

parameter to 0, leading to

0 ¼
X

n

X

un

i¼ln

an;i � bn þ bi þ
X

k

ckL
ðkÞ
n;i

 !" #

dnp

bp ¼ �ap �
X

k

ck
�LðkÞp �

1

Np

X

un

i¼ln

bi

ð6Þ

with the abbreviations Np ¼ up � lp þ 1 (the number of radial

points in the window of scan p), �ap ¼ N�1
p

Pup

i¼lp
ap;i, and

�L
ðkÞ
p ¼ N�1

p

Pup

i¼lp
L
ðkÞ
p;i . Unfortunately, the average TI noise

signal over the radial window of scan p does not vanish. This is

in contrast to the simultaneous analysis of data on an identical

radial grid, where the linear dependence of the set of bi,bn with

regard to addition of a radially and temporally constant

baseline b allowed to request per definition that 0 ¼
PN

i¼1 bi,

which then led to a simple matrix operation determining at

once all linear parameters, i.e., bi, bn, and ck (Schuck and

Demeler 1999). In the present case, the optimal RI parameter

estimates for a particular scan will be dependent on the

particular TI parameters across the radial window analyzed

from this scan. Similarly, setting the partial derivative

with regard to a specific TI parameter bj to 0 leads to the

relationship

0 ¼
X

n

X

un

i¼ln

an;i � bn þ bi þ
X

k

ckL
ðkÞ
n;i

 !" #

dij

bj ¼ �a0j �
X

k

ck
�L
0ðkÞ
j � 1

Mj

X

n

X

un

i¼ln

bndij

ð7Þ

Fig. 2 Schematic of the selection of PBM limits for heterogeneous

systems that exhibit both small and large species. To illustrate the

recommended strategy, the black solid lines are simulated sedimen-

tation data for three species of 0.3, 6, and 20 S. The red portion

highlights the partial boundary for apparent s-values ranging from 1

to 8 S, which includes a large portion of the boundary spread from the

small species, such that their influence on the main boundary can be

accurately assessed, but no signal from the large species that can be

excluded from consideration in the model
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with the abbreviations Mj ¼
P

n

Pun

i¼ln
dij (the number

of scans whose radial window includes rj), �a0j ¼
M�1

j

P

n

Pun

i¼ln
an;jdij, and �L0j ¼ M�1

j

P

n

Pun

i¼ln
L
ðkÞ
n;j dij. As a

consequence, the optimal TI parameter estimate bj will be

dependent on the RI parameters of those scans that have

analysis windows including the radial point rj.

Because the TI and RI parameters are still linear param-

eters, they could in theory still be determined in a single-step

matrix operation, but this would require the inversion of a

matrix of the size (I ? N ? K – 1) 9 (I ? N ? K - 1),

which is impractically large. However, we can solve Eqs. 6

and 7 iteratively in perpendicular steps by alternating the

optimization of TI noise and ck for a given RI noise, and the

optimization of RI noise and ck for a given TI noise. In each

of these steps, Eqs. 6 and 7, respectively, can be reinserted

into Eq. 5, and ck can be determined (requiring the inversion

of only a K 9 K matrix), followed by using Eqs. 6 and 7

to evaluate the respective noise offsets. Starting estimates

for both TI and RI noise parameters are easily obtained from

an empirical fit of the data using the entire scans without

PBM. We observed good convergence of this procedure,

with usually in the order of 10 steps required to reach a

precision in the root-mean-square-deviation (RMSD) of the

fit of 10-6.

If this model were to be applied with a single-species

Lamm equation solution, in the limit of very small analysis

windows it would correspond to the central slope approach

described above. However, it is more general and flexible

in that it allows the consideration of larger radial regions

and the application of any other boundary model.

Spatial resolution of the detection

A highly simplified mathematical model for how the finite

radial bandwidth may affect the measured radial concen-

tration profiles is averaging over the light intensity that

would be detected across a radial interval Dr in an other-

wise ideal optical system. Over this radial interval, we

approximate the absorbance profile a(r) with the first term

of a Taylor series aðr0Þ � aðrÞ þ ðr0 � rÞda=dr. Since the

absorbance depends on the measured intensities as

a ¼ log10 I0=Ið Þ, the difference between the apparent

absorbance a*(r) and the true absorbance a(r) is

a�ðrÞ � aðrÞ ¼ � log10

1

Dr

Z

rþDr=2

r�Dr=2

10�ðr
0�rÞda=drdr0

8

>

<

>

:

9

>

=

>

;

ð8Þ

For example, with a radial bandwidth of 0.01 cm, only

absorbance gradients greater than *2.5 OD/mm would

result in deviations in excess of the typical noise of the

absorbance data acquisition. We can apply Eq. 8 for the

apparent absorbance a*(r) to replace a(r) for the data analysis

of single species. (For mixtures of multiple species, strictly,

the apparent absorbance is a nonlinear function of the

individual signals, but in the implementation in SEDFIT and

SEDPHAT, we have approximated multiple signals a*(r) to

be simply additive.)

This situation is better with the interference optical

system (IF), first because the radial resolution is higher,

and second because the error term should resemble a more

symmetric box average, for which errors arise only for the

quadratic and higher terms in the Taylor series of the

concentration profile. However, there is a theoretical

maximum gradient imposed by the continuity requirement

for the fringe shifts recorded in neighboring pixel columns.

In the simplest form, it would require neighboring

fringe shifts to differ by less than half a fringe,

Df \0:5= riþ1 � rið Þð Þ, which imposes an upper limit on the

measurable slope of *70 fringes/mm, corresponding to

concentration gradients for proteins of *20 (mg/ml)/mm.

We have observed ‘‘skipping’’ of fringe counts in experi-

ments with solutes at very high loading concentrations that

formed strong gradients. To some extent, this can be

addressed by post-centrifugal data processing, for example,

requiring the continuity of fringe displacement profiles also

of the higher derivatives of the fringe shift trace. Such data

processing tools are implemented in SEDFIT.

Temporal resolution of the detection

The frequency of scans in SV detection is usually uncriti-

cal, as a sufficiently large number of scans ([10–20, Balbo

et al. 2005) representing the entire sedimentation process

can ordinarily be taken even at high rotor speeds. However,

of concern is the time required for completing a single scan

when using the absorbance optics. In contrast to the

interference optical system, where the fringe shift pattern is

imaged simultaneously across the entire solution column,

in the absorbance system the scanning movement of the slit

across the photomultiplier is relatively slow. Because the

sedimentation process continues during the time required

for the scan, three concerns arise.

(1) To what extent does the movement of the sedimen-

tation boundary concurrent to the movement of the

detection slit lead to an artificial spread of the

measured boundaries? (Both movements are usually

in the same orientation.) A back-of-the-envelope

estimate can reveal the magnitude of this effect. For

the present purpose, we may approximate the bound-

ary shape as an error function of width r. The time

interval needed for scanning through the boundary is

dt = r/vscan, a time during which the boundary will

have moved away from the scanner by dr ¼ sx2rdt.
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As a result, the boundary will appear artificially

broader, with the relative error given by

dr=r ¼ sx2r
�

vscan. We would expect the apparent

diffusion coefficient D* characterizing the boundary

spread to be overestimated by the square of this

factor. A numerical evaluation with a typical scan

speed of vscan *40 lm/s for recommended scanner

settings (Brown et al. 2008a, b) (see below) suggests

that at a rotor speed of 50,000 rpm and radius of

7.0 cm, errors in the measured boundary spread in

excess of 1% would be observed for particles[21 S.

(2) Despite the finite time interval required for a scan,

there is only one time-stamp associated with the

data. If that time-stamp is the elapsed time of the run

at the start of the scan, the scans taken late in the run

showing the boundary close to the bottom will have

scanned through that boundary with an additional,

unreported time–lag during which the boundary had

a chance to migrate further. At the typical scan

speeds and for a 12-mm column, this time–lag is

*30 s. The underestimate of the time it took for the

boundary to migrate to the observed position in the

scan will lead to an over-estimate of s-values.

Quantitatively, the error in the s-value can be

approximated as

s�

s
¼ 1

1� sx2

vscan

ðb�mÞ
logðb=mÞ

ð9Þ

(with the bottom position of the solution column at b).

For example, with a solution column from 6.0 to 7.2 cm,

a[0.5% relative error will be encountered at an s-value

of [11.3 S or [17.7 S for rotor speeds of 50,000 or

40,000 rpm, respectively. It should be noted that this

relative error is already fivefold higher than the typical

precision of s-values in ultracentrifugal analyses.

(3) As the scanner moves forward into the plateau

regions, the sedimentation continues and with it the

radial dilution, such that scanning the solution

‘‘plateau’’ will produce a continually decaying signal.

The magnitude of this effect can be a signal decrease

in the order of 0.005–0.01 OD across the cell.

An accurate description of the absorbance data would

incorporate all of these effects by recognizing the measured

profiles to be a*(r, t) = a[r, tscan ? (r-r0)/vscan] (with r0

being the starting radius of the scan). This correction was

implemented in SEDFIT and SEDPHAT as modifications

to the Lamm equation solutions (Brown and Schuck 2008)

to be used when modeling absorbance optical data. The

finite scan time was also considered in the theoretical

expressions for the step-function boundaries of nondiffus-

ing species, which will be affected by points (2) and (3).

With the true boundary position of the nondiffusing species

at rndðtscanÞ ¼ m exp sx2tscanð Þ, due to the extra time delay

in scanning with the absorbance system it will appear to be

(in an excellent first-order approximation) at

r�ndðtÞ ¼ m expðsx2tÞ � exp sx2ðrnd � mÞ=vscan

� �

: ð10Þ

Similarly, the shape of the measured plateau is described

by the decaying exponential

c�platðrÞ ¼ c0 expð�2sx2tÞ � exp �2sx2ðr � mÞ=vscan

� �

ð11Þ

(with c0 the loading concentration). These corrections were

implemented in the ls-g*(s) analysis (Schuck and Rossma-

nith 2000), which uses the step functions of nondiffusing

species as the kernel. Similarly, the time delay ðr � mÞ=vscan

caused by the finite scan time of the absorbance optics has

been accounted for in the least-squares based van Holde–

Weischet model of SEDFIT (Schuck et al. 2002). Similarly,

we envision that Eq. 11 will allow similar scan time correc-

tions to be applied to the g(s*) transformation.

Experimental

SV experiments of thyroglobulin and bovine serum

albumin samples

For most of the experiments examining the performance of the

PBM analysis approach, the potential optical aberrations in 3-

mm centerpieces at high concentrations, as well as the effect

of the finite scan time in the absorbance optical data acquisi-

tion, we used electrophoretically heterogeneous thyroglobulin

from bovine thyroid (Sigma–Aldrich, St. Louis, MO) dis-

solved into phosphate-buffered saline. Stock dilutions of 100

or 400 lL to concentrations between 0.5 and 8 mg/mL were

loaded into the ultracentrifugal cell assemblies with 12- or 3-

mm optical pathlength centerpieces, respectively, as descri-

bed in ‘‘Results.’’ For the convection experiments, and the

experiment in Fig. 5, samples of bovine serum albumin

(Sigma–Aldrich, St. Louis, MO) were dissolved in 400 lL

PBS. Unless otherwise mentioned in the ‘‘Results’’ we fol-

lowed in detail the standard protocol (Balbo et al. 2007). In

brief, samples were temperature equilibrated at 20.0�C in a

resting An50-Ti rotor, and then accelerated to 50,000 rpm and

the evolution of the concentration gradient was recorded using

the interference and/or absorbance detection system until the

boundary had moved to the bottom of the cell.

SV experiments of trp RNA-binding attenuating protein

(TRAP)

The trp RNA-binding attenuating protein data are from

the laboratory of Dr. James Cole. They served as example
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data in the analytical ultracentrifugation workshop at the

University of Connecticut and are used here with kind

permission. The samples were prepared and studied as

described in Snyder et al. (2004). The g(s*) analyses were

conducted with dcdt? version 2.2.0, using the improved

method as described in Philo (2006). The g(s*) analysis of

the TRAP data as published in Philo (2006) was kindly

provided by Dr. John Philo.

Results

Partial boundary modeling

Figure 1 shows fringe shift data of a sample of thyroglobulin,

exhibiting a large number of aggregate species and other

degradation products. If the intent for the SV experiment is to

characterize with high precision the main boundary only, the

conventional modeling approach would place significant

computational effort on the contaminating species by

requiring all sedimenting material to be accounted for in the

model. In contrast, if the analysis is confined to the radial

range highlighted in red (defined by the apparent sedimen-

tation coefficients from 17 to 20 S), a much simpler model

can be applied. Clearly, the displacement of the boundary

and its decreasing slope with time can be assessed well,

which allows one to determine apparent diffusion coefficient

and molar mass values D* and M*, respectively. For the data

shown in Fig. 1 in red, a single species model leads to an

apparent molar mass estimate of 670 kDa, in good agree-

ment with the literature value of 660 kDa (Mercken et al.

1985), with an RMSD of 0.0075 fringes.

One potential pitfall of PBM caused by too narrow

boundary sections is the inability to define the height of the

boundary component, which could potentially result in

inaccurate implications for the modeled location of the

boundary midpoint. This should be monitored, and, if

necessary, addressed either by fixing the loading concen-

tration parameter in the model, and/or by including some

portions of the curved leading and trailing tails of the

boundary into the analysis window.

A not-too-small analysis window is also desirable for

several other reasons. In the fit shown in Fig. 1a and b, the

systematic noise offsets had been removed after approxi-

mating them with a preliminary conventional, whole-

boundary c(s) analysis. As an alternative to this ad hoc

procedure, Fig. 1d and e show the analysis of the original

raw data using slightly larger radial windows, (15–21 S)

which leads to more overlap, such that now both TI and RI

signals can be accounted for in the PBM model. A sig-

nificant further improvement of the quality of fit can be

observed, now leading to an apparent molar mass of

661 kDa with an RMSD of 0.0058 fringes.

A correlation between RI and TI noise parameters

occurs when there is little overlap of radial segments from

consecutive scans. This is because RI offsets are local to

each scan, and if the TI noise profile is also predominantly

a local property of only a few scans covering the same

radial interval, the TI and RI noise overdetermine the

offsets. This effect can be discerned from the drift of the

calculated TI noise shown in green in Fig. 1d, as compared

to the TI noise from a whole boundary c(s) analysis (gray

line). Therefore, when forced to use PBM with only mar-

ginally overlapping radial regions, it is advantageous to use

an empirical vertical prealignment of scans by an initial

c(s) distribution fit to the entire set of scans across all data.

This will define the RI noise well because the solution and

solvent plateau regions containing most information about

the RI offsets are trivial to fit and are not much correlated

with the actual boundary model. (This approach seems

statistically preferable and more precise than the procedure

frequently applied in the context of dcdt analysis of vertical

fringe alignment in a small radial region of the air-to-air

space above both solution columns.) As illustrated in

Fig. 1d, after such removal of RI offsets as free parameters,

the remaining TI estimates from the PBM model shown in

blue and from the whole-boundary c(s) model (in gray) are

very similar (modulo an arbitrary constant offset).

Further, since the high diffusion coefficients of small

species can cause migrations at rates comparable to the

sedimentation of large species, it can be useful to include a

significant portion of the trailing part of the boundary in the

analysis, such as to gain more precise information on their

signal gradients which may significantly modulate the

shape of the boundary in the radial window of interest both

in the trailing and leading (due to back-diffusion effects)

parts of the boundary. An illustration for how the optimal

application PBM is envisioned is shown in Fig. 2. A sig-

nificant portion of the small species are included in the fit,

but PBM affords the exclusion of the larger species.

PBM and data transformations

PBM establishes a new methodological relationship

between data analyses in the original data space and those

using the dcdt method for g(s*) (Stafford 1992), as for the

first time both can be applied to similar data subsets. Of

particular interest is the detailed comparison of the deter-

mination of the molar mass of a single, noninteracting

species either by PBM analysis directly fitting a single-

species Lamm equation solution, or by the two-stage

analysis strategy of fitting transformed Lamm equation

solutions (or traditionally Gaussians) to g(s*) apparent

sedimentation coefficient distribution obtained through the

dcdt ‘‘transform.’’ To illustrate this point, we examined a

data set that was previously taken as a methodological
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model by Philo (Fig. 6 of 2006) from the SV experiments

of trp TRAP.

The complete set of absorbance data is shown in

Fig. 3a (gray lines). For this experiment, Philo reports the

molar mass estimate for the TRAP complex to be 11.0

(10.7–11.4) monomer units, ‘‘exactly as expected’’ (Philo

2006) from the literature (Snyder et al. 2004). Revisiting

this analysis using the same data and g(s*) analysis, we

observe that it did rely on (1) a specific, fixed value of the

meniscus, (2) a particular choice of fitting limits (from

4.39 to 6.28 S), and (3) the choice of a data subset con-

sisting precisely of scans #23 to #34 (red lines in Fig. 3a)

from a total of 60 meaningful scans (gray lines in

Fig. 3a). The prior determination of these three factors is

an intrinsic requirement for g(s*), but each can substan-

tially influence the results. For example, a change in the

meniscus position alone by -0.01 cm (still within the

range of the meniscus artifact) already leads to an

increase by *0.41 monomer units. Figure 3b illustrates

the strong dependence on small changes in meniscus, s-

range, and scan selection, which could have led to best-fit

results varying between at least 9 and 12 monomer units

(excluding the data from early scans). This demonstrates

that the errors reported by Philo, which appear to be just

the statistical errors propagated from the noise of the data

points included, grossly underestimate the uncertainty of

the whole analysis.

A strong variation in best-fit results can be expected in

any method that relies on preselected parameters and data

subsets, which often bias the outcome in a way that is not

accounted for in the statistical errors of the analysis.

Therefore, it is desirable to use a method that does not have

to rely on preselected data subsets and preselected fixed

parameters.

The PBM approach allows the inclusion, without

drawbacks, of all available scans. This, in turn, permits the

optimization of the meniscus position by nonlinear

regression. This leads to an excellent fit of a single-species

model to the data with apparent s-range from 4.39 to 6.28

S, as shown in Fig. 4a–c. In this case, we obtain a best-fit

M estimate of 9.7 monomer units, but with a wide mini-

mum of the error surface (Fig. 4d, calculated with the

projection method and F statistics). This shows that the

information content of this noisy data set is not sufficient to

determine the oligomer size well. Similar best-fit values of

9.8 and 9.7 were obtained with wider s-ranges (4.0–7.0 S)

or smaller s-ranges (4.66–6.08 S), respectively. This molar

mass estimate of 9.7 monomer units obtained here with

PBM is consistent with the value of 10.1 obtained by c(M)

analysis of the full data set (data not shown) and the value

of 10.4 reported by Philo for the SEDPHAT hybrid dis-

crete/continuous model, both explicitly accounting for the

contaminating smaller and larger species.

In order to proceed in comparing g(s*) and PBM results,

we first observe the result of the g(s*) analysis when using

all scans (#1 to #60), analogous to those shown in Fig. 4.

This large number of scans would normally not be rec-

ommended for analysis with the standard g(s*) algorithm

due to a conflict with the ‘‘rule of thumb.’’ However, this

does not necessarily apply for the improved Lamm equa-

tion modeling of g(s*) curves, as pointed out by Philo

(2006): ‘‘using this algorithm, it is actually possible to use

the full span from the time the meniscus region is just

cleared until the plateau region is about to disappear

Fig. 3a, b Analysis of the absorbance data from the sedimentation of

TRAP used as a model system by Philo (2006). a Overlay of all

experimental absorbance scans (gray) and the selection subjected to

the data analysis by Philo (red) (Philo 2006), consisting of data with

apparent s*-values between 4.39 and 6.28 S from scans #23 to #34.

The meniscus value assumed in Philo’s analysis is indicated as bold
vertical red line. b Dependence of the result from Philo’s approach on

the particular set of scans included in the analysis. Shown are the

molar mass estimates for sequences of scans starting with the number

indicated in the abscissa, for total scan numbers of 8 scans (bold black
line), 12 scans (green line), or 16 scans (blue line). Also indicated are

the results obtained for 12 scans with a shift of the assumed meniscus

position by –0.01 cm and a slightly narrower analysis interval

including s*-values from 4.65 to 6.03 S (down triangles), and for 12

scans with a shift of the assumed meniscus position by ?0.01 cm and

a slightly wider analysis interval including s*-values from 4.03 to

6.91 S (up triangles). The thin black horizontal line indicates the

expected value from the literature (11.0), and the red circle indicates

the conditions for which the results were reported by Philo. The

dashed black lines are the limits of the 95% confidence interval

reported by Philo
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(Fig. 4a).’’ Although this would be impacted by unresolved

heterogeneity (see below), the good quality of fit with the

PBM model in Fig. 4 for a single-species model and the

low sensitivity of the PBM result to the precise s-range

chosen encouraged us that heterogeneity may not be a

major factor for the present data, when the analysis is

restricted to the central portion of the boundary (or peak,

respectively), such as to exclude the signal contributions

from the faster-sedimenting aggregates. In order to main-

tain this condition in the presence of the shift in peak

maximum of the g(s*) distribution by *1.5 S, we adjusted

the s* range for the analysis to 3.02–6.28 S. This resulted in

an estimate for M by g(s*) of only *7.4 monomer units.

Vice versa, we can apply the PBM method to Philo’s

scan selection, s-range, meniscus parameter, and best-fit

estimates of M and s. This yields an RMSD of 0.00369 OD

in the raw data space with PBM. Floating the s- and M-

values (but keeping the meniscus fixed), results in a best-fit

molar mass value of 12.0 monomer units, at a slightly

improved RMSD (0.00358 OD, which is a statistically

significant improvement). The error analysis with the

Monte–Carlo method is not recommended for ill-behaved

error surfaces. However, for comparison with the Monte–

Carlo analysis reported by Philo for his SEDPHAT anal-

ysis, we performed a Monte–Carlo error analysis that

suggested an error interval (95% confidence level) of about

±0.74 monomer units (requiring \10 min for 1,000 itera-

tions on a modern desktop PC employing a single thread).

Thus, for the present data the dcdt data-transform into the

s*-space followed by the Lamm equation-based analysis in

the s*-space, led to a difference, relative to the best-fit

PBM results from Lamm equation modeling in the raw data

space, in the best-fit molar mass by *9%, and a smaller

statistical error estimate by almost a factor of two.

Finally, we made a comparison of the results when using

an intermediate scan range (#13 to #44), which does not yet

cause a very large shift in the peak s*-value of g(s*). This

results in an estimate of *8.6 monomer units. When the

PBM model was fixed to the same meniscus value and the

best-fit s- and M-values from the g(s*) analysis, this led to

an RMSD of 0.00508 OD in the raw data space. In com-

parison, when, in an otherwise identical model, the s and M

parameters are optimized in the original data space with the

PBM analysis (at a fixed meniscus), a significantly better fit

with RMSD *0.00474 OD was found with molar mass of

*9.7 monomer units. (Due to poor convergence on this ill-

defined error surface, the precise values for the RMSD

varied by *0.00001 OD dependent on starting conditions,

with a corresponding variation of M of *0.7 monomer

units). Again, the difference in the RMSD between the

best-fit PBM model and that with parameters fixed to those

determined by g(s*) shows that the g(s*) parameter values

are nonoptimal when applied in the raw data space with the

PBM model.

If a single-species model is applied to a boundary from a

poorly resolved, heterogeneous mixture, a possible strategy

might be to constrain the s-range of the analysis to a

boundary fraction that represents mostly the species of

interest and to choose a subset of scans late in the run

Fig. 4a–d Analysis of the same absorbance data as in Fig. 3, but

considering the information from all scans. a Overlay of all

experimental absorbance scans (gray) and segments with apparent

s*-values between 4.39 and 6.28 S (equivalent to those in Fig. 3). The

PBM analysis permits calculating the best-fit meniscus position, as

indicated by the black vertical line. The best-fit estimate of the TI

noise profile is indicated by the blue line. b Enhanced view of the data

(black lines) and fit (red lines) of the PBM analysis, for clarity with

the TI noise estimates subtracted. c Residuals of the fit, using different

colors in consecutive scans. d Normalized v2 as a function of molar

mass in monomer units, calculated with the error surface projection

method of fixing the molar mass value to the values indicated while

floating all other parameters. The horizontal dashed lines are the

critical v2-values for one and two standard deviation confidence levels

1088 Eur Biophys J (2009) 38:1079–1099

123



where the different species are best resolved. Although we do

not recommend the use of small scan ranges for PBM analysis,

it is of interest to examine the apparent molar mass values

returned from this ‘‘subset’’ single-species modeling approach

as a function of the scan range. This also sheds additional light

on the comparison of the properties of PBM and g(s*) and

addresses the question how many scans should be included in

a g(s*) analysis using the improved g(s*) fitting approach with

transformed Lamm equation solutions.

To this end, a sample of BSA was sedimented at

50,000 rpm, using a loading concentration that produced

*0.2 OD280 in a 12-mm double-sector centerpiece, and

absorbance profiles were acquired at *3-min intervals. We

analyzed the data with scan ranges of decreasing size,

starting with scans #10–69, #14–69, 18–69, etc., until

finally the smallest range of #62–69. For the s-range, we

chose 3.57–5.60 S [which would correspond to the half-

height of the g(s*) peaks under the conditions suggested by

the dcdt? wizard]. The apparent molar mass values as a

function of scan range used in PBM are shown in Fig. 5 as

red solid circles, resulting in estimates of *65 kDa. There

is a slight increase in the apparent molar mass with

increasing scan range, but no apparent penalty in using a

very large scan range. In contrast, for the equivalent

analyses in g(s*) (keeping the meniscus value at the wiz-

ard-determined position), we observe a strong systematic

decrease in the molar mass estimate to less than half the

true value (black circles) when using the largest interval.

The same trend was observed when adjusting the s-value

range for each scan subset individually to encompass the

half-width of each particular g(s*) peak (open black cir-

cles). These half-widths of the g(s*) peaks increase with

increasing scan range (from 3.91–5.25 S at the smallest to

2.84–7.47 S) due to g(s*) peak broadening.

When the PBM model was executed in the raw data

space using the same adjusted s-ranges as used in the

corresponding g(s*) analysis, a drop in the molar mass

estimate was also observed (open red circles), although

significantly less than in the g(s*) analysis. However, we

note that in this case the quality of fit with a single-species

model is not acceptable, and a switch from the single-

species PBM to a c(s) PBM model is indicated. For

example, with the widened s-range of 2.82–7.47 S for the

scan set #10–69, the single-species PBM model exhibits an

RMSD of 0.00339 OD with systematic residuals, whereas

the c(s) model for the otherwise identical PBM selection

leads to a much improved RMSD of 0.00176 OD. The

resulting c(s) sedimentation coefficient distribution fit to

this PBM selection is as shown in the inset of Fig. 5

(magenta area graph); it has a peak molar mass of

*64 kDa (magenta circle).

Having characterized the properties of the PBM

approach, it will be used in the following for the detailed

analysis of the measured sedimentation data from the

thyroglobulin sample similar to the data shown in Fig. 1.

Recording steep sedimentation boundaries in 3-mm

centerpieces

One of the concerns of SV experiments with steep

boundaries is the refractive index gradient dn/dr associated

with the macromolecular concentration gradient, and

whether it leads to optical aberrations (lensing effects) such

as Wiener skewing (Wiener 1893). Clearly, dn/dr will be

higher at higher protein concentrations, and an obvious

approach to reduce dn/dr is to use shorter path-length

centerpieces. Unfortunately, when using commercially

available cell components with 3-mm centerpieces, another

problem arises: the optical system of the analytical ultra-

centrifuge is aligned such that the focus is in the 2/3 plane

Fig. 5 Dependence of the best-fit apparent molar mass value, as

determined from a single-species Lamm equation model in PBM of

the raw data (red), on the choice of scan subsets. For comparison, the

results are shown of the analogous analysis when using the improved

g(s*) fit with transformed Lamm equation solutions (black). All scan

subsets use scan #69 as the last scan, with an interval starting with the

scan number indicated in the abscissa (i.e., using 60 scans for the first

data point, and only 8 scans for the last data point). The sedimentation

coefficient range used in the analysis by both approaches was either

fixed to the interval from 3.568 S to 5.593 S (filled circles), or

adjusted for each scan selection such as to represent the width of the

normalized g(s*) distribution at half-height (open circles). Shown at

the coordinate 51.2 kDa/scan #32 (black star) is the best-fit apparent

mass resulting from the single-species fit of the g(s*) distribution for

the subset of scans from #32 to #43 suggested by the dcdt? wizard.

The fixed s-value interval from 3.5681 to 5.5933 S corresponds to the

half-height of the g(s*) peak for these conditions. The inset shows the

g(s*) curve for the wizard-selected conditions (dashed gray), with all

scans included (green), and with the smallest subset (blue), all

normalized to the same peak height. Solid lines indicate their adjusted

s-range. A PBM c(s) distribution derived from the widest scan set

with the adjusted s-range is shown as magenta area plot. It leads to a

frictional ratio that yields a peak M-value as indicated by the magenta
circle in the main plot
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of the solution column of the standard 12-mm centerpieces.

This minimizes the Wiener skewing from the refractive

index gradients of the sedimenting sample (Forsberg and

Svensson 1954; Svensson 1954) when using these standard

centerpieces. However, this condition cannot be easily

fulfilled with common cell components when using 3-mm

centerpieces.

In order to examine to what extent the location of the

focus of the interference optical system relative to the

solution column affects the quality of signal in 3-mm

centerpieces, we assembled the ultracentrifugal cell in

three alternate configurations: (1) using two standard 4.5-

mm spacers on either side such that the filling holes are

lined up with the aluminum housing, but the optics is

focused at the lower end of the solution column, (2) with a

custom-made 3-mm spacer below and a 6-mm spacer

above the 3-mm centerpiece such as to lower the center-

piece and to maintain the 2/3 plane of the solution column

in the optical focal plane, and (3) in the opposite combi-

nation raising the centerpiece and exacerbating the out-of-

focus position, which will place the focal point 3 mm

below the end of the solution column.

First, at a low concentration of thyroglobulin (0.5 mg/

mL), no significant differences (within the error of replicate

experiments) in the s-values, signal amplitudes, and fric-

tional ratios were observed (data not shown). This is

expected due to the small refractive index gradients

formed. Next, we filled all centerpieces with the same

thyroglobulin solution at 8 mg/mL, causing maximum

slopes in the sedimentation boundary of *100 fringes/cm.

Here, the standard c(s) analysis cannot model the measured

boundary shapes well due to the neglect of hydrodynamic

nonideality in the c(s) model, and at the same time a single

nonideal species model also fails due to the neglect of

heterogeneity in the sample. Therefore, we applied PBM to

fit only the central steep portion of the gradients using a

single ideal-species model simply as an empirical measure

for the boundary location and slope. In comparing the

different cells, the apparent sedimentation and diffusion

coefficient so obtained should capture any systematic dis-

tortions in the boundary shape caused by optical aberra-

tions. The results of this analysis are summarized in

Table 1. All the measured s-values and D-values were

significantly lower than in dilute solution (Fig. 1), as

expected in the presence of hydrodynamic nonideality. No

significant differences between different cell configurations

were found in the measured s-values. For the cells that

were installed with the 2/3 plane matching the focus of the

optics, we measured an apparent diffusion coefficient of

0.664 ± 0.005 F, which is within error identical to the

values of 0.660 ± 0.006 F obtained in the configuration

using the standard spacers. Only in the configuration

exacerbating the offset of the centerpiece was the result

significantly different, with the lower value of 0.583 F

indicating the steepening of the recorded profiles. This

suggests that the 1.5-mm offset between the 2/3 plane and

the focal point of the optical system in the 3-mm center-

pieces is not causing significant aberrations at gradients of

up to *100 fringes/cm.

The effect of finite time resolution when using

the absorbance optical scanner

For numerous experimental reasons it can often be

advantageous to use the absorbance optical detection

system. It is not based on imaging but on scanning

through the radial coordinate with a finite spatial detector

width and relatively low time-resolution. Since only one

time-stamp for the scan is available, as opposed to the

exact times for each radial point when the local signals

were recorded, a potential concern arises especially when

observing steep and fast-moving boundaries. We first

examined the effect of the relatively slow scanning speed,

in order to test the predictions outlined in the ‘‘Theory’’

section.

In initial experiments, we determined the radial velocity

of the absorbance optical scanner by measuring the dura-

tion of the audible lamp flashes when scanning the cell for

a preset radial interval. As expected, this strongly depends

on the radial increment and number of replicates. For our

standard settings of ‘‘continuous mode’’ acquisition in

radial increments of 0.003 cm with a single reading at each

radius (Balbo et al. 2007), we arrived at a scan velocity of

*2.5 cm/min. (For 0.002- and 0.001-cm intervals and

single acquisitions, the measured scan speeds were 1.65

and 0.94 cm/min, respectively.) From the comparison of

the time-stamp of interference and absorbance data, we

concluded that the time-stamp given to the absorbance data

stems from the beginning of the scan. We observed no

Table 1 Effect of the position of 3-mm centerpieces on the apparent

boundary spread D*

2/3 Plane offset

to focal point (mm)

Concentration

(fringes)a
s (S)b D* (F)b

1.5 21.0 16.99 0.664

1.5 21.1 17.02 0.656

0 20.3 16.98 0.663

0 20.1 16.93 0.660

0 21.0 17.10 0.669

3.0 19.7 17.04 0.583

a Corrected for cell path-length
b Sedimentation and diffusion coefficient were determined from a

single-species PBM model from the data points contributing to the

s-range of 16.5 to 17.5 S
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significant dependence on the rotor speed between 30,000

and 60,000 rpm.

Next, we carried out an SV experiment at 50,000 rpm

with the thyroglobulin sample, using standard absorbance

optical acquisition parameters. The measured absorbance

profiles are shown in Fig. 6a as solid lines. We fitted the

data with a superposition of Lamm equation solutions that

account for the scan velocity of 2.5 cm/min and then

simulated with unchanged sedimentation parameters what

absorbance profiles would have existed at the time points

when the scans started (dashed lines in Fig. 6a). The dif-

ference is highly significant and reaches values[0.05 OD,

which is 10-fold above the noise of the data acquisition.

Even though the scan time is only on the order of 20–30 s,

the boundary has migrated substantially during the time of

the scan, mimicking a faster sedimentation rate. The

apparent s-value without corrections for the scanning speed

is 19.27 S, whereas the fit with the modified Lamm equa-

tions accounting for the scanner speed results in a value of

19.10 S. The relative difference (s* - s)/s is 0.89%, in

excellent agreement with Eq. 9 which predicts a difference

of 0.81%).

In the attempt to more directly visualize the time-delay

from the scanner, we sedimented three identical samples

side-by-side at 50,000 rpm and recorded concentration

profiles by interference and absorbance optical detection. In

the absorbance scans, we acquired one, two, and four read-

ings per radial point (with the standard radial increment of

0.003 cm). While the c(s) distributions from the interference

data demonstrate the usual reproducibility and superimpose

very well (Fig. 6c, black lines), the c(s) traces without cor-

rections (magenta lines) show the expected overestimate of

the s-value, exacerbated at the higher number of replicates

(dashed magenta line). Application of the corrections with

the respective scanner speeds leads to c(s) peaks (blue lines

in Fig. 6c) much closer throughout to those from the inter-

ference optics. For the data obtained at the slowest scanner

speed, we note that the corrections do not account for the

complete shift, although the absorbance c(s) traces after

correction are still considerably more consistent.

The source of the remaining difference of 0.18 S

between the interference peaks and the two well-aligned

absorbance peaks is unclear. A likely source of systematic

error between the two optical systems is the radial cali-

bration. Statistical errors of the calibration can be assessed

more easily with the interference optical system. In a rotor

containing six counterbalances, we imaged the locations of

the reference points and observed standard deviations

between their radial positions of 0.003–0.004 cm. We can

estimate the magnification error to be *0.3%, which

would result in an uncertainty of the absolute s-values of

*0.3%, or *0.05 S at 19 S. Another possible source of

error is the measurement of the scan times.

Another aspect of the time-delay from scanning in the

absorbance data acquisition is the constant time offset

caused by scanning the region outside the solution column,

in particular the air-to-air region at small radii. At a rotor

speed of 50,000 rpm, under our standard experimental

conditions, during the time required for the scanner to

traverse 1 mm, a 20 S species will migrate *0.0008 cm.

If we assume scanning a 3-mm air-to-air region, a 10 S

Fig. 6a–c The time-delay of scanning in the absorbance optical

system. a Experimental absorbance profiles of thyroglobulin sedi-

menting at 50,000 rpm (solid lines) recorded with standard 0.003-cm

radial increment. Data were fit with a superposition of Lamm

equation solution accounting for the finite scanning velocity of

2.5 cm/min, which allowed to predict the theoretical absorbance

profiles that would have been recorded with instantaneous detection

(dashed line). b Difference between experimental and theoretical

curves. c Best-fit uncorrected c(s) traces of SV data from three cells

with absorbance optical data acquisition in radial increments of

0.003 cm and single (magenta solid line), double (magenta dotted
line), and quadruple (magenta dashed line) acquisition at each radial

point. The c(s) traces from the interference optical data acquired

simultaneously from the same cells are shown in black. After

corrections were applied to the c(s) distribution for the predicted

scanner velocity, the blue curves were obtained
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species will have migrated by 0.0012 cm and show an

apparent offset of this magnitude in the recorded radial

position of the boundary. This offset is constant for each

scan, and therefore can be largely compensated by an

equivalent compensatory shift in the meniscus position of

the model. The magnitude is small but can be significant

relative to the width of the optical artifact at the meniscus

and the required precision in the model. (Fixing the

meniscus would be a worse alternative, since it would lead

to worse fit and/or would transfer the error to compensatory

errors in the estimates of the s-values, see below.) To

address this problem more directly, we have implemented a

routine in SEDFIT that explicitly calculates the time-delay

caused by scanning between the first radial data point and

the meniscus position, and applies this delay as a correction

to the time-stamp of the scan.

The radial resolution of the absorbance system

In order to experimentally obtain an estimate for the radial

resolution of the absorbance system, we scanned an empty

six-channel centerpiece recording the radial intensity pro-

file in the transition region from light to dark at the edges

of the sectors (data not shown). Since ideally this transition

should be sharp, we took the apparent width of this region

of *0.008 cm as an estimate for the effective radial res-

olution Dr.

We then used the experimental absorbance profiles

shown in Fig. 6a and estimated the effect of a convolution

via Eq. 8. For most of the scans, the difference compared

to the original traces was negligible (\0.001 OD). How-

ever, for the steepest scan in the beginning, which has a

maximum slope of *30 OD/mm, deviations of *0.014

OD were observed. For the second scan where the maximal

slope has decayed to *10 OD/mm, the calculated differ-

ence was only 0.002 OD, and diminished further for the

following scans.

Convection and the meniscus position

The meniscus position is an important parameter for

modeling the sedimentation process. Its optical determi-

nation is obscured by the fact that the meniscus creates

large artifacts that only allow one to discern lower and

upper bounds for the meniscus position. More precise

information on the meniscus location is contained in the

translation of the measured sedimentation boundaries,

since the meniscus is the boundary position at time zero,

and thus implicitly determined by the boundary movement.

However, the accuracy of the best-fit value of the meniscus

parameter of the model relies (among other factors,

including the spatial and temporal resolution of data

acquisition discussed above) on the regular boundary

evolution and the absence of convection driven by tem-

perature differences.

For this reason, we wanted to study in more detail the

effect of convection on the best-fit meniscus position and

the impact on the results of the data analysis. To this end,

we conducted experiments where we intentionally caused

convection, for example, by equilibrating the rotor at 25�C

for several hours but then starting the run at 20�C. In this

way the rotor would begin cooling as soon as the rotor

started spinning and thereby create significant spatial and

temporal temperature gradients. As shown in Fig. 7a, a

characteristic feature for the presence of substantial con-

vection is the visible distortions with increasing slopes in

the leading edges of the early sedimentation boundaries,

which highlight a transient local delay of sedimentation.

This feature is superimposed to an initially overall faster

sedimentation due to the lower solvent viscosity at the

initially higher temperature.

Not surprisingly, a naı̈ve c(s) fit with the meniscus fixed

to the optical artifact does not model the data well when

using the complete data set (Fig. 7a, b). The best-fit dis-

tribution (Fig. 7e, black solid line) is surprisingly close to

the distribution obtained in a properly conducted control

experiment (black short-dashed line) but leads to an

overestimation of the monomer s-value by 0.1 S, as well

as an overestimate of the frictional ratio and the molar

mass associated with the main peak by 12%. If the first

3,800 s are excluded from the analysis, a much better fit is

obtained. Although this seems desirable, it is misleading

in that the later scans still are influenced by the entire

history of the physical sedimentation process. Therefore,

although the fit improved, the error in the s-values per-

sisted at the same magnitude (see blue dotted line in

Fig. 7e). However, when we allowed the meniscus to

freely adjust, it assumed a best-fit value clearly inside the

solution column, compensating for the initially faster

sedimentation in the lower viscosity conditions and

allowing a significantly better fit (RMSD = 0.0061 frin-

ges compared to 0.0079 fringes with the meniscus fixed to

the optical artifact) (Fig. 7c, d, magenta line in Fig. 7e).

The resulting s-values and Mw estimates are within error

identical to those of a properly conducted control exper-

iment (with differences of 0.01 S and 0.3 kDa, respec-

tively). Similar results were obtained when the initial

temperature of the rotor was lower than that during the run

(data not shown), in this case moving the best-fit meniscus

parameter towards smaller radii.

Discussion

Sedimentation velocity has undergone significant trans-

formation over the last 10 years with the ability to solve the
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Lamm equation and with the development of direct

boundary modeling. These techniques have the promise for

unprecedented accuracy and detail. However, a careful

adjustment of the mathematical model to the physical

sedimentation process and its detection is required. In the

present work, we have reassessed several basic elements of

SV with regard to the relationship between the mathe-

matical models and the imperfections of the experimental

setup. In particular, we have focused on apparent limita-

tions that would impact SV experiments with the most

precise information on sedimentation coefficients—those

that exhibit rapid migration of steep boundaries. Among

the problems that do, or could be suspected to, limit the

accuracy and precision of SV analyses are properties of

the optical system with regard to its spatial and temporal

resolution and aberrations in the presence of refractive

index gradients, sample contamination, convection, and the

meniscus position.

The meniscus position is often regarded as a key

parameter for the analysis of boundary movement in the

mathematical model of SV. Although a crude assignment

can be made easily from visual inspection of the scans, it

is notoriously difficult to determine the meniscus with

sufficient accuracy commensurate with modern Lamm

equation modeling. The required precision usually

exceeds even the resolution of the experimental data

points, and the radial region of measured optical meniscus

artifacts often extends over a relatively wide radial range.

The shape of the optical artifact itself can be expected to

be highly sensitive to optical alignment, sample and sol-

vent properties, sample concentration, rotor speed, cen-

terpiece material, etc. as was studied in detail previously

by several investigators (Trautman 1958; Erlander and

Babcock 1961; Gropper 1963). Gropper has pointed out

that with the focus of the optics being at the 2/3 plane of

the solution column, the meniscus position will not appear

at the correct image location (Gropper 1964). As empha-

sized by Philo (1997), ‘‘it is not entirely clear how to

determine the true correct meniscus position from the

experimental data.’’

What can be assigned with higher confidence from

graphical inspection are the limits for the region of possible

meniscus positions. These may be used as constraints for

the computational estimation of the meniscus position

through the least-squares modeling of the sedimentation

profiles. The latter usually produces a very well-defined

value, since (especially for steep boundaries in high-speed

experiments) the progression of boundary positions at the

times of the available scans implies unambiguously the

position of the boundary at time zero, provided that a

sufficiently high number of scans is incorporated in the

analysis, such that it represents the complete experiment.

Accordingly, the correlation of the meniscus parameter is

usually very low. With this approach, we found the typical

precision for s-values measured in replicate experiments

to be *0.01 S. For some applications, however, some

Fig. 7a–e Interference optical data from a sedimentation experiment

with convection. BSA was sedimented at 50,000 rpm at 20�C after

preincubation of the rotor at 25�C. a Experimental fringe profiles

(black lines) and best-fit c(s) model (red lines) with the meniscus

fixed to the optical meniscus artifact. Due to the presence of

convection, a poor fit is obtained with RMSD of 0.0195 fringes.

b Residuals of the fit. c Constraining the analysis to the experimental

scans recorded after 3,800 s (black lines) leads to an improved fit

quality (red lines) with RMSD of 0.0061 fringes. The inset shows the

meniscus region with the best-fit meniscus position indicated as a red
vertical line. If the meniscus is fixed to the optical artifact (blue line
in the inset), a significantly worse fit with RMSD of 0.0079 fringes is

obtained (data not shown). d Residuals of the fit. e c(s) distributions

from different analyses of the data: the complete data with graphically

constrained meniscus as shown in a (solid black line) leading to

s1 = 4.31 S, f/f0 = 1.54, and M1 = 77.4 kDa; the late data with

floating meniscus as shown in c (solid magenta line) leading to

s1 = 4.2 S, f/f0 = 1.47, and M1 = 69.2 kDa; the late data with

constrained meniscus (dotted blue line) leading to s1 = 4.31 S,

f/f0 = 1.47, and M1 = 71.4 kDa; and the c(s) distribution of a

reference experiment without convection (dotted black line) leading

to s1 = 4.21 S, f/f0 = 1.47, and M1 = 68.9 kDa
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correlation with other model parameters may occur, as

reported for example by Liu and co-workers (Liu et al.

2006), presumably also depending on other factors such as

the steepness of the experimental sedimentation bound-

aries, the scan range considered, and likely also how clo-

sely the model describes the observed sedimentation

process.

There are cases where the expected range for the

meniscus position from visual inspection of the optical

artifact is in conflict with the overall best-fit meniscus

position. Even though our convection experiment is grossly

exaggerating the extent of convection that may be

encountered in a well-executed SV experiment, low level

convection and detailed temperature control are considered

the limiting factors for the accuracy of SV (Errington and

Rowe 2003; Schuck 2007). The point of our experimental

exercise was to show how convection can influence the

estimated meniscus position (as well as the shape of the

sedimentation boundaries and thus the quality of fit). (As a

cautionary note, the visual patterns shown in Fig. 7 may

possibly also be caused by other effects and should not be

taken as a sole diagnostics for the presence of convection.)

We also found that another factor influencing the best-fit

value of the meniscus position would be (uncorrected for)

constant offsets in the time-stamp of experimental absor-

bance scans.

Our data suggest that a floating meniscus parameter

can help to compensate for these effects and prevent them

from degrading the precision of the sedimentation coef-

ficients and the quality of fit. We believe the estimated

meniscus position should then be regarded as an apparent

meniscus position. The advantage of this approach is that

it honors the complete information of the later boundary

positions as a function of time. In contrast, the approach

of force-fitting the data with this parameter constrained

to the visually discerned position, which is a prerequisite

for many historic SV analysis methods, improves neither

the analysis results nor the fit. However, the visually

discerned value is very useful still. It is a significant

advantage of the direct Lamm equation modeling

approach over previous methods of SV analysis that it can

flag convective sedimentation by poor fits and/or

‘‘impossible’’ best-fit meniscus positions, suggesting a

failed SV run, despite the fact that a reasonably good fit

may be achieved when using only a subset of the data

(particularly late subsets).

A time-honored approach to eliminate signals from

sample imperfections biasing the analysis of the species

of interest is adjusting the radial fitting limits. In the

present work, we have developed a PBM approach that

allows one to selectively exclude from the analysis the

ranges of data that would be influenced by faster sedi-

menting impurities or degradation products. Although

ideally all data should be included into the analysis, in

some cases the signals from aggregates would require

significant extension of the model without producing a

corresponding increase in relevant information. This is

the case, for example, when modeling interacting systems

with coupled Lamm equations with reaction terms

(Stafford and Sherwood 2004; Dam et al. 2005). Another

example is the sedimentation of heterogeneous mixtures

of species with hydrodynamic nonideality. In this case,

currently no rigorous theoretical description is available,

but PBM can allow extending the utility of a single-

species nonideal sedimentation model. (Errors in the

nonideality terms and hydrodynamic interactions from

neglect of the contaminating species can be expected to

be much smaller than the bias that would be introduced

into the fit from disregarding their signal contributions to

the data analyzed.) Another potentially useful application

of the PBM approach is the generation of prior knowl-

edge on the monomer properties needed for the Bayesian

enhancement of the characterization of monomer/oligo-

mer systems (Brown et al. 2007). Finally, PBM in con-

junction with an ideal single-species model with

empirical s*-values and D*-values can serve as a direct

analogue of the Schlieren peak area/height ratio approach

applied previously with exquisite sensitivity to the study

of the heterogeneity of the ATCase ensemble (Werner

and Schachman 1989).

There are some practical considerations that suggest

the boundary region should not be chosen too small: first,

in case TI noise is to be estimated from the experimental

data, clearly all included sections of the scans need to

show at least twofold overlap throughout for the model

to be well-posed. This can be achieved either by

adjusting the boundary section to be fitted, or by the

number of scans included into the analysis. Second, it is

useful if the boundary sections are sufficiently large to

include curvature in the leading edges, such as to carry

more information about the total boundary height.

Alternatively, the total signal would need to be con-

strained in order to avoid correlation of this parameter

with s* and D* or RI signal offsets. Finally, it is very

useful to keep in mind that the diffusion of small mol-

ecules can lead to migration exceeding the sedimentation

of much larger particles. As a consequence, it is advan-

tageous to retain the trailing edge of the boundary and

the region of low s-values in the data to be analyzed in

order to permit possible signal contributions from small

molecules to be detectable and well-defined when

accounted for in the model.

Although PBM is a useful tool to exclude visibly distinct

boundaries from the analysis, such as those of faster-sedi-

menting aggregate species, it is generally not well-suited

for isolating information on a single species in a boundary
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that is formed by an unresolved heterogeneous mixture.1 If

multiple species do not separate, they should be accounted

for by a suitable model describing heterogeneity, such as

c(s). Vice versa, if the PBM s-limits are chosen on the basis

of bracketing a single baseline-resolved peak in c(s), this

does not necessarily mean that the PBM model can proceed

with a single-species model, since the diffusional envelope

of other species may contribute to signals in the same

s-range.

Partial boundary modeling is a straightforward con-

cept, but has not been implemented in the past, likely

because of the increased computational difficulties it

poses for the determination of TI and RI noise. This

problem was tackled in the present work with an itera-

tive algorithm that permits both systematic noise con-

tributions, as well as linear concentration factors, to

be separated from the optimization of the nonlinear

parameters.

It is a significant advantage for RI noise offsets to be

included in the model and to be determined by least-

squares fit from the actual data sets subject to the anal-

ysis, as compared to the empirical alignment of scans to

remove jitter in the air-to-air region above the solution

column. The air-to-air alignment is based on only a small

number of data points, providing poor statistics. Because

it utilizes signals outside the analysis range, the alignment

approach is also intrinsically very sensitive to slight

periodic tilting of the scans due to vibrations in the

optical system, which are not uncommon and can be

readily identified in the residual bitmaps of direct

boundary models.

Similarly, we find it is advantageous to account for TI

signal contributions directly in the model as opposed to the

alternative of the pair-wise subtraction of scans for removal

of time-invariant features. A very useful direct comparison

of the two methods can be made on the basis of Eq. 4,

which shows that an arbitrary shape of TI profile can be

folded into the analysis of the macromolecular sedimen-

tation parameters, such that the latter appears as a model

for the difference between each scan and an average scan.

After fitting the macromolecular sedimentation parameters,

their corresponding implicit TI profile can be determined.

This is different from the time-difference approach, where

the reference scan to be subtracted is a single partner scan

in the particular scan pair, and the implicit TI profile

information is lost.2 From the similar form of the optimi-

zation problem, both have similar degrees of freedom (or

‘‘model-dependence’’) for the macromolecular sedimenta-

tion model. However, the time-difference procedure suffers

unavoidably from stronger amplification of the statistical

noise, which can be expected to be problematic, in par-

ticular, when modeling ill-conditioned error surfaces of

complex models for interacting systems, making the

unambiguous parameter determination even more difficult.

Further, the pair-wise subtraction method is more permis-

sive to small drifts (since the first pair does not need to

have the same TI noise as the last pair) as compared to the

more stringent requirement that all scans exhibit the same

TI offsets. Finally, it is very useful to obtain an explicit

estimate of the TI noise profile, since that can be compared

to the water blank fringe profile of the instrument and may

flag impostor fits that imply strongly curved TI profiles.

The latter would go unnoticed in the differencing trans-

formation, since it does not lead to an explicit TI trace,

unless a method for reconstructing an explicit boundary

model a posteriori is used, such as that described for the

back-transformation of g(s*) fits into the raw data space

(Schuck 2003).

The selection of the radial data-fitting range via the radial

positions of particles with s-values sl and su in PBM is in

correspondence with the selection of a predefined s*-range in

the historic two-stage hierarchical approach of first ‘‘trans-

forming’’ the data into g(s*) traces and then fitting these with

Gaussians or transformed Lamm equation solutions. As

pointed out by Philo (2006), this approach affords the possi-

bility to focus exclusively on the radial values that correspond

to any particular sedimentation coefficient range of interest,

which was previously not directly possible with the whole

boundary modeling techniques. The PBM technique can

overcome this limitation. This opens the possibility to com-

pare the data transform and direct boundary modeling

approaches with regard to their statistical properties.

The first data set examined here for this purpose was the

TRAP data previously chosen by Philo (2006) as a model

system. It exhibits a very shallow minimum of the error

surface, which is advantageous in the present context in

that it emphasizes differences in data analysis approach.

First, we observed that the g(s*) analysis is based on sev-

eral factors chosen prior to and kept fixed during the

analysis (including the choice of data subset and meniscus

1 Whether or not two species contribute to the same boundary may be

visually inspected, for example, with a c(s) analysis in SEDFIT,

requesting the peak information by pressing control-M, and clicking

on a peak button, which causes the diffusion-broadened contributions

of this peak to different boundary fractions to be superimposed on the

raw data.

2 Philo (2006) uses the term ‘‘algebraic’’ for the pair-wise subtrac-

tion. This is confusing, as we have introduced the terminology

‘‘algebraic noise decomposition’’ for the explicit calculation of TI and

RI noise from the data set to be analyzed, which uses matrix algebra

to directly calculate the least-squares optimal estimates for these

parameters. This should be distinguished from the pair-wise subtrac-

tion in the Dc/Dt approach.
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position) that have a significant influence on the analysis.

They have to be skillfully chosen (see above for the

meniscus problem), are then fixed in the analysis, and may

lead the investigator to arrive at results with a wide range

of values (Fig. 3b). Unfortunately, none of these para-

mount, preselected factors are considered in the statistical

error analyses reported by Philo (2006).

Generally, a variation in results dependent on which

values the preselected parameters are fixed at is not

restricted to g(s*) and will likely be a problem for any

analysis based on preconceived meniscus positions and

narrow scan subsets, including PBM if it were to be arti-

ficially constrained in that way. However, the key advan-

tage of the PBM approach is that it naturally allows all data

to be incorporated and all unknowns to be included into the

analysis. In this way, it can determine an unambiguous

best-fit value for the set of unknown parameters, with error

estimates that incorporate correlations of all unknowns. In

particular, early scans may be included in the PBM

approach, which makes the computational determination of

the effective meniscus location by nonlinear regression

better conditioned.

It is an open question to what extent the ‘‘improved’’

Lamm equation fitting method of the g(s*) transform does

also allow inclusion of large scan ranges. While Philo has

reported that the accuracy of the fitted parameters

‘‘becomes essentially independent of the time span,’’ and

that ‘‘it is actually possible to use the full span from the

time the meniscus region is cleared until the plateau region

is about to disappear’’ (Philo 2006), this seems to apply

only to data from strict mono-disperse samples or from

samples that are fully described by the Lamm equation

model. For very large time-ranges, the g(s*) peaks from all

species become artificially broadened, and even though this

broadening is mimicked for each species by modeling with

the transformed Lamm equation solutions, the peaks can

eventually merge. This strongly diminishes the possibility

of focusing on a particular species of interest and using a

single-species model for its description. This effect

increases with larger scan intervals and the inclusion of

earlier times [the effect being approximately proportional

to *Dt/tmid (Schuck and Rossmanith 2000)]. This inter-

pretation is consistent with our observation of lower best-fit

M values from g(s*) analyses compared to best-fit PBM

results when considering scans #13–44 and scans #1–60 for

the TRAP data, as well as the strong decrease in the

apparent monomer molar mass estimates of g(s*) with

larger scan numbers from the BSA data in Fig. 5.

Such an effect is absent in the PBM modeling. Even

though unresolved and unaccounted for heterogeneity will

also lower the apparent molar mass values, in particular

when using large s-ranges, this effect is not exacerbated by

artificial broadening of the contributions from the different

boundary components. This allows one to use very large or

entire data sets without drawbacks. This is unbiased and

statistically optimal and presents residuals between the

model and the raw data.

When we compared the results with the PBM analysis of

equivalent scans and radial ranges using an equivalent

model, we found that the parameter estimates from the

g(s*) analysis are nonoptimal in the original data space.

Contributing to this may be remaining subtle differences in

the model, for example, with regard to the noise parameters

(see above), and possibly the exact data points contributing

to g(s*) curve versus those fitted to in PBM. However, we

believe that the main contribution arises from the artificial

broadening outlined above, which we suspect is ultimately

a by-product of the reduction in the dimensionality of the

data from signal as a function of space and time to a

transformed signal as a function only of s*. From our point

of view, a priori favoring the raw data and explicit direct

boundary models, the nonoptimality of the g(s*)-derived

parameters in the raw data space suggests a distortion of

the error surface in the g(s*)-based approach, including

obviously a translation of its minimum.

With regard to the TRAP analysis, we emphasize that

the point of this exercise was not to re-determine the

oligomeric state of TRAP, and it is apparent the data in

Fig. 3 simply do not have the information to determine the

oligomer size (in contrast to the data presented in Snyder

et al. 2004). We have validated these PBM results in a

detailed analysis. We believe that for the present data, a

theoretical value of 11.0 cannot necessarily be referenced

as the ‘‘true’’ value to be expected. Although the putative

TRAP undecamer is within error consistent with the data,

generally there may be important reasons why the sedi-

mentation boundary, when modeled as a single species,

gives best-fit estimates for the apparent molar mass lower

than the putative true molar mass of the main species. For

example, errors in the partial-specific volume can translate

to systematic errors in M. Further, as is well-known, any

unaccounted heterogeneity either from mixtures of 11mers

and possibly co-existing 12mers (McCammon et al. 2004)

(Watanabe et al. 2009) or from 11mers coexisting in dif-

ferent trp-ligation states [which exhibit different s-values

(Snyder et al. 2004)] would serve to artificially lower the

molecular weight estimate. From the data in Fig. 3a, we do

not know to what extent these factors are relevant. It is

certainly a boon of any data analysis method to reveal such

problems if they exist, which allows one to address them

and ultimately arrive at reliable results.

For deriving accurate detailed information from the

analysis of SV experiments, it is crucially important to

understand imperfections in the optical detection. One

limitation is Wiener skewing, a curvature in the light path

caused by refractive index gradients (Wiener 1893). As
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described by Svensson in the analysis of optical aberrations

for interference optical imaging systems (Svensson 1954)

and summarized by Rowe (2006), the most important term

is of third power in the cell height and proportional to

a3ð2� 3rÞ dn=drð Þ2 with a being the cell height and r the

fractional distance of the focal plane along the cell (derived

for the condition that the focus lies within the solution

column). For 3-mm centerpieces, in the configuration with

equal spacers that allow access to the standard filling holes,

the focus is not maintained at the 2/3 plane, and therefore

aberrations causing fringe displacements will arise. To

assess the theoretically expected error, if we use—as an

approximation—the above expression, its third power

dependence on cell height would suggest that the position

of the focus should be far less significant for 3-mm cells

than it would be with 12-mm cells. This is consistent with

the experimental observation by Yphantis that the focus

plane is far more critical in 30-mm cells than in 12-mm

cells (Yphantis 1964). Therefore, we asked whether at

moderate protein concentrations with relatively steep gra-

dients any aberrations would be experimentally detectable.

In the standard configuration of 3-mm centerpieces, we

found no evidence for optical aberrations affecting the

measured sedimentation parameters for protein gradients of

up to 100 fringes/mm. This is consistent with theoretical

predictions (Lloyd 1974; Rowe 2006). At higher protein

concentrations, however, this error would be expected to

become more significant (along with even greater diffi-

culties of analyzing the hydrodynamic nonideality).

Together with the results from an experimental study of

Wiener skewing effects in the absorbance optics by

Gonzalez et al. (2003), we conclude that for proteins at

concentrations that do not show either significant hydro-

dynamic nonideality or obvious ‘‘black bands’’ in the

absorption optics, the magnitude of Wiener skewing is too

small to affect the SV analysis when using centerpieces

currently in general use. Even when it does occur, we

would expect it to lead predominantly to distortions of the

boundary shape, rather than introducing errors in the esti-

mated radial displacement of the boundary with time, and

thereby leave the determination of the s-value less affected.

However, for the detailed study of high protein concen-

trations it may be possible in the future to apply numerical

corrections in the model fitted to the data to mimic the

effects of Wiener skewing.

Finally, a probably widely recognized problem with the

absorbance optical system is the relatively poor spatial and

temporal resolution (as compared to, for example, the

interference optical system). We have studied in a simple

model the effects of the limited radial resolution and found

it not to significantly affect the gradients obtained under

most conditions. However, our results do show the possi-

bility of significant errors arising from the finite radial

resolution for the steep slopes at the beginning of the run.

Further, we detected very significant errors in the apparent

s-values arising from the finite scanning velocity of the

absorbance data acquisition. Under the conditions of our

experimental test (a protein of 19 S sedimenting at

50,000 rpm), the error is *1%, which is an order of

magnitude above the usual precision in the determination

of sedimentation coefficients. For proteins with other s-

values, the dependence of the theoretically expected error

on the rotor speed and s-value of the protein is shown in

Fig. 8.

The problem is conceptually straightforward to illus-

trate: If a particle requires, for example, 100 min to travel

from meniscus to a reference point close to the bottom, and

it takes—hypothetically—1 min to complete one scan

across the same distance, then a scan with the beginning

time-stamp of 99 min will record the particle already at the

reference point. Therefore, the particle will appear to have

sedimented 1% faster than it really did. Surprisingly, this

problem has to our knowledge not been previously ana-

lyzed in the published literature. Although it could be

experimentally minimized by running experiments at a

lower rotor speed, this is not desirable due to the shallower

boundaries leading to lower precision of the sedimentation

coefficients. We have shown that the error can be

accounted for by appropriate theoretical corrections in the

model functions. Most importantly, the fitted Lamm

equation solutions can be adapted to the finite scanning

speed by mimicking the evolution of sedimentation during

Fig. 8 Predicted relative error in the apparent sedimentation coeffi-

cient as a function of true s-value (in S) and rotor speed (in rpm) when

uncorrected for the finite time of scanning. Standard conditions are

assumed, with a solution column corresponding to a 400 ll sample

and a scanning speed of 2.5 cm/min, approximately that obtained

with standard acquisition parameters with a 0.003 cm radial incre-

ment and continuous acquisition of a single reading per radial value
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the recording process of the concentration gradients. These

corrections will allow improved hydrodynamic modeling,

molar mass estimates, and improved correlation of the

signals from the different optical systems in the global

multi-signal ck(s) method (Balbo et al. 2005). The need for

computational corrections accounting for the finite speed of

the absorbance scanner will be particularly important when

studying larger macromolecular assemblies that sediment

fast.
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