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Abstract
Grouping objects into discrete categories affects how we perceive the world and represents a crucial element of cognition.
Categorization is a widespread phenomenon that has been thoroughly studied. However, investigating categorization learning
poses several requirements on the stimulus set in order to control which stimulus feature is used and to prevent mere stimulus–
response associations or rote learning. Previous studies have used a wide variety of both naturalistic and artificial categories, the
latter having several advantages such as better control and more direct manipulation of stimulus features. We developed a novel
stimulus type to study categorization learning, which allows a high degree of customization at low computational costs and can
thus be used to generate large stimulus sets very quickly. ‘RUBubbles’ are designed as visual artificial category stimuli that
consist of an arbitrary number of colored spheres arranged in 3D space. They are generated using custom MATLAB code in
which several stimulus parameters can be adjusted and controlled separately, such as number of spheres, position in 3D-space,
sphere size, and color. Various algorithms for RUBubble generation can be combined with distinct behavioral training protocols
to investigate different characteristics and strategies of categorization learning, such as prototype- vs. exemplar-based learning,
different abstraction levels, or the categorization of a sensory continuum and category exceptions. All necessary MATLAB code
is freely available as open-source code and can be customized or expanded depending on individual needs. RUBubble stimuli can
be controlled purely programmatically or via a graphical user interface without MATLAB license or programming experience.

Keywords Categorization learning . Prototype- vs. exemplar-based training approach . MATLAB . Automated stimulus
generation . (Visual) similarity . Continuous categories . Category exceptions . Various abstraction levels . Artificial category .

Method . Custom code . GUI/app . Toolbox

Introduction

Being able to observe the weather through your kitchen win-
dow and to select an appropriate outfit saves yourself the
trouble of running back home after a few minutes to fetch
your umbrella. However, when leaving your favorite café after
your morning coffee you might confuse your own umbrella
with one of the others in the stand next to the door. We are
constantly surrounded by an endless number of different con-
texts and objects that we automatically group into distinct
categories. Whereas some categories seem quite abstract or
vague, such as ‘good’ or ‘bad’ weather, others include very
similar-looking, distinct objects such as ‘umbrella’.

Categorization describes the ability to group sensory stim-
uli into meaningful categories based on shared characteristics
(Freedman & Miller, 2008; Jitsumori & Delius, 2001; Wutz
et al., 2018). By definition, distinct objects that belong to the
same class or category are treated equivalently and differently
from objects in a different category (Mervis & Rosch, 1981).
This behavior is generalized to novel objects of either category
(Herrnstein, 1990; Jitsumori & Delius, 2001). Focusing on
central features that are common in different objects within
one category and ignoring irrelevant details reduces memory
load and simultaneously influences how objects are perceived
(DeGutis & D’Esposito, 2007; Goldstone, 1994). You might
still remember that you brought an umbrella with you, how-
ever, without remembering whether it was dark blue or black.

Perceptual categorization is not restricted to humans, but a
widespread phenomenon in the animal kingdom (Freedman&
Miller, 2008; Güntürkün et al., 2018). Most objects in nature
that are behaviorally relevant to animals are variable, even
though they might require the same behavioral response
(Herrnstein, 1990). Being able to recognize these objects
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above the individual level and to pool multiple sensory inputs
into informative signals with ecological relevance is essential
for animals and substantially reduces stimulus complexity
(Goldstone & Hendrickson, 2009; Herrnstein, 1990;
Jitsumori & Delius, 2001; Repp, 1984). Thus, the organiza-
tion of the sensory world into perceptual categories is a key
component of cognition and facilitates everyday life in a con-
stantly changing environment (Cook & Smith, 2006;
Freedman et al., 2002, 2003; Knoblich et al., 2002; Mervis
& Rosch, 1981).

Previous studies have employed a variety of different visu-
al stimuli, sometimes with arbitrarily chosen category bound-
aries that are difficult to control in a systematic manner. To
resolve this issue, we have developed a novel stimulus type to
study categorization learning: ‘RUBubbles’ are designed as an
artificial category stimulus by arranging an arbitrary number
of colored spheres in a 3D space. They are generated using
custom MATLAB code in which several stimulus parameters
can be adjusted and controlled separately, such as the number
of spheres, 3D sphere position, size, and color. This approach
allows to construct RUBubble categories that are specifically
tailored to study various aspects of categorization and catego-
ry learning.

Perceptual categorization: Conversion of continuous
stimuli into categorical representations

RUBubbles can be used to generate a continuum between two
categories by systematic variation of stimulus parameters. A
gradual change of the stimulus parameters is necessary to study
one important phenomenon of categorization: the existence of
(sharp) category boundaries despite equal physical differences
(Freedman et al., 2001). Categorization has been shown to in-
fluence sensory perception (Goldstone, 1994; Goldstone &
Hendrickson, 2009; Sigala & Logothetis, 2002), and the ability
to perceive continuously varying stimuli as belonging to dis-
crete, qualitative categories has been characterized as categori-
cal perception (Repp, 1984). For example, humans tend to
group color hues in distinct linguistic categories (Skelton
et al., 2017), which might be the reason why we are able to
distinguish two colors in certain wavelength ranges but fail in
others (Thierry et al., 2009). Perceptual categorization leads to
distorted perception such that differences between members of
different categories are accentuated whereas differences be-
tween members of the same category are attenuated, even when
physical differences are actually the same (within-category
compression and between category separation)(Goldstone &
Hendrickson, 2009; Harnad, 2003). One prominent example
of a continuous category stimulus set is the ‘cat and dog’
morphing system (Fig. 1a)(Freedman et al., 2001;
Riesenhuber& Poggio, 1999). Freedman et al. used amorphing
software to systematically construct morphs between cat and
dog prototypes and analyzed categorization behavior and single

cell activity in rhesus monkeys. They found clear perceptual
category boundaries on the behavioral and neuronal level de-
spite gradual changes in their stimulus set (Freedman et al.,
2002; Freedman et al., 2003). Sudden changes in discrimination
performance that are not in line with the gradual change of
stimulus parameter have also been reported in humans
(Emmorey et al., 2003; Harnad, 1987; Liberman et al., 1957),
crickets (Wyttenbach et al., 1996), and zebra finches (Caves
et al., 2018; Zipple et al., 2019).

�Fig. 1 Examples of stimulus sets used in previous studies working on
categorization in humans and nonhuman animals. a ‘Cat’ morph (From
Freedman et al., 2001. Reprinted with permission from AAAS.), bshell-
shaped object (Reprinted from Acta Psychologica, volume 138, Gaißert,
N., Bülthoff, H.H., Wallraven, C., Similarity and categorization: From
vision to touch. 219-230, Copyright (2011) with permission from
Elsevier via Copyright Clearance Center), c animate vs. inanimate
(Reprinted from Neuron, volume 60, Kriegeskorte, N., Mur, M., Ruff,
D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., Bandettini, P.A.,
Matching Categorical Object Representations in Inferior Temporal
Cortex of Man and Monkey. 1126-1141, Copyright (2008) with permis-
sion from Elsevier via Copyright Clearance Center), d tree vs. non-
tree (Reprinted with permission from Vogels, R., Categorization of com-
plex visual images by rhesus monkeys. Part 1: behavioural study, and
John Wiley and Sons. Copyright © 1999 European Neuroscience
Association, European Journal of Neuroscience, 11, 1223–1238), e pres-
ence or absence of humans (Reprinted from Animal Learning &
Behavior, volume 29, Aust, U., Huber, L., The role of item- and
category-specific information in the discrimination of people versus
nonpeople images by pigeons. 107-119, Copyright (2001) with permis-
sion from Psychonomic Society via Copyright Clearance Center), fclip-
art images (Hampson et al., 2004, Copyright (2004) National Academy of
Sciences, U.S.A.), g geons (Reprinted from Behavioural Processes, vol-
ume 158, Peissig, J.J., Young, M.E., Wasserman, E.A., Biederman, I.,
Pigeons spontaneously form three-dimensional shape categories. 70-76,
Copyright (2019) with permission from Elsevier via Copyright Clearance
Center), hAttneave-style polygon (produced using the algorithm
presented in Collin & McMullen, 2002), i color-charts (Reprinted from
Behavioural Brain Research, volume 311, Lech, R.K., Güntürkün, O.,
Suchan, B., An interplay of fusiform gyrus and hippocampus enables
prototype- and exemplar-based category learning. 239-246, Copyright
(2016) with permission from Elsevier via Copyright Clearance Center),
j cartoon animals (Copyright (2020) Bowman et al. Created by Bowman,
C.R., Iwashita, T., Zeithamova, D., and licensed under CC BY 4.0.
Modified. https://elifesciences.org/articles/59360), k ‘greebles’
(Reprinted from Vision Research, volume 37, Gauthier, I., Tarr, M.,
Becoming a “Greeble” Expert: Exploring Mechanisms for Face
Recognition. 1673-1682, Copyright (1997) with permission from
Elsevier Science Ltd. via Copyright Clearance Center), lline-drawings
(Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature, Nature, Visual categorization shapes
feature selectivity in the primate temporal cortex, Sigala, N., Logothetis,
N.K., Copyright © 2002 Macmillan Magazines Ltd, 2002) m digital
embryos (Copyright (2012) Journal of Visualized Experiments.
Created by Hauffen, K., Bart, E., Brady, M., Kersten, D., Hegdé, J.,
licensed under CC BY-NC-ND 3.0. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3598413/, n numerosity (Copyright (2020) Ditz and Nieder.
Created by Ditz, H.M., Nieder, A., licensed under CC BY 4.0. Modified.
https://www.nature.com/articles/s41467-020-14519-2) o random dot pat-
tern (Reprinted fromNeuron, volume 71, Antzoulatos, E.G., Miller, E.K.,
Differences between Neural Activity in Prefrontal Cortex and Striatum
during Learning of Novel Abstract Categories. 243-249, Copyright
(2011) with permission from Elsevier via Copyright Clearance Center)
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Previous studies on categorization

A large number of studies focused on categorization learning
using a wide variety of different stimuli for both human and
animal subjects. One common approach is an initial training
with several stimuli (discrimination acquisition) and subse-
quent testing of generalization using novel stimuli to exclude
categorization by rote (Güntürkün et al., 2018). In most ex-
perimental paradigms, subjects were trained to differentiate
between stimuli with a particular object or feature and stimuli
without (A vs. not A), or to differentiate between two catego-
ries (A vs. B) (Jitsumori & Delius, 2001; Wutz et al., 2018).
Performance in transfer tests using unfamiliar stimuli was
used as measure of successful open-ended categorization
(Herrnstein, 1990). Some exemplary category sets that have
been used are animate vs. inanimate (Fabre-Thorpe et al.,

1998; Kriegeskorte, Mur, Ruff, et al., 2008b), tree vs. non-
tree(Vogels, 1999), Picasso vs. Monet paintings (Anderson
et al., 2020; Watanabe et al., 1995), and various clip-art im-
ages, pictures, drawings, and photographs (Aust & Huber,
2001; Aust & Huber, 2002; Hampson et al., 2004;
Herrnstein & Loveland, 1964; Kreiman et al., 2000) (see
Fig. 1c–f for an overview). A key concern with many of those
sets is the difficulty to control or identify the stimulus element
that was used for categorization (especially with photo-
graphs). Category-defining features, for instance the presence
or absence of humans (Herrnstein & Loveland, 1964), often
co-occur with background features or spatial cues, which
might be used by the subjects to categorize the stimuli instead
(Aust & Huber, 2001; Güntürkün et al., 2018). Researchers
have adopted various strategies to examine which feature their
research animals actually relied on for categorization. For
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instance, the category-defining feature was added to a previ-
ously learned negative background and then used in transfer
tests (Aust & Huber, 2001). Others used partial masking to
cover various stimulus parts and investigated resulting impair-
ments in performance (Gibson et al., 2005) or introduced eye
or peck tracking to localize the focus of attention (Dittrich
et al., 2010; Freedman et al., 2002).

The use of artificial categories provides a higher control of
low-level visual features, which might reduce the need of
additional control trials, and facilitates a more direct manipu-
lation of category-defining attributes (Jitsumori & Delius,
2001). Further, artificial stimuli are generally ‘neutral’without
potential confounding effects due to ecological or social rele-
vance unlike stimuli such as faces or food (Vogels, 1999).
Previous studies have used basic geometric shapes (geons
(Peissig et al., 2019); Attneave style polygons (Attneave &
Arnoult, 1956; Collin &McMullen, 2002); rectangle vs. circle
(Ashby et al., 1998)), stimuli constructed based on binary,
multi-level features (bugs (Smith & Minda, 1998); color-
charts(Cook & Smith, 2006; Lech et al., 2016); cartoon ani-
mals (Bowman et al., 2020; Bozoki et al., 2006)), nonface
objects with common spatial configuration (‘greebles’,
(Gauthier et al., 1998; Gauthier & Tarr, 1997)), parameterized
line drawings (Sigala & Logothetis, 2002)), digital embryos
(created by simulating embryonic development (Hauffen
et al., 2012; Hegdé et al., 2008; Kromrey et al., 2010)), ab-
stract numerosity (Ditz & Nieder, 2016), and random dot pat-
terns (Antzoulatos & Miller, 2011; Antzoulatos & Miller,
2014; Wutz et al., 2018) (see Fig. 1g–o).

Our new stimuli offer a way to combine the advantages of
such artificial categories with a high degree of customization,
while remaining easy to produce with only low costs for com-
putation. By using our RUBubbles, it is possible to precisely
control individual stimulus features, and thus to analyze their

separate impact on categorization performance. In contrast to
already-existing stimulus types, it is feasible to quickly gen-
erate a large number of unique RUBubble stimuli, which is
crucial to study categorization learning. By combining specif-
ic generation algorithms and training paradigms, different
characteristics and strategies of categorization learning can
be investigated on a behavioral and neuronal level. The fol-
lowing sections will explain in detail, how RUBubble stimuli
and specific category sets are generated and how each stimu-
lus parameter can be manipulated individually.

Creation of RUBubble stimuli

We provide ‘RUBubble stimuli’ as an easy-to-useMATLAB-
based application. RUBubble stimuli can be controlled purely
programmatically or via a graphical user interface
(‘RUBubblesAPP’). All MATLAB files are freely available and
can be customized or expanded depending on individual needs
(code can be downloaded from https://gitlab.ruhr-uni-bochum.de/
ikn/rububbles, published under the terms of the Creative
Commons Attribution License, which permits unrestricted use
and redistribution provided that this article is cited to credit the
original authors). An additional MATLAB live script illustrates
the creation process and ensure a user-friendly testing and imple-
mentation. The RUBubblesAPP can be freely downloaded as
well and used as MATLAB app or independently as standalone
desktop app without a MATLAB license. For a full list of fea-
tures, user manual, etc. we have setup a Wiki (https://gitlab.ruhr-
uni-bochum.de/ikn/rububbles/-/wikis/home).

RUBubble stimuli are composed of an arbitrary number of
colored spheres that are arranged in 3D space (Fig. 2). Three
parameters control the stimulus appearance and can be adjust-
ed and manipulated separately: the color, position, and size of

Fig. 2 ‘RUBubbles’ as novel stimulus type to study categorization. a
RUBubble stimulus as an arbitrary number of colored spheres in 3D
space. b Generation of novel stimuli based on a category base.
Depending on the parameter specifications, distinct features of
RUBubble stimuli vary to different degrees. For example, a new

stimulus can be created to have a similar position and size of the
spheres but be highly variable in color (upper left stimulus).
Alternatively, a stimulus could show similar color and size but very
different sphere positions (upper right stimulus)
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each sphere (Fig. 2b). We have developed several MATLAB
functions, which are also implemented in a graphical user
interface (‘RUBubblesAPP’), to generate various stimulus sets
for categorization learning. The first step in stimulus genera-
tion is to define a base stimulus for each category.
Subsequently, all other category members are generated as
derivatives of the base stimulus. Three different main calcula-
tion methods can be used to produce a RUBubble category
and will be explained in the following sections (for an
overview, see Table 1 and the overview table within the
Wiki documentation).

Our specifically designed RUBubblesAPP allows an easy,
user-friendly manipulation of a wide variety of additional

stimulus features. Besides the high level of customization this
APP also facilitates the use and testing of RUBubble stimuli
away from the code-based implementation and outside of the
MATLAB environment.

Category base stimulus

A category base stimulus can be generated using the function
‘RUBubbles’ or via the ‘editRUBubble’ component within the
app. In both cases, the desired number of spheres is the only
mandatory input argument (Fig. 3). All other stimulus param-
eters (X, Y, Z coordinates, size, and color) are randomly gen-
erated, but can later be customized when using the app (e.g.,

Table 1 Overview of MATLAB functions and specific RUBubblesAPP components to create RUBubble stimuli for categorization experiments. The
three main calculation methods are highlighted

Fig. 3 Examples of randomly generated RUBubble stimuli using the
function ‘RUBubbles’. The input argument of this function determines
the number of spheres. a RUBubble stimuli consisting of eight spheres,
generated by separate calls of ‘RUBubbles(8)’. b RUBubble stimuli
consisting of 4–9 spheres, each generated by calling ‘RUBubbles’ with

the respective number of spheres as input argument, e.g., ‘RUBubbles(5)’
(sphere number indicated in upper left corner of each stimulus). An ad-
ditional function that is necessary to visualize RUBubble stimuli is ex-
plained below
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modification of sphere density, coloring and size, Fig. 4d). In
the app, the user can further mark 2D sphere positions and
thereby define the general spatial arrangement of all spheres
instead of specifying the sphere number.

Visualization of RUBubble stimuli

RUBubble stimuli generated in MATLAB can be visualized
using the function ‘drawRUBubbles’, which requires all previ-
ously generated stimulus parameters as input argument (see live
script ‘bubbles.mlx’). The output is a MATLAB figure that con-
tains the RUBubble stimulus as a 3D object, which is shown
along hidden axes (default mode, Fig. 3). It is possible to show
the axes for clarification (Fig. 4a, b) or to modify the viewing
angle and rotate the stimulus to, for instance, generate 2D images
of the same stimulus at different viewing angles (Fig. 4c).
RUBubble stimuli can be saved in various image formats (such

as .jpg, .png, and MATLAB .fig) and exploited as basis for 3D
objects to be used in, for instance, human fMRI studies.

Within the app, a preview of the created RUBubble stimu-
lus is continuously updated to immediately visualize
customizations (Fig. 4d). All stimulus parameters and a figure
of the generated stimulus can be saved to local folders and
used at a later stage for the generation of a full category.

Generation of RUBubble categories

All members of a RUBubble category are generated as deriv-
atives of a category base. Parameters of novel stimuli are
pseudo randomly produced using either a Gaussian, or a uni-
form distribution. Thus, novel stimuli are created by defining
either the range (δ), or the standard deviation (σ) of each
stimulus parameter relative to the category base. The different

Fig. 4 Display of stimulus axes, different viewing angles and stimulus
preview within the RUBubblesAPP. a Default, two-dimensional view of
a RUBubble stimulus along the x-z axes. bThree-dimensional view of the
same stimulus along the z-y-x axes. cVarious, manually adjusted viewing
angles of the stimulus shown in A and B with axes turned off. RUBubble

stimuli are visualized using the function ‘drawRUBubbles’. d Screenshot
of the app component ‘editRUBubble’, which can be used for targeted
stimulus generation. The preview in the center column directly visualizes
all post hoc stimulus customization
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calculation methods are implemented in two different func-
tions, which require all parameters of the category base stim-
ulus (mandatory), and a range or standard deviation (optional)

to control the deviation of the calculated values from the base
stimulus (Fig. 5). The number of spheres remains the same for
all stimuli within one category in both methods.

Fig. 5 Characteristics of RUBubble categories resulting from different
generation methods and input types. A category calculated based on
minimum–maximum deviation ranges per parameter comprisesmore var-
iation since all features are equally likely and clear boundaries exist

(uniform distribution). The calculation of a category based on the stan-
dard deviation per parameter results in mostly similar stimuli but vague
category boundaries (Gaussian distribution)

Fig. 6 ‘generateCategory’ component of RUBubblesAPP to create a full
RUBubble category. After a category base was picked (left column), the
user can select one of the two parameter distributions, which then enables
the respective input fields in the middle (uniform distribution) or right

(Gaussian distribution) column. Figures in the respective column
visualize examples of RUBubble stimuli created based on the extreme
values (middle) or at 5% from the tails of the Gaussian distribution (left)
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Depending on the parameter distribution used, RUBubble
categories differ in their feature distribution (Fig. 5). Using
uniformly distributed pseudorandom numbers within a specif-
ic range results in clear category boundaries and more or less
equally frequent stimulus parameters. Thus, stimuli with
higher dissimilarity to the category base are as frequent as
stimuli with minor variation. A stimulus set generated based
on a Gaussian distribution contains few strongly divergent
stimuli, while most category members exhibit similar features.
As a result, a clearly defined category border is missing.

When working in MATLAB, the user can choose the de-
sired underlying parameter distribution by selecting the corre-
sponding function (‘newStim_uniform’ or ‘newStim_Gauss’,

see live script ‘bubbles.mlx’ for an example). A range that
specifies the minimum and maximum deviation of each pa-
rameter is used as additional input argument for the function
‘newStim_uniform’. The values that are added or subtracted
from the value of the base stimulus are drawn from the given
range (marked in grey, see upper right schema in Fig. 5).

Alternatively, novel stimulus parameters can be selected from
a Gaussian distribution with the value of the category base as
mean (category base delineated by the vertical black line,
parameter distribution of novel stimuli outlined by grey shaded
Gaussian distribution, Fig. 5). The width of the distribution is
defined by the standard deviation σ, which is used as an addi-
tional input argument for the function ‘newStim_gauss’. Sigma

Fig. 7 Small numerical changes of the sphere size parameter can result in
significant changes of the visual display. Only the size parameter was
altered during the generation of several RUBubble stimuli to illustrate
the effect of various ranges and standard deviations on the resulting
sphere sizes. The delta and sigma values that were used for the

parameter generation are indicated above each stimulus. Undersized
spheres become more likely for larger deviation ranges and standard
deviations (rightmost stimuli, earlier using Gaussian distributions for
stimulus generation). Spheres with sizes below 0.01 become barely
visible and are thus set to 0.01 as minimum size value

Fig. 8 Specification of sphere colors. Hues of all spheres of the depicted
category base stimulus are indicated via the black lines in the circular
color space. The effects of distinct values of saturation (amount of color,
upper row) and value (relative brightness, bottom row) are shown by
selective alteration of the respective color parameter as indicated above

each image. The initial values for saturation and value of the category
base stimulus were .9 (saturation) and .84 (value). Colors become increas-
ingly pale with a decrease of saturation and progressively darker with
decreasing value
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defines the amount of variation, and the extent to which param-
eters of novel stimuli vary from the category base. A low stan-
dard deviation indicates that stimulus parameters tend to be close
to the base stimulus, whereas a high standard deviation indicates
a wider spread. Thus, the higher the standard deviation, the
higher the percentage of stimuli with larger deviations from the
category base.

Using the RUBubblesAPP, the user simply selects the desired
parameter distribution after having specified a category base stim-
ulus (‘generateCategory’ component within the app, Fig. 6).
This, in turn, enables entering of either minimum and maximum
deviation values or standard deviations per stimulus parameter.

The calculations per stimulus parameter for both methods are
briefly described in the following paragraphs and explained in
more detail in the Wiki documentation. Aside from different
parameter distributions, there are other category features that
can be controlled when creating RUBubble categories, such as
within- and between-category similarity, or the number of cate-
gory prototypes (see Wiki for more information).

Sphere size

Sphere sizes are either calculated by adding or subtracting
uniformly distributed pseudorandom numbers to values of
the category base stimulus or selected from a Gaussian distri-
bution with the value of the category base as mean (Wiki,

Figs. 1 and 4). Relatively small numerical changes in size
values result in a noticeable visual change of sphere size.
Figure 7 provides an overview of RUBubble stimuli that were
generated using different ranges or standard deviations (all
other stimulus parameters unaltered and thus identical to the
category base stimulus). As illustrated in Fig. 7, the use of a
small range closer to the category base stimulus or a low
standard deviation is advisable.

Sphere color

Color values are calculated in the same way as sphere sizes
(Wiki, Figs. 1 and 4). The calculations are performed within
the HSV color space; thus, RUBubble colors are described by
their hue (shade of color), saturation (amount of color), and
value (relative brightness). Hue is described on a chromatic
circle with red being defined as both 0 and 1 (Fig. 8).
Saturation and value describe the amount of color and relative
brightness. Color parameter can be modified individually al-
though they are perceptually linked. To prevent the occur-
rence of colorless, pale, or simply black spheres it is advisable
to use values resulting in minor deviations when manipulating
saturation and value or to leave both color parameters unal-
tered (Fig. 8).

Sphere position

To alter their position, all spheres are shifted by a given dis-
tance, in a random direction using a polar coordinate system
(Wiki, Figs. 3 and 6). Angular values are drawn from a uni-
form distribution bounded by 0 and 2π and the distances are
selected from either a uniform distribution within a given
range or a Gaussian distribution (Fig. 9).

In our experiments, RUBubble stimuli were displayed
along the x-z axes as 2D images. Thus, the Y coordinate of
each new stimulus only affected the order of spheres and co-
varied with changes in sphere size. To reduce the degrees of
freedom for position changes and to retain a higher similarity
between RUBubble stimuli, the Y coordinate is calculated
independently from the X-Z coordinates in the same way as
size and color parameters. Yet, the MATLAB code could be
customized such that sphere positions change on all three axes
when generating novel stimuli in 3D.

Fig. 9 Schematic description of the calculation of novel sphere positions.
Spheres are shifted in polar coordinates based on movement distance
(specified by user input) and angle (random, uniformly distributed
within 0 and 2π). Generated polar coordinates are transformed back
into Cartesian coordinates, which are then added (or subtracted) to the
coordinates of the category base stimulus

Fig. 10 Example of a continuum between two RUBubble stimuli. Parent1 is gradually morphed into parent2, both of which must consist of the same
number of spheres.Which pair of spheres will bemorphed into each other is unsupervised and random (follows the order of spheres in both input structs)
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Generation of a continuous category

A continuum between two RUBubble stimuli is generated using
the function ‘morphRUBubbles’ or the RUBubblesAPP compo-
nent ‘generateContinuum’ (Fig. 10). The number of in-between
stimuli and the parameters of two RUBubble stimuli with an
equal number of spheres are required as input arguments.
Morphing is based on stimulus parameters instead of visual fea-
tures, which also explains why an equal number of spheres in
both parent stimuli is necessary (i.e., sphere 1 of parent1 will be
morphed into sphere 1 of parent2). So far, the mapping of indi-
vidual spheres that are morphed into each other is unsupervised
and random. To morph according to sphere position, color, or
size would require an extension of the existing code, just as
morphing of RUBubble stimuli with differential numbers of
spheres. An example on how to gradually morph two
RUBubble stimuli is included in the MATLAB live script
(‘bubbles.mlx’).

Generation of category exceptions

Category exceptions are stimuli that do not belong to a given
category on a perceptual level. They can be generated as in-
dependent stimuli and then be assigned to a category.
However, in order to control how much and in which respect
they differ from all other members of a category, exceptions
need to be constructed in a specific way. The function
‘bubbleExceptions’ generates RUBubble stimuli that exhibit
specific deviations from an input category but have a consis-
tent number of spheres (Fig. 11a).

The stimulus parameters of category exceptions are calcu-
lated based on deviations from the outmost or extreme values
of a category. Thus, the upper and lower parameter limits of
each RUBubble parameter have to be calculated first (see
Wiki). Stimulus parameters of category exceptions are then
calculated by either adding values to the upper limit of the

category or subtracting values from the lower limit (Fig.
11a). The MATLAB live script gives an example on how to
generate category exceptions for a previously generated
RUBubble category (‘bubbles.mlx’). Note that even if mini-
mum deviation values are set to 0, the resulting parameter
values represent the extreme values of the category and can
thus differ profoundly from the category base stimulus or oth-
er category members.

The RUBubblesAPP component ‘generateExceptions’ al-
lows another, additional approach to generate exceptions be-
sides the previously described procedure. Here, the user spe-
cifically designs a base stimulus for all category exceptions
(exception base stimulus, Fig. 11b). Similar to the generation
of a RUBubble category, a min/max range per stimulus pa-
rameter then defines the potential deviations from this excep-
tion base stimulus.

Categorization learning training protocols

One major influencing factor on different categorization strat-
egies is the way in which categories are experienced, or, in
experimental studies, the behavioral training protocol.
Whether the category is initially learned with only few, highly
representative stimuli or a larger set of multiple exemplars
should affect how it is represented. Categories can differ in
the underlying structure and the distribution of characteristic
features. For instance, they can be defined based on a common
prototype or on similar features present in multiple exemplars.
These different category structures are thought to encourage
different strategies, which also involve distinct brain areas.
With RUBubble stimuli, it is possible to generate different
category structures that can be used to investigate differences
in categorization learning. We propose three different training
protocols that can be used with distinct RUBubble categories
to study and compare different aspects of categorization
learning.

Fig. 11 Schematic illustration of two possible approaches to generate
category exception stimuli. a Category exceptions can be generated by
defining the minimum and maximum deviations from the borders of a
specific input category (MATLAB function ‘bubbleExceptions’, option B
in RUBubblesAPP ‘generateExceptions’). b Alternatively, category

exceptions can be created by designing an exception base stimulus and
using min/max ranges per parameter (option A in RUBubblesAPP
‘generateExceptions’). The latter approach enables different sphere num-
bers between category and exception stimuli and the definition of exact
differences between category base and exception base stimulus
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Prototype- and exemplar-based categorization

It was initially shown for color that not all category members
are equally representative of their category (‘focal colors’ as
best examples similar across languages (Heider, 1972; Mervis
& Rosch, 1981)). In general, most representative category
members are usually learned first, show high within-
category similarity, and simultaneously share the fewest attri-
butes with contrasting categories (Mervis & Rosch, 1981). An
initial training with only representative stimuli was shown to
bemore accurate, faster, and ‘superior to training on a range of
examples’ (cf. Mervis & Rosch, 1981, Mervis & Pani, 1980).
The most typical, ideal example or central tendency of a cat-
egory is usually referred to as category prototype (based on
means, or ideal values, (Goldstone & Hendrickson, 2009);
‘schema’ (Posner & Keele, 1968); ‘super stimulus’
(Jitsumori & Delius, 2001)). The similarity to this prototype,
which combines all category-defining features, defines wheth-
er a stimulus belongs to the same category or not. Thus, an
abstract prototype facilitates categorization of a large number
of stimuli since it allows generalization (Jitsumori & Delius,
2001). In contrast, exemplar-based categorization strategies
require an extraction of common elements or central features
from several category exemplars. Each novel category stimu-
lus is compared to all exemplars in both categories and then
assigned to the category it shares the most features with
(Minda & Smith, 2001). Category-defining features must be
identified and derived from multiple exemplars, which re-
quires a certain familiarity with several exemplars and ex-
plains slower initial learning (Minda & Smith, 2001). This
abstract and conceptual collection of category-defining fea-
tures can later be used to determine category membership
comparable to a category prototype (‘formation of a prototype
[…] [as] means of classification’ (Reed, 1972)). Several char-
acteristics of a category, such as category size, structure, and
stimulus complexity, promote different strategies in category
learning. According to Minda and Smith (2001) initial cate-
gory learning is based on prototype-based strategies, whereas
exemplar-based strategies emerge as secondary processes
along with correct categorization of exceptions, which cannot
be explained solely on prototype-based categorization (Minda
& Smith, 2001). Small set sizes favor exemplar-based strate-
gies such asmemorization, whereas large numbers of complex
stimuli promote prototype-based strategies (Minda & Smith,
2001). Besides differences in categorization behavior, the un-
derlying neuronal dynamics and involved brain regions have
been shown to differ depending on the respective categoriza-
tion strategy. For instance, prototype representations were
found in the (ventromedial) prefrontal cortex, (anterior) hip-
pocampus, and medial temporal lobe (Bowman et al., 2020;
Lech et al., 2016). In contrast, exemplar representations were
demonstrated in the inferior frontal gyrus and lateral parietal
cortex (Bowman et al., 2020). The behavioral training

protocol used in experimental studies further affects which
categorization strategy might be favorable.

Prototype-based

In a prototype-based training protocol, we suggest to succes-
sively increase the number of stimuli depending on the behav-
ioral performance. The subjects initially perform the task with
both category prototypes only, which exhibit all category-
defining characteristics and central features as category base
stimuli (delayed match to sample, Fig. 12). Once they perform
at or above a certain behavioral criterion (e.g. 80 % correct)
the stimulus number is increased. Thus, the task changes from
a delayed match to sample to a delayed match to category
paradigm, due to an increasing number of category stimuli.
Each session can be subdivided into a set of training blocks,
each of which contains a specific number of stimuli per cate-
gory (compare with the prototype distortion paradigm used by
Antzoulatos & Miller, 2011, see example 1, Wiki GitLab).
Consequently, the final stimulus number per session is depen-
dent on the performance. Along with an increasing set size,
the percentage of novel stimuli also increases (the larger the
stimulus set used, the less likely that a randomly selected
stimulus was already familiar), which further enhances task
difficulty. Due to the small number of highly representative
stimuli at the beginning of each session (i.e. only prototypes),
the learning curve should be steep at the beginning and then
gradually flatten throughout the training session (higher per-
centage of unfamiliar stimuli as a result of performance-
dependent increase in stimulus number). This should be more
pronounced for stimulus sets that are composed of stimuli
with gradually decreasing similarity to the prototype (i.e. the
higher the stimulus number the more dissimilar). RUBubbles
present an ideal stimulus type to use this training approach,
since large numbers of unique stimuli can be generated.

Exemplar-based

An exemplar-based training protocol differs in the way stimuli
are selected. Instead of restricting the stimulus set early in the
session to few, highly representative stimuli, all stimuli are
randomly chosen from the entire stimulus pool (Fig. 12).
Hence, the likelihood to encounter unfamiliar stimuli early
in training is very high. This training approach is more diffi-
cult due to the unrestricted stimulus set and the fact that cate-
gory features have to be extracted from various exemplars and
cannot be directly deduced from a prototype. Therefore, the
learning curve should exhibit a slower initial increase and
overall flatter slope in comparison with a prototype-based
training session. A flattening of the curve towards the end of
the session should, in contrast, be less pronounced.
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Continuous

In a training protocol using a continuum between twoRUBubble
stimuli, subjects have to assign individual sample stimuli to one
of the two categories. Variations between adjacent stimuli are
gradual, thus, it is possible to investigate whether subjects expe-
rience a sharp category boundary despite identical physical dif-
ferences between stimuli. It is also possible to train subjects on
arbitrary category boundaries using a continuous stimulus set and
compare changes in neuronal activity when these boundaries are
modified and have to be relearned by the subjects (compare with
(Freedman et al., 2002)).

Discussion

We introduced RUBubbles as a novel stimulus type to study
categorization learning. RUBubbles show several desirable
characteristics and represent a valuable supplement for cate-
gorization research, which adds to a large number of diverse
stimulus types that have already been used in this field (see
Fig. 1 for a small selection). RUBubbles can be used to quick-
ly generate large stimulus sets, allow for specific manipulation
of individual stimulus parameters, and enable users to adjust
the existing code to suit individual requirements. The degree
of variability within and between categories can be manipu-
lated via precise specification of stimulus parameters, and a

continuum can be produced using two starting RUBubble
stimuli.

As an example, the spatial arrangement of individual
spheres can be deliberately manipulated by defining the de-
sired movement distance when generating novel stimuli.
Hence, it would be possible to study the sensitivity to
configural changes as is done in, for instance, face perception
research (Gauthier & Tarr, 1997). ‘Greebles’, artificial
nonface object stimuli, have been used to disentangle face-
specific sensitivity from more general mechanisms, such as
specialized knowledge or expertise with visually similar ob-
jects (Fig. 1k, Gauthier & Tarr, 1997; Gauthier et al., 1998).
These stimuli are three-dimensional objects that share similar
elements in common spatial configurations and can be cate-
gorized on different levels. RUBubbles can also be generated
to represent multiple levels for categorization (for instance by
using categories with varying sphere numbers as basic level).
The straightforward generation of RUBubble stimuli might
facilitate studies that require larger sets of unique stimuli and
thus RUBubbles might provide a useful addition to object
recognition research.

Nonetheless, some aspects remain that still need to be con-
sidered and our RUBubble framework is intended as a live
product providing a strong fundament that can be further de-
veloped for which we are happy to receive any extension or
improvement suggestions.

Naturally, perceptual similarity is challenging to determine
for any visual stimulus. This applies to RUBubbles as well as

Fig. 12 Prototype- and exemplar-based training protocols differ mainly
in the selection of stimuli at the beginning of each session. Whereas in
prototype-based protocols stimulus number is gradually increased (ini-
tially only prototypes, performance-dependent doubling of stimulus

number, top), exemplar-based protocols draw stimuli ab initio from the
entire stimulus pool (no subdivision in training blocks with distinct num-
ber of stimuli, category base stimulus not included in stimulus set,
bottom)
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any other already existing category stimulus type. RUBubble
stimuli can be subdivided into distinct similarity levels based
on mathematical properties, i.e. the deviation of parameter
values from the category base stimulus (within-category
similarity) or from the base stimulus of a second category
(between category similarity). After generating a RUBubble
category, the Euclidean distance of each sphere relative to the
category base stimulus, and the absolute deviation in size and
color values can be calculated for each stimulus (basic, math-
ematical similarity that provides indications of within-
category similarity). However, it remains extremely difficult
to interpret such deviations with regard to perceptual similar-
ity, since large changes in numerical parameter values might
lead to hardly visible changes in the visualized stimulus,
whereas minor changes might completely alter the overall
stimulus appearance. When looking at RUBubble stimuli it
is obvious that the general impression most likely is more
significant than numerical deviations of stimulus parameter
(Fig. 13).

The different characteristics of RUBubble stimuli (i.e., col-
or, size, spatial arrangement/position) most likely differ in
salience depending on the specific stimulus set, training pro-
cedure, or subject. It is plausible that different participants or
research animals use different stimulus features for categori-
zation or that they adjust their focus depending on the

respective stimulus set properties. Categorization training
has been shown to influence perceptual sensitivities and to
affect the salience of specific stimulus features (via acquired
distinctiveness or acquired equivalence) (Goldstone, 1994).
For instance, after having learned to categorize RUBubble
stimuli mostly based on differences in sphere size, subjects
most likely initially focus their attention on this specific stim-
ulus feature when learning a new set. Besides, despite addi-
tional adjustment trials to produce equally discriminable stim-
uli, Goldstone (1994) reported a clear difference in processing
of different dimensions (Goldstone, 1994). A more practical
approach to identify the most prominent category-defining
feature might be to evaluate which feature subjects relied on
most after having learned a specific RUBubble set (e.g., by
asking participants or calculating a GLM using performance
data and RUBubble stimulus properties). RUBubble catego-
ries can be generated to encourage subjects to using specific
parameters for categorization (by adjusting the respective var-
iation per parameter within a category or manipulating the
between category similarity). Ultimately, controlling and ma-
nipulating the saliency of different stimulus dimensions re-
mains the responsibility of the individual researcher and has
to be fitted to the respective experimental design and research
question.

Fig. 13 When viewing RUBubble stimuli, several questions come to
mind regarding the similarity between, for instance, the category base
stimulus as prototype and all other category members. Such as, do
spheres form cluster? How far are spheres generally spread? Does this

change for other category members compared to the prototype? Are
spheres moved further away or closer together? How much do sphere
colors vary within the prototype and are they more or less variable in
each category member?
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Alternative methods to assess the perceptual similarity that
have been implemented in previous studies to evaluate the
similarity of 2D images are multidimensional scaling, MDS
(Hegdé et al., 2008), and representational similarity analysis,
RSA (Kriegeskorte,Mur, & Bandettini, 2008a). Both could be
applied to RUBubble stimuli but are complex, time-consum-
ing, or lack the color dimension. In general, it is difficult to
obtain any similarity value without making (too many) as-
sumptions on how the subjects actually perceive the stimuli
or on which stimulus parameter they rely for categorization
(see Caves et al., 2019 on human biases when studying animal
perception).

For instance, color vision differs in various degrees for
different animals or even individuals in one species, especially
birds show pronounced differences to mammals, which results
in quite different color perception. Most monitors are calibrat-
ed for human subjects and thus might need other color adjust-
ments when used with nonhuman animals. RUBubble colors
are defined in the HSV color space and although all three color
parameters (hue, saturation, and value) can be manipulated
independently, these parameters represent integral dimensions
that are not perceptually separable (Burns and Shepp, 1988;
Gottwald and Garner, 1975). Thus, color is generally per-
ceived holistically and classified based on overall similarity
rather than on separable dimensions (Goldstone, 1994), which
should be kept in mind when manipulating RUBubble color.
Besides, RUBubble stimuli can easily be transformed into var-
ious shades of grey or black instead or defined within another
color space by adapting the code. Another possibility would be
to keep sphere colors within one category consistent. In gen-
eral, a more suitable approach to determine similarity might be
to analyze how strongly each stimulus parameter affects the
behavioral performance and then use this knowledge to more
precisely construct the following RUBubble categories.

Nonetheless, the here presented methods for RUBubble
generation allow the creation of countless unique stimulus
sets. Typically, stimulus sets contain two RUBubble catego-
ries, but they can also be designed to comprise multiple cate-
gories instead. The MATLAB code and the complementary
RUBubblesAPP are easy to use, freely available, and do not
require any additional toolboxes. Using the app allows to gen-
erate custom stimulus sets without prior programming expe-
rience or a MATLAB license. Besides, RUBubbles are im-
mensely versatile and can be used to study diverse questions
in categorization research, such as categorical perception of a
sensory continuum or the effect of stimulus statistics on cate-
gorization learning.
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