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Abstract

Predicting species range shifts in response to climatic change is a central aspect of global change studies. An ever
growing number of species have been modeled using a variety of species distribution models (SDMs). However,
quantitative studies of the characteristics of range shifts are rare, predictions of range changes are hard to interpret,
analyze and summarize, and comparisons between the various models are difficult to make when the number of species
modeled is large. Maxent was used to model the distribution of 12 Abies spp. in China under current and possible future
climate conditions. Two fuzzy set defined indices, range increment index (I) and range overlapping index (O), were used to
quantify range shifts of the chosen species. Correlation analyses were used to test the relationships between these indices
and species distribution characteristics. Our results show that Abies spp. range increments (I) were highly correlated with
longitude, latitude, and mean roughness of their current distributions. Species overlapping (O) was moderately, or not,
correlated with these parameters. Neither range increments nor overlapping showed any correlation with species
prevalence. These fuzzy sets defined indices provide ideal measures of species range shifts because they are stable and
threshold-free. They are reliable indices that allow large numbers of species to be described, modeled, and compared on a
variety of taxonomic levels.
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Introduction

The increasing availability of species distribution models

(SDMs) [1,2,3,4,5], open-access high resolution climate data sets

[3,6,7,8,9], digital species distribution maps, and digital voucher

specimen data sets [10,11,12,13,14] (BGIF http://www.gbif.org;

TROPICOS http://www.tropicos.org), make it possible to model

species distribution and to predict shifts in species’ ranges in

response to possible future changes in climate. As a result, many

such studies have been carried out [15,16,17,18,19,20] and many

more can be expected. Studies of changes in biodiversity (either of

whole biota or within a certain taxonomic group) will clearly

benefit from these methodological advances [21,22,23]. However,

interpretation of the large quantities of data and predictions likely

to be produced will certainly present a challenge. Standardized

methods will be required to quantify and compare predicted

changes in species distribution. Conventional mapping and visual

inspection methods will be inadequate to cope with the amount of

data generated, and quantitative indices will be required.

These quantitative indices will also be needed to provide new

methods for evaluating SDM results [24,25,26]. It has recently

become clear that ‘‘standard’’ SDM validation procedures give

inadequate or even misleading results [25,27]. The Kappa index,

the area under the curve (AUC) of a receiver operating

characteristic (ROC), and other methods involving the partition-

ing of data sets to build models and validate subsets, are all by

nature model fitting techniques [1,28,29,30,31]. These indices and

procedures are valid for evaluating species’ range shifts in response

to climate change only when model predictions are consistently

related to model fitting. Unfortunately, this assumption is rarely

met [32]. The performance of a model in predicting outcomes can

only be evaluated by examining its predictions. Because the

‘‘actual’’ distribution data in the future are of course lacking, no

model can ever be truly validated. However, model uncertainty,

model transferability, and ‘hindcasting’ analyses can be performed

to evaluate predictions indirectly [24,26,30,33,34]. Quantitative

indices are required to compare models and their predictions

statistically.

It is possible to apply traditionally defined indices (discrete map

based) to measure range shifts, but difficulties often arise from the

fact that most SDMs do not predict conventional maps showing

discrete distributions, but instead usually predict either distribu-

tions based on assumptions of continuously suitable habitats, or

distributions showing the probability of species occurrence [1,5].

Datum type conversions from continuous to discrete maps are

usually performed by classifying predictions into absent/present

using a threshold value [32]. However, the choice of threshold

values can seriously affect the resulting maps and makes it

impossible to compare results between different studies.

Fuzzy set theory provides a promising means of solving this

problem because it does not require the use of thresholds [35,36]

but it is a difficult theory to understand and involves complex
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calculations. The first problem can be addressed through analogies

with traditional mapping methods, and the second using GIS

programming.

We used two fuzzy set defined indices to quantify range shifts of

Abies spp. in China to test the hypothesis that shifts in species’

ranges caused by climate change vary according to each specie’s

current distribution [37].

Methods

The Abies spp. in China
Twenty-eight species (including varieties) of the genus Abies

(family Pinaceae) occur in China [38,39], with 12 of them being

sufficiently widely distributed to be modeled by SDMs. Abies spp.

are cold tolerant, moisture-loving, coniferous trees, generally

distributed in mountainous areas. In China, Abies spp. are

concentrated in mountainous areas in the northeast and southwest

(Figure 1), where most of the forests occur. They do not occur in

northwest China because of their intolerance of aridity (unlike

Picea spp.). It is not clear whether Abies are absent from the central

and southeast Chinese plains due to human disturbance or the

high ambient temperatures. The relatively large number of Abies

species, the ease with which they may be located, and the

variability in their spatial distribution (both large and small, and

compact and dispersed populations occur over a large geograph-

ical area) make them a good case study (Table 1).

Species distribution and environmental data sets
Species distribution data were extracted from the digital

Vegetation Atlas of China (1:1000 000) [40]. The maps have a

vector based data format with each vegetation patch represented

by a polygon. The smallest polygons that can be detected on the

maps are about 1 km2.

These maps are compiled from multiple sources, are accepted as

the most accurate nationwide Chinese vegetation maps, and show

the distribution of vegetation types during the 1970–80s. The

vegetation types are classified and named after the first two or three

most important community building species typical of each type.

We extracted all the mapped vegetation types containing Abies

spp. within the vegetation type name (that is where an Abies spp.

was one of the three main species defining a community). Species

with scattered distribution or those that occur only rarely were not

included in our species distribution data set. Excluding scattered or

rare distributions did not seriously distort our sample ranges

because Abies spp. are very conspicuous and usually abundant in

large patches [39].

The vector maps were firstly converted into raster layers on the

ArcInfo workstation (polygrid). The resulting data layers have cells

one minute in size. Each species was then aggregated to coarser

data layers having a cell size of 5 minutes, to match the resolution

of our environmental data.

To project the future shifts in a species’ range, we used only

climatic data as candidate predictors and ignored other factors such

as topography and soil type. The projected ranges therefore reflected

only climatic suitability for the species, rather than their true

distributions. We chose climatic factors most relevant to plant species

distribution, rather than the total climatic data available [41]. The

predictive data set used was extracted from BioPlant, a world plant

bioclimatic data set with a 10 minute (latitude/longitude) sample

resolution [9] and we then downscaled it to 5 minutes using change

factor downscaling techniques. The BioPlant data set calculates 15

layers of variables derived from monthly temperature and pre-

cipitation data, which were downscaled from GCM model

predictions. Change factor downscaling techniques were adopted

to obtain a fine scale data set [8], which took full account of the

effects of elevation on climatic variables.

In this research, we used the data set derived from the most

commonly applied general circulation model (GCM): HADCM3

[3]. Three SRES greenhouse emission scenarios (A1B, A2, B1),

and two future time slices, mid-century (20 year means from

2041–2060), and end-century (20 year means from 2081–2100).

Climatic data for calculating bioclimatic variables representing

the present were downloaded from the WorldClim data set [7],

which has a resolution and interpolating schedule consistent with

those used for our future scenarios. The same procedure was

applied to calculate the 15 plant biological variables [9].

The standard deviation of detrended elevation data was defined

as ‘‘topographical roughness’’ in this study. The 5-minute resolu-

tion relative roughness data layer was calculated from SRTM

DEM data (http://dds.cr.usgs.gov/srtm/). The SRTM data were

first aggregated onto a 1-minute resolution grid, the grid was

detrended, and then the focal standard deviations were calculated

within each 565 focal area cell. The relative roughness was then

calculated by dividing the raw roughness by the mean roughness

over the whole study area using Arcgis Spatial Analyst.

The whole data set of Abies species distributions and environ-

mental variables (current and future scenarios) is available as

supporting information (File S1).

Model implementation
Maxent was chosen to model each species’ climate requirements

[42,43], and the fitted models were projected to the future climate

scenarios to predict changes in species’ ranges. Species sample

data were extracted from the grid data derived from the vegetation

maps described above. All grid cells that showed the presence of a

target species were converted to point data format and 300 cells

were selected at random to train the model (this sample limit being

selected to avoid over fitting). If a species was present in less than

300 cells, all of the cells were selected. A total of 10 000

background points were selected at random from the entire study

area (140 631 cells in total), avoiding cells occupied by the target

species.

The mean temperature of the coldest month (T_cld), the

growing degree days (GDD) with a threshold of 0uC, and the

aridity of the growing season were chosen as environmental

variables. Growing season aridity was defined as the ratio of the

total potential evapotranspiration during the growing season to the

total precipitation in the same period. These three predictors are

thought to be the main environmental factors constraining plant

species distributions [41]. Grid data of these variables for the

present climate and the three climate change scenarios were

converted to ASCII data format compatible with Maxent.

All the data layers were mapped in geographical projections

(raw latitude and longitude coordinates) and with a resolution of

five minutes. The mapping was confined to the Chinese mainland,

Hainan, and Taiwan. The other smaller Chinese islands were not

included in the analysis.

Model runs were conducted on 12 species, two future time slices

(mid-century and end-century), and three climate change scenarios

(A1B, A2, B1), using the Maxent batch file running mode. Default

settings were adopted and the logistic outputs were recorded.

The AUC, maximum kappa (max_k), and maximum true skill

statistic (max_TSS) indices of all species were calculated to

examine the goodness of model fitting.

Definitions of indices
We adopted the conceptual framework, proposed by Real et al.

[36], that uses fuzzy set theory to describe how various conditions

Indices for Species Range Shifts
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Figure 1. Current Abies species distributions and main environmental factors.
doi:10.1371/journal.pone.0023115.g001
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favoring a species distribution change in response to changes in

climate. Two indices were proposed to measure different aspects

favoring a species, namely the increment in favorability (I), and the

favorability overlap (O):

I~
c(Ff ){c(Fp)

c(Fp)

O~
c(Ff \Fp)

c(Ff |Fp)

where, c represents fuzzy set cardinality, Fp represents the fuzzy set

of current distribution, and Ff is the fuzzy set of future distribution.

We extended the meaning of the indices by replacing the

membership function from species favorability with potential

suitability of species’ range. Thus the meanings of the I and O

indices are changed to increment and overlap in species’ ranges

shifts.

The range increment and overlapping indices can be more

easily understood in ordinary discrete mapping terms:

I~
nf {np

np

O~
nf\p

nf|p)

where, n represents the number of cells. Subscripts p and f

represent present and future distributions, and subscripts f>p and

fUp represent combined and overlapping areas of both future and

present distributions.

The equivalence of the two definitions can be demonstrated by

considering the threshold definition as a special case of a fuzzy set

definition with a stepwise membership function. The membership

is zero when the occurrence probability is below a given threshold,

and one when the probability is above that threshold.

Calculation of indices and analysis
The I and O indices were calculated for 12 species, at two future

time slices (mid-century and end-century), three climate change

scenarios (A1B, A2, B1), and using two calculation methods (the

threshold method with a threshold of 0.1, and the fuzzy set

method. The calculations were all done using an ARCINFO

Workstation with arc macro language (AML). GRID algebra was

the most commonly applied function in the programming (File S2).

The mean, standard deviation, and maximum and minimum

values of the I and O indices of the 12 Abies spp. were calculated

for each scenario and future time slice. Spearman’s rank

correlation coefficients were calculated for the species’ range shift

indices (I and O) compared to the species current distribution

parameters (latitude and longitude of the distribution centroid,

mean topographical roughness within a species’ range, and the

number of cells occupied by the species), and the significance of

the relationships was tested using the t-distribution. Three

significance levels (‘‘very significant’’ 0.01, ‘‘moderately signifi-

cant’’ 0.05, and ‘‘slightly significant’’ 0.10) were assigned to the

relationships.

Results

Performances in model fitting
The area under the curve (AUC) of the receiver operating

characteristic, maximum kappa (max_k), and maximum true skill

statistic (max_TSS) are the three most widely used indices to

indicate the performance of a model (its discrimination power) for

Table 1. General distributional information of the 12 Abies Species in China.

Species NO. SP. 1 SP. 2 SP. 3 SP. 4 SP. 5 SP. 6

Scientific Name A.nephrolepis A.fargesii A. georgei A.squamata A.spectabilis A. delavayi

No. Cells Occupied 462 108 1067 598 45 302

Latitude (Centroid) 45.678 33.050 29.034 30.39 28.731 27.491

Longitude (Centroid) 128.962 106.070 97.240 100.33 90.624 99.041

Mean Roughness 0.947 2.728 3.888 3.215 3.947 3.617

Mean T_cld 221.21 23.60 23.93 26.19 23.95 1.84

Mean Gdd 2367.7 2900.5 1954.0 1601.0 1924.9 3310.5

Mean Aridity 20.376 20.514 20.452 20.590 20.445 20.610

Species NO. SP. 7 SP. 8 SP. 9 SP. 10 SP. 11 SP. 12

Scientific Name
A. fargesii var.
faxoniana A. fabri A.holophylla A. forrestii A. awakamii

A. delavayi var.
motuoensis

No. Cells Occupied 448 300 110 238 39 304

Latitude (Centroid) 32.202 29.926 42.127 28.747 24.425 28.866

Longitude (Centroid) 102.950 102.550 126.960 101.850 119.950 94.988

Mean Roughness 3.488 3.770 1.043 3.563 3.805 4.401

Mean T_cld 25.84 20.01 216.57 21.05 5.38 0.76

Mean Gdd 1912.8 3325.9 2665.0 2762.5 3913.8 3268.5

Mean Aridity 20.648 20.695 20.508 20.689 21.530 20.573

doi:10.1371/journal.pone.0023115.t001
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current climate [44]. The AUCs of all the species in the models

built using Maxent were greater than 0.980, (average 0.990)

showing that the models are powerful discriminators, and that the

three selected variables (T_cld, GDD, and growing season aridity)

were good predictors of Abies spp. distribution. The max_TSS also

provided a good model fit, with values for most of the species

greater than 0.950. However, max_k showed model fits that were

only moderate, with an average max_k of around 0.350. TSS and

k were very sensitive to the threshold, with TSS preferring a low

threshold and k preferring a high threshold (Table S1).

Range shifts of Abies spp. in China represented by the I
and O indices

Visual inspection of the modeled maps (Figure 2 and Figure 3)

and the plotted I and O index values (Figure S1) show that the

index gave meaningful indications of range increments and

overlapping that conformed to our intuitive expectations. For

example, SP. 1 expanded its range markedly compared with its

original ranges and its I index values ranged from 1.0 to 2.0 for

both future time slices and the scenarios calculated by the

threshold and fuzzy set methods. SP. 5 showed most overlap on all

occasions (future time slices, climate scenarios, and method of

calculation) compared with those of other species, and also had the

largest O index values.

The expansion or contraction in range size (I index) varied

widely among species, with range expansions (I.0) more common

than contractions (I,0). Taking the genus as a whole, the

differences among species were much more significant than those

within species for the different climate scenarios and future times

(Figure S1).

Like the change in range size (I index), the range overlapping (O
index) showed very large interspecies variation, while the variation

between scenarios was relatively small. Unlike the change in range

size, where the trend between the two future time slices diverged,

range overlapping showed very convergent changes, with much

smaller overlapping at the end-century than at the mid-century

time slice. This means that range overlap decreases with time

(Figure S1).

Correlations between shifts in range and distribution
parameters

It is clear from Table 2 that the change in range size (I index)

was ‘‘very significantly’’ correlated with latitude, longitude, and

mean roughness, and not correlated with the number of cells a

species originally occupied. The positive correlations with latitude

and longitude mean that Abies spp. distributed in northeastern

China tended to expand their range much more than their

southwestern counterparts. The negative correlation with rough-

ness indicates that Abies spp. tended to expand more in flatter

areas, or to contract in rougher areas. We were surprised to find

that changes in Abies spp. range sizes were not correlated with their

original areas of distribution. This is unusual because it is generally

hypothesized that narrowly distributed species are more vulner-

able to climate change. These trends were consistent for all

climatic change scenarios, future time slices, and index calculation

methods.

The range overlapping (O index) was clearly not correlated with

the number of cells a species originally occupied. It gave ‘‘very’’ to

‘‘moderately’’ significant negative correlations with longitude,

while the O index by threshold method gave more ‘‘very’’

significant cases than did the fuzzy set method. The O index gave

‘‘moderately’’ to ‘‘slightly’’ significant positive correlations with

roughness, while the O index by the threshold method gave more

‘‘moderately’’ significant cases than did the fuzzy set method. No

significant correlation was detected between the O index and

latitude in the threshold method cases, but a few cases of slightly

significant negative correlations were detected in the fuzzy set

cases (Table 3).

By comparing the correlations of the I and O indices to

distributional characteristics, the I index shows much more

consistency in all climate scenarios, time slices, and index

calculation methods.

table-1-captionIn summary, the range size changes and range

overlapping were never correlated with the original species dis-

tribution areas. The range size changes showed very significant

positive correlations with longitude and latitude, and very sig-

nificant negative correlations with roughness. The range overlap-

ping showed generally negative correlations with longitude,

negative or no correlations with latitude, and positive or no

correlations with roughness. The original hypothesis is therefore

partially upheld with regard to Abies spp. in China.

Discussion

Why does the threshold problem mat er?
As mentioned in the introduction, it is imperative to apply

standard indices so that: 1) large numbers of data-rich predicted

maps can be adequately summarized; 2) inter-species (or inter-

taxa) comparisons can be used to evaluate the overall influence of

climate change on biodiversity; and 3) the methodological dif-

ferences in evaluating model performances, from goodness-of-fit

to direct measurement methods, can be examined. Problems in

applying the threshold method have presented a major obstacle to

the development of such standard indices.

Several methods have been applied to determine appropriate

threshold values (arbitrary, maximum corrected rate, maximum

kappa, maximum sensitivity plus specialty, or a balance between

sensitivity and specialty) [32,44,45], and the debate as to which is

best continues. It is evident that using different methods to

determine thresholds makes comparisons among studies invalid.

The stability of these methods is also a major concern. Suppose

that the same method is applied to determine a threshold for two

different sample subsets of the same species. It is reasonable to

suppose that the actual thresholds for each group would be

different, so which threshold should be applied? If each model

applied used its own threshold, then would the predicted ranges

have the same meaning and be comparable? Moreover, if we were

to model multi-species range shifts, should we use the same

threshold for all species or the ‘‘best’’ threshold for each species?

Choosing the best universal threshold for all species would be

difficult, and using different thresholds for each would complicate

comparisons between the ranges of different species. It is an

important property of standard indices that they are threshold-free

and this explains the popularity of the AUC index in measuring

model performance.

Turnover rate has frequently been used as a quantitative index

to measure the effect of climatic change on species’ range shifts

and changes in biodiversity. This index can be used to measure the

overall effects of climate change on a group of species [17,22,32,

33,37]. However, shifts in range at the species level are the basis

for all changes at higher taxonomic and community levels. We

believe that if predictions are not accurate at the species level, then

estimated overall turnover rates must be inaccurate also. The same

threshold selection problem that we have discussed above applies

in assessing species turnover rate [32]. Arbitrary selection of

thresholds, or applying ‘‘best’’ thresholds that are not universally

agreed, must add uncertainty to estimates of biodiversity change,

Indices for Species Range Shifts
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Figure 2. Projected distribution of selected species (Species No. 1, 3, and 5).
doi:10.1371/journal.pone.0023115.g002
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Figure 3. Projected distribution of selected specie (Species No. 7, 9, and 11).
doi:10.1371/journal.pone.0023115.g003
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and make comparisons among studies problematic. It is possible to

formulate turnover rate indices using the same fuzzy set method as

for species, and thus make them threshold free.

Fuzzy set defined indices may be more stable than
threshold based ones

Stability is another important property required by a good

index. We realized that fuzzy set defined indices are more stable

than threshold ones while making visual inspections of index

values species by species. Detailed analyses of outliers and

inconsistent cases pointed to threshold effects as the primary

cause. Close scrutiny of two outliers (SP. 9 and SP. 11) shows that

they all contain large areas of low suitability habitat (near

threshold 0.1) in the future climate scenarios (Figure 3). The

difference between them is that one of those areas (for SP. 9) was

slightly greater than the given threshold (0.1) and the other (for SP.

11) was less than the threshold. Even small adjustments of the

threshold may result in large differences in predicted ranges. Large

areas of near threshold distribution could be the reason for the

differences between the two methods of analysis.

It also appears from the overall statistics of the indices (Table S2

and Table S3) that fuzzy set defined indices may be more stable,

because the range of fuzzy set defined indices (both I and O) are

significantly smaller than the threshold ones, and the standard

deviation of the fuzzy set defined O index are smaller than for the

threshold defined index.

However, these observations do not conclusively confirm the

hypothesis that fuzzy set defined indices are more stable, and

further studies are needed. Comparison of the standard deviations

of indices in several model runs, at exactly the same model settings,

may provide a statistical assessment regarding the absolute stability

of these indices.

In summary, the IOMS framework proposed by Real et al. [36]

provided a good basis for our study. We calculated two relatively

independent indices, I and O, which provide good quantitative

descriptions of species’ range shift characteristics, and perform well

in the example species modeled. By applying these indices to Abies

spp. in China, we found that: 1) most of the variations in range

expansion and distribution overlap in response to climate change

are due to interspecies differences rather than the type of climate

change scenario modeled; 2) species’ range shift characteristics are

not correlated with the species prevalence, but show clear

correlations with their geographic locations; and 3) species ranges

change more (greater range expansion or contraction, and smaller

overlaps) in flat areas than in topographically rough areas.

Whether these conclusions are unique to Abies spp. in China, or

represent a general pattern requires further investigation.

Supporting Information

Figure S1 I and O indices of Abies species for different
scenarios and calculating methods. In the classification axis,

the naming takes the form ##_**_xx. ## represents indices the

calculation method of the indices, with Thed representing the

discrete method with threshold 0.1, and Fuz the Fuzzy set method.

** represents climate scenarios, taking the value of A1B, A2, or B1.

xx represents the future time, with Y50 representing mid-century

(2041–2060) and Y90 representing end-century(2081–2100 ). SP.

No. follows the definition shown in Table 1.

(DOC)

Table S1 Model performance indices for 12 Abies spp.
in China. Area under the curve of receiver operation

characteristic (AUC) , maximum kappa (max_k), and maximum

true skill statistic (max_TSS) are three most widely used indices to

indicate model performances (discrimination power) for current

climate. A step length of 0.05 on threshold was adopted to

determine the thresholds for Max_kappa and Max_TSS.

(DOC)

Table S2 Statistics of the I index for 12 Abies species for
three climate scenarios and two future time slices.
(DOC)

Table S3 Statistics of the O index for 12 Abies species
for three climate scenarios and two future time slices.
(DOC)

File S1 A rar file of Abies spp. distributions and
environmental data layers.
(RAR)

Table 2. Statistical significances of the correlations between
the I index and species distribution parameters.

Mid-century End-century

A1B A2 B1 A1B A2 B1

Threshold
Method

No. Cell O O O O O O

Latitude qqq qqq qqq qqq qqq qqq

Longitude qqq qqq qqq qqq qqq qqq

Roughness QQQ QQQ QQQ QQQ QQQ QQQ

Fuzzy Set
Method

No. Cell O O O O O O

Latitude qqq qqq qqq qqq qqq qqq

Longitude qqq qqq qqq qqq qqq qqq

Roughness QQQ QQQ QQQ QQQ QQQ QQQ

Notes: O represents non-significant correlation, qqq represents very
significant positive correlation, QQQ represent very significant negative
correlation, qq represents moderately significant positive correlation, QQ
represents moderately significant negative correlation, q represents slightly
significant positive correlation, and slightly Q represents moderately significant
negative correlation.
The thresholds for significant categories of ‘‘very’’, ‘‘moderately’’, and ‘‘slightly’’
significant are 0.01, 0.05, and 0.10 respectively.
doi:10.1371/journal.pone.0023115.t002

Table 3. Statistical significances of the correlations between
the O index and species distribution parameters.

Mid-century End-century

A1B A2 B1 A1B A2 B1

Threshold
Method

No. Cell O O O O O O

Latitude O O O O O O

Longitude QQ QQ QQQ QQQ QQQ QQ

Roughness q q O q q qq

Fuzzy Set
Method

No. Cell O O O O O O

Latitude Q O QQ Q Q O

Longitude QQ QQ QQ QQ Q QQ

Roughness qq qq qqq qq qq qq

Notes: Same symbols are applied as in Table 2.
doi:10.1371/journal.pone.0023115.t003
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File S2 AML codes for calculating the I and O indices.
(AML)
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