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Objectives: As the demand for critical care beds rises each year, 
hospitals must be able to adapt. Delayed transfer of care reduces 
available critical care capacity and increases occupancy. The use of 
mathematic modeling within healthcare systems has the ability to aid 
planning of resources. Discrete-event simulation models can deter-
mine the optimal number of critical care beds required and simulate 
different what-if scenarios.
Design: Complex discrete-event simulation model was developed 
using a warm-up period of 30 days and ran for 30 trials against a 
2-year period with the mean calculated for the runs. A variety of differ-
ent scenarios were investigated to determine the effects of increasing 
capacity, increasing demand, and reduction of proportion and length 
of delayed transfer of care out of the ICU.
Setting: Combined data from two ICUs in United Kingdom.
Patients: The model was developed using 1,728 patient records and 
was validated against an independent dataset of 2,650 patients.
Interventions: None.
Measurements and Main Results: During model validation, the average 
bed utilization and admittance rate were equal to the real-world data. In 
the what-if scenarios, we found that increasing bed numbers from 23 
to 28 keeping the arrival rate stable reduces the average occupancy 
rate to 70%. We found that the projected 4% yearly increase in admis-
sions could overwhelm even the 28-bedded unit, without change in 

the delayed transfer of care episodes. Reduction in the proportion of 
patients experiencing delayed transfer of care had the biggest effect on 
occupancy rates, time spent at full capacity, and average bed utilization.
Conclusions: Using discrete-event simulation of commonly available 
baseline patient flow and patient care data produces reproducible 
models. Reducing the proportion of patients with delayed transfer of 
care had a greater effect in reducing occupancy levels than simply 
increasing bed numbers even when demand is increased.
Key Words: critical care; delayed transfer of care; discrete-event 
simulation; modeling

Demand for critical care services has increased signifi-
cantly over the last 20 years in the United Kingdom, with 
a disproportionate increase in demand for the elderly 

population (1). Critical care bed numbers in United Kingdom are 
the lowest in Europe with an average of 6.2 beds per 100,000 resi-
dents (2). Hospitals must be able to adapt to the rising demand for 
critical care beds due to an increasing population with extensive 
comorbidities as well as introduction of new and extensive cura-
tive surgical options for cancer and immunomodulatory therapies 
such as chimeric antigen receptor T-cell treatment among other 
improvements in medical care, all requiring critical care support 
for monitoring and treatment of potential complications (3).

Our previous work using queuing theory analyzed the poten-
tial effects of merging two critical care units to determine the opti-
mal number of beds needed (4). This analysis could not take into 
account the significant variability in admission rates from emer-
gency and elective cases and to a lesser extent the overcrowding 
caused by delayed transfer of care (DTOC) once patients are ready 
to be discharged from the critical care unit.

Using simulation modeling as an approach within critical care 
redesign allows for the effects of potential improvements within 
the unit to be explored and potential failures identified (5).

Simulation packages, such as Simul8 (www.simul8.com; 
SIMUL8 Corp, Boston, MA), can be used to generate complex 
systems. To date, there are only limited applications of discrete-
event simulation (DES) in critical care modeling and these 

2020

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.simul8.com


Williams et al

2 www.ccejournal.org 2020 • Volume 2 • e0174

efforts also lacked taking into account the effect of DTOC on 
patient flow and bed occupancy levels (6).

In order to determine how the new critical care unit, open-
ing in 2021 and combining two currently existing ICUs into one 
large unit, will change over time, a DES model was developed and 
validated to determine the optimal number of critical care beds 
required and to simulate different what-if scenarios.

METHOD AND DATA ANALYSIS
The Aneurin Bevan University Health Board Research Governance 
Committee reviewed the study and waived the need for informed 
consent as it used two anonymized datasets. First, data from the 
standalone critical care database WardWatcher (Critical Care 
Audit, Yorkshire, United Kingdom) were used for initial analysis to 
determine the current occupancy levels from April 2017 to March 
2018 consisting of 1,637 patient records. The second set of data 
was acquired from the Intensive Care National Audit and Research 
Centre (ICNARC) for the two currently existing critical care units 
from January 2016 to December 2017, detailing each individual 
patient’s stay, including length of stay (LOS), level of care, and DTOC 
for 2,650 patient records. For both these datasets, data had been 
merged from the two current hospitals and analyzed as one unit. 
More information about the setting can be found in Supplemental 
Digital Content 1 (http://links.lww.com/CCX/A237).

Model Generation and Replication
To determine how the bed occupancy of the unit will change 
through different and potential future scenarios, we used the 
simulation software, Simul8 (SIMUL8 Corp), to generate a replica 
model of the new Grange University Hospital critical care unit.

Figure 1 demonstrates the flow of patients through the model: 
entering, their LOS, and leaving the critical care unit. The entry 
point is a patient being admitted into the unit with the variable of 
an interarrival rate that can be adjusted depending on the average 
time between two consecutive patients arriving.

The classification node takes the probability of each possible route  
a patient can take through the critical care unit and uses a label-based  

distribution within Simul8 (SIMUL8 Corp) to assign an LOS for 
each of these patient groups. Due to this labeling system, the patient 
pathway and their corresponding LOS are then predetermined.

Once a patient has completed treatment and is ready to be dis-
charged, the patient either is discharged within 4 hours or classi-
fied as experiencing DTOC. When a patient leaves the system, the 
statistics concerning that patient, for example, total time within 
the system, is collected and the averages and CIs for the model 
run are calculated.

Within modeling, to recreate a system and establish a patient flow, 
a warm-up period is used to ensure the system is not initially empty. 
The model based on the data of 1,728 patients from the WardWatcher 
(Critical Care Audit) dataset used a warm-up period set to 30 days (to 
reach a steady state) and was run for 30 trials (to account for varia-
tion) against a 2-year period with the mean calculated for the runs.

The model variables have been derived using historic data and 
where required distributions have been fitted to these variables 
using the Stat::Fit tool within Simul8 (SIMUL8 Corp). This pro-
vides a more realistic model that accounts for known variability 
seen in arrival and LOS distributions (Supplemental Digital 
Content 2, http://links.lww.com/CCX/A238). For example, it was 
found that an exponential distribution best described the emer-
gency arrival rate with an average elective arrival rate being the 
most appropriate fit. To emulate the flow of patients through the 
varying levels of care, the model uses a random assignment based 
on the known proportions.

The model generated is specific to our unit, although some vari-
ables, such as interarrival times, LOS, and the number of beds avail-
able, can be changed, with the structure of the model remaining the 
same. For further information on configuring the model used, please 
access the Simul8 (SIMUL8 Corp) template file (https://tinyurl.
com/y4oovlnh) and the step-by-step instructions (Supplemental 
Digital Content 3, http://links.lww.com/CCX/A292).

Model Validation
To determine whether the model generated reflects the real-world 
scenario of bed occupancies and LOS, we validated it against 

Figure 1. The Simul8 (SIMUL8 Corp) model of the proposed combined critical care unit.
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real-world data. The simulation was run for 30 simulations for 
a 2-year period and the average results were compared with the 
ICNARC dataset consisting 2,650 patient episodes.

Table  1 shows the key results produced from the simulation 
model compared with the real-world data. The average bed utiliza-
tion was shown to be equal, with a total number of 2,650 patients 
admitted into the unit. The LOS is slightly higher in the simulation 
model; however, these discrepancies are due to the software allow-
ing for queuing, where in reality, operational flexibility would be 
used to accommodate the urgent admissions and 100% occupancy 
would be exceeded. In the independent validation cohort, the LOS 
on level 3, level 2, and level 1 care was 60.48, 54.28, and 30.72 hours, 
respectively. The similarity in results shows that the model follows 
a close resemblance to the actual data and allows further analysis.

What-If Scenarios
A variety of different scenarios were investigated using the model 
to determine the effects on the new merged critical care unit. The 
different scenarios were analyzed using the current bed capacity of 
23 beds, as well as the proposed 25 and 28 beds.

Table 2 shows the effect of increasing the bed numbers under 
the current conditions for a 2-year period (Scenario A). By 
increasing the number of beds to 28, the average occupancy rate 
reduces to 70%, reducing the pressure on the system.

The demand for critical care beds within the National Health 
Service (NHS) is expected to increase by 4–5% per year (1). 
Table 3 shows the model results and highlights the pressure the 
critical care unit will face even by a small 4% increase (Scenario 
B). This shows that at 23 beds and current DTOC time and pro-
portion, the unit will struggle to cope with the expected demand. 
With an 8% increase, the 92% of the time spent at full occupancy 
on the 23-bedded unit is infeasible. Even by increasing bed num-
bers to 28, 75% of time is spent above 75% occupancy levels.

Scenario C investigated the effect of reducing the proportion of 
DTOC patients (Table 4). With an increase to 28 beds alongside 
a 20% reduction in the proportion of DTOC patients to 51%, the 
pressure on the system reduces greatly with only 4% of time spent 
at full occupancy.

Scenario D investigated reducing the DTOC time (Table 4). By 
increasing to 28 beds alongside a 25% reduction in DTOC time, the 
average bed utilization reduces. Reducing either the DTOC time by 
25% or the DTOC proportion by 20%, the results produced are very 
similar for 28 beds. If the unit can increase bed numbers as well 
as reduce the proportion of patients or their time spent in DTOC, 
occupancy levels will be reduced to safe operating conditions.

DISCUSSION
In this in silico study using DES strategy with the commercially 
available software, we have shown that modeling of commonly 
available baseline patient flow and patient care data can result in 
reproducible models to real-life data, using separate development 
and validation dataset of similar size. We were able to simulate 
different scenarios with constant or increasing demand on critical 
care services to examine how these pressures will manifest in a 
new hospital, yet to open its doors.

Improving access to critical care services by increasing bed 
numbers has been a high priority for the critical care community 
in United Kingdom, and our data from this study further empha-
size the need for expansion (2, 7). DTOC has been shown to be a 
significant problem in the Welsh NHS, where more than half of 
the critical care patients experience delay in timely discharge, with 
a quarter of them still occupying a critical care bed 24 hours after 
they were deemed fit for ward-based care (2).

Our findings that the reduction in either the proportion of 
patients experiencing DTOC or the length of DTOC period would 
provide benefits for patient flow provides an important starting 
point for the executive stakeholders, not just within our organiza-
tion, but internationally. In general, DTOC is associated with high 
occupancy levels, which in turn has been shown to have detri-
mental effect on mortality due to the increased acuity of admitted 
patients (8). Our data support the previous findings that reducing 
congestion may improve timely access to critical care, with poten-
tially improved patient outcomes (9, 10). Based on our simulation 
data, with the planned increase first to 25 then to 28 critical care 
beds alone, the new hospital could still cope with the projected 
increase in admissions. However, this may lead to detrimental 
patient outcomes due to overcrowding and increased staff burnout 
unless the DTOC problem is tackled at the same time (8, 11–13).

Queuing theory and DES models are the most widely applied 
system engineering and operation research methods used for sys-
tem analysis and justification of operational business decisions 
(14). Queuing theory is used widely in engineering and industry 
for modeling of processes that involve waiting lines. In the past, 
queuing theory analysis was applied to a variety of hospital activi-
ties, including critical care units, obstetric services, operating 
rooms, and emergency departments, as a mean of directing the 
allocation of increasingly scarce resources (14, 15). Unfortunately, 
most proposed queuing models lack real-world validation and, 
perhaps for this reason, have yet to be embraced by physicians and 

TABLE 1. Validation Results From the Simul8 
(SIMUL8 Corp) Model

Model  
Results

Intensive Care  
National Audit  
and Research  

Centre Data Results

Average number entering system 2,650 2,650

Average number discharged within 
4 hr

975 973

Average number of delayed 
transfer of care patients

1,675 1,677

Average bed utilization, % 84.74 84.74

Percentage of time above 75% 
capacity, %

72.50 80.41

Percentage of time above 95% 
capacity, %

21.03 19.73

Average length of stay (d) 5.67 5.14

Simulation model was built from detailed patient flow description and data 
available for the two critical care units between 2016 and 2018. Model results are 
an average obtained over 30 independent random trials of our model, where each 
trial uses a different initial random seed to sample from the defined distributions.
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hospital administrators (16). An early study using these meth-
ods was used to model accurately a large ICU within Microsoft 
Excel (Microsoft Corp., Redmond, WA) (14). However, queuing 
equations usually examine a limited number of predetermined 
simplified models of the real processes for which analytic formu-
las can be developed. Within the hospital, modeling critical care 
flow is complicated, as this depends on admission rates, patients’ 
LOS, current bed occupancy levels, critical care bed capacity, 
and availability of discharge destinations. Contrary to the main 
assumptions used in general queuing theory models, the major-
ity of critical care admissions do not follow a predictable pattern. 
Similarly, discharge from critical care depends on patient factors 
and hospital flow. Patient factors vary widely and depend on the 

disease process, including acute physiologic disturbance at admis-
sion and the underlying comorbidities (17). Although these com-
plex variables can be accounted for in the queuing models, all the 
required calibrations, adjustments, and fitting to the actual data 
can make the model lose its main advantage: its analytic simplic-
ity and transparency (17). Nevertheless, queuing models in dif-
ferent simulation packages can be used to generate more complex 
systems (18). In an elegant study, Hagen et al (19) used Rockwell 
Arena 13.5 (Rockwell Automation, Coraopolis, PA) to aid devel-
opment of the process flow of five ICUs, with submodels for each 
ICU and then analyzed six different queuing methods with dif-
fering priority methods. The results showed that if a healthcare 
organization solely focuses on operating at the highest efficiency, 

TABLE 2. Simulation of the Proposed Changes Increasing the Bed Capacity From 23 to 25 or to 
28 Beds Using the Simul8 (SIMUL8 Corp) Model (Scenario A)

No. of Beds 23 25 28

Average number entering system 2,650.46 2,650.46 2,650.46

Average bed utilization, % 84.74 78.72 70.43

Percentage of time above 75% capacity, % 72.50 58.45 35.27

Percentage of time at 100% capacity, % 23.44 9.09 1.31

Simulation model was built from detailed patient flow description and data available for the two critical care units between 2016 and 2018. Model results are an average 
obtained over 30 independent random trials of our model, where each trial uses a different initial random seed to sample from the defined distributions.

TABLE 3. Simulation Results on the Effects of Increasing the Patient Admission Rate for 23 and 
28 Beds (Scenario B)

No. of Beds 23 28

Percentage increase in arrival rates, % 0 4 8 0 4 8

Total number of arrivals (per year) 1,455.23 1,510.54 1,569.73 1,455.23 1,510.54 1,569.73

Percentage of time at or above 75% utilization, % 92.86 95.52 98.69 64.23 70.94 75.05

Percentage of time at 100% utilization, % 68.37 77.02 91.70 10.17 11.55 18.86

Simulation model was built from detailed patient flow description and data available for the two critical care units between 2016 and 2018. Model results are an average 
obtained over 30 independent random trials of our model, where each trial uses a different initial random seed to sample from the defined distributions. Bold indicates 
percentage changes compared to baseline.

TABLE 4.  Simulation Results on the Effects of Reducing the Proportion and Length of Time of 
Delayed Discharges (Scenarios C and D)

No. of Beds 23 28

Scenario C: DTOC  
patient reduction

Proportion, % 0 10 20 0 10 20

Percentage bed utilization, % 93.17 91.74 88.74 76.29 74.54 74.00

Percentage of time at or above 75% utilization, % 92.86 88.46 81.97 64.23 53.68 51.47

Percentage of time at 100% utilization, % 68.37 56.24 41.01 10.17 4.35 3.63

Scenario D: DTOC  
time reduction

Proportion, % 0 10 25 0 10 25

Percentage bed utilization, % 93.17 90.83 88.61 76.29 74.86 72.68

Percentage of time at or above 75% utilization, % 92.86 85.75 83.76 64.23 57.05 47.94

Percentage of time at 100% utilization, % 68.37 50.85 47.93 10.17 5.49 3.32

DTOC = delayed transfer of care.
Simulation model was built from detailed patient flow description and data available for the two critical care units between 2016 and 2018. Model results are an average 
obtained over 30 independent random trials of our model, where each trial uses a different initial random seed to sample from the defined distributions. Bold indicates 
percentage changes compared to baseline.
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the quality of patient care may be killed, whereas some priority 
methods raised overall waiting times and lowered the quantity of 
patients seen, but improved patient mortality and preserved qual-
ity of care. The authors of this study acknowledged the general 
drawbacks of the queuing methods, in particular the inflexibil-
ity of the model to cater for changing patient characteristics (19). 
It has been previously noted that when generating mathemati-
cal models for critical care units, the model must cater for both 
planned and unplanned patients in regard to admission and LOS 
(19). Our model has taken into account both the varying levels of 
patient acuity at ICU admission and during the critical care stay 
and was also adapted for both emergency and elective admissions.

There have been other modeling approaches to evaluate the 
effect of the growing demand on the need for critical care provision. 
To determine the effect on increasing bed numbers within a critical 
care unit, Lawton and McCooe (20) generated a Monte Carlo simu-
lation within R (R Foundation for Statistical Computing, Vienna, 
Austria). After successful validation, they analyzed staffing and bed 
numbers to determine the effect on occupancy on the current 16 
bed unit. Contrary to our findings, they have not observed any sig-
nificant effect on the reduction of DTOC on occupancy levels (20). 
This is probably due to their relatively simplistic model, which did 
not take into account the full effect of the exit block that DTOC can 
create in the critical care flow.

An alternative to queuing theory is to develop a DES model 
to create a visual representation of the system that allows test-
ing a range of scenarios (21). DES has been increasingly used in 
the context of healthcare research, as it enables the modeling of 
patients at the individual level, including the evolution of their 
clinical course over time and how a patient moves through the 
different domains of the healthcare system (22). Different gen-
eral patient-related attributes such as age and gender and clini-
cal specific attributes such as disease phase and treatment mode 
can also be integrated in the DES model (23). As time progresses, 
patients’ attributes may be altered to reflect changes in their sta-
tus. This allows the tracking of patients, as they evolve in the care 
system including the events they experience at different points 
of time. DES provides the flexibility to incorporate capacity and 
resource constraints explicitly and to capture the resource-alloca-
tion policies and priority rules where entities compete for limited 
resources (5). This feature is extremely important in health con-
texts, as clinical activities such as diagnosis, treatment, and con-
sultations require a mix of specialized resources (doctors, nurses, 
beds, operating theaters, and so on), and these resources are, in 
most cases, not sufficient to meet the required level of demand 
(24). DES has been successfully applied to a variety of healthcare 
problems such as patient flow modeling in hospitals and emer-
gency departments, reconfiguring of the primary- and second-
ary-care services and previously evaluation of bed occupancy and 
cost-effectiveness of critical care units and tele-ICU workflows (5, 
6, 22, 25). To our knowledge, our description is the first published 
reference to use the Simul8 (SIMUL8 Corp) software package to 
produce a visualization and complex simulation models in the 
critical care arena. The strengths of our study are that we used 
contemporary real-life data including variable times between 
admissions, delineated emergency and elective admissions, and 
used patient-level factors to produce a closely calibrated baseline 

model validated against the performance metrics of two hospi-
tals. The model is significantly more complex than the previously 
used queuing theory methods and provides closer resemblance 
of the real-life operation of a busy critical care department (18).

There are obvious limitations. First, our data only apply to our 
centers and as with any simulation could be affected by inconsisten-
cies in the baseline variables. However, we have previously shown 
that similar levels of activity and DTOC issues are affecting the 
whole of NHS Wales, making our model applicable outside the 
future combined ICU (2). Second, the model developed in Simul8 
(SIMUL8 Corp) has not incorporated potentially important patient 
and organizational factors, such as acuity of admissions and staffing 
problems on the critical care unit. There is a valid argument that 
with increased ICU bed strain, patients are admitted in a worse 
physiologic status, in turn increasing their LOS (8, 26). DES models 
can be configured to add this element to the simulation; however, 
for our current model, we could not quantify the unmet need for 
critical care from the available data (9). Another limitation of the 
data was that we only recorded how many days a patient spent at 
each level of care and we assumed that they move through the sys-
tem with decreasing level of dependency. Third, we have not used 
sophisticated financial modeling to understand whether increasing 
ICU bed numbers or reducing DTOC would provide better value 
for money. In very simplistic terms, in the Welsh NHS, a critical care 
bed attracts approximately £1,900 as a daily tariff, whereas a general 
ward bed is costed at £413 per day. If we were to provide a new 
investment of a fixed amount of money to the system, it appears 
that improving the general provision of ward beds to unblock the 
critical care backlog would provide a better avenue to reduce ICU 
occupancy. Fourth, our model was constructed using a commer-
cial software package, limiting the access of this approach. Simul8 
(SIMUL8 Corp) is one of the leading software packages for DES 
models, which offers educational and research discounts. There are 
a limited number of open-source alternatives available, which lack 
the ability to run continuous simulations and visualization of the 
data. For readers prepared to adapt our DES model to their own 
needs, we provide the Simul8 (SIMUL8 Corp) template file (https://
tinyurl.com/y4oovlnh) and a user guide (Supplemental Digital 
Content 3, http://links.lww.com/CCX/A292).

CONCLUSIONS
Using DES, we have shown that modeling of commonly available 
baseline patient flow and patient care data can result in reproduc-
ible models to real life. Based on the simulation of a variety of dif-
ferent scenarios, we found that reducing either the proportion of 
patients with a DTOC or the length of the DTOC had a significant 
effect in reducing the occupancy levels, which could complement 
the increase in bed numbers. Applying a DES model to critical 
care occupancy and flow problems is a more sophisticated way of 
managing the variation in demand that is experienced by health-
care organizations worldwide and produces results that are more 
accurate and visual than spreadsheets.
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