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Abstract: In this study, the essential oil of Origanum vulgare was evaluated for putative antibacterial
activity against six clinical strains and five reference strains of Aggregatibacter actinomycetemcomitans,
in comparison with some antimicrobials. The chemical composition of the essential oil was analyzed,
using chromatography (CG) and gas chromatography–mass spectrometry coupled (CG–MS). The
major compounds in the oil were Carvacrol (32.36%), α-terpineol (16.70%), p-cymene (16.24%), and
Thymol (12.05%). The antimicrobial activity was determined by an agar well diffusion test. A broth
microdilution method was used to study the minimal inhibitory concentration (MIC). The minimal
bactericidal concentration (MBC) was also determined. The cytotoxicity of the essential oil (IC50)
was <125 µg/mL for THP-1 cells, which was high in comparison with different MIC values for the
A. actinomycetemcomitans strains. O. vulgare essential oil did not interfere with the neutralizing capacity
of Psidium guajava against the A. actinomycetemcomitans leukotoxin. In addition, it was shown that the
O. vulgare EO had an antibacterial effect against A. actinomycetemcomitans on a similar level as some
tested antimicrobials. In view of these findings, we suggest that O.vulgare EO may be used as an
adjuvant for prevention and treatment of periodontal diseases associated to A. actinomycetemcomitans.
In addition, it can be used together with the previously tested leukotoxin neutralizing Psidium guajava.
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1. Introduction

Aggregatibacter actinomycetemcomitans is a capnophilic Gram-negative coccobacillus, widely known
as one of the putative pathogens associated with periodontitis, mainly in adolescents and young
adults [1]. Pathogenesis of periodontitis is very complex, including immunogenetic factors, life
style, proportion, and composition of specific periodontitis associated bacterial species, including
A. actinomycetemcomitans in the oral biofilm [2]. The contribution of A. actinomycetemcomitans in
initiation and progression of the disease is due to various virulent factors released in periodontal
tissues [3]. A total of seven serotypes (a,b,c,d,e,f, and g) [2,4] of A. actinomycetemcomitans have been
isolated from periodontal lesions worldwide. Patients seem to be colonized by a single serotype for
life [2]. Among virulence factors of the bacterium, the leukotoxin (LtxA) is the most studied [3,5].
It activates or kills immune cells, helping the bacterium to survive in a site of infection. A specific
variant of A. actinomycetemcomitans produces more LtxA than other variants [6]. This highly leukotoxic
clone, JP2, has been associated with aggressive forms of periodontitis in Morocco [7,8]. According
to the 2017 World Workshop of Periodontology, aggressive periodontitis is included in the category
of “periodontitis”, which is characterized based on stages and grades. Extension and distribution
of periodontal lesions allow distinguishing localized, generalized, and molar-incisor distribution
forms [9].

Aggressive periodontitis treatment of is based on mechanical debridement with antimicrobials as
adjuvants. This aims to allow the elimination of A. actinomycetemcomitans and other bacterial species
which penetrate the periodontal epithelial tissue [10]. However, given the increasing resistance of oral
bacteria to antimicrobials and the side effects caused by antiseptic agents often used in dentistry (i.e.,
dental staining and taste alteration) [11], the search for new natural agents as alternative therapeutic
products with fewer side effects (e.g., gastric problems) and less bacterial-resistance development has
become a necessity.

Morocco has, by its geographical diversity, great natural resources for cultivation of medicinal
and aromatic plants. Surveys performed in Morocco among the population in different regions have
shown a frequent therapeutic use of this natural heritage in traditional medicine [12,13].

Many studies through the world have been carried out to screen medicinal and pharmacological
properties of different plants and essential oils, to integrate them into the therapeutic arsenal, according
to standards of quality and effectiveness [14,15].

However, the use of medicinal plants and essential oils is limited in dentistry, and their antimicrobial
activities on oral bacteria are not widely studied. We have previously reported that, in Moroccan
population, O.vulgare is used as a mouthwash in traditional medicine [13].

O. vulgare is a widespread aromatic plant naturally growing in different parts of the world, including
Northern Africa, the Mediterranean area, the Arabian Peninsula, Central Asia, and Europe [16,17]. It
belongs to Lamiaceae family, and it is known for being a rich source of EOs, which have proven to
possess a large variety of biological activities because of their chemical compounds [18]. The abundance
of different compounds of EOs of Origanum species may show some variations because of ecological
and environmental effects, geographical location, and time of collection [19–21].

We have additionally evaluated the possibility to neutralize the LtxA by administrating a mouth
rinse with LtxA neutralizing agents released from leaves of Psidium guajava [22].

The aim of the present work was to study the antibacterial activity of O. vulgare EO of Moroccan
origin on A. actinomycetemcomitans. In addition, we explored its cytotoxicity and checked how it
cooperates with the leukotoxin neutralizing properties.

2. Results

2.1. Chemical Composition of the Essential Oil

The chemical analysis of O. vulgare EO was performed by using gas chromatography/mass
spectrometry (GC/MS) technique. The 25 identified components and their relative percentage are
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summarized in Table 1. The major constituents were as follows: Carvacrol (32.36%), α-terpineol
(16.70), p-cymene (16.25%), and Thymol (12.06%) (Figure 1). Thus, the EO of O. vulgare is dominated
by oxygenated monoterpenes.

Table 1. Chemical composition of O. vulgareEO.

No Compound Formula RT (min) RI Conc. (%)

1 α-Thujene C10H16 13.768 927 0.20
2 α-pinene C10H16 14.179 936 0.44
3 1-octen-3-ol C8H16O 16.403 942 1.69
4 3-Octanone C8H16O 16.877 989 0.53
5 Dehydrocineole C10H16O 17.291 995 0.39
6 3-Octanol C8H18O 17.351 997 0.42
7 p-cymene C10H14 19.335 1028 16.25
8 Limonene C10H16 19.575 1031 0.28
9 Eucalyptol C10H18O 19.782 1035 0.82

10 γ-terpinene C10H16 21.457 1061 1.03
11 Cis-Sabinene hydrate C10H18O 22.01 1068 0.43
12 1-hepten-3-ol C7H14O 22.641 1084 0.21
13 Linalool C10H18O 24.005 1101 2.16
14 Borneol C10H18O 28.615 1167 0.37
15 Terpinen-4-ol C10H18O 29.372 1179 0.77
16 p-Cimen-8-ol C10H14O 29.822 1185 0.82
17 α-terpineol C10H18O 30.296 1189 16.70
18 Pulegone C10H16O 33.591 1251 0.49
19 Thymol methyl ether C11H16O 33.721 1235 6.60
20 p-Cymen-3-ol C10H14O 36.33 1287 0.88
21 Thymol C10H14O 36.787 1290 12.06
22 p-Thymol C10H14O 37.024 1291 0.74
23 Carvacrol C10H14O 37.524 1300 32.36
24 Caryophyllene C15H24 45.356 1418 0.93
25 Caryophyllene oxide C15H24O 55.195 1582 2.42

RT: retention time; RI: retention index; Conc.: Concentration
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2.2. Antimicrobial Activity

The inhibition zones obtained respectively when the O. vulgare EO, Amoxicillin (AM), Amoxicillin
and clavulanic acid (AMC), and Doxycycline (DO) were tested against six clinical strains and five
reference strains of A. actinomycetemcomitans are shown in Table 2. All tested strains showed inhibition
zones in the presence of the EO (27.6 µg) (37–69 mm). The susceptibility to the antimicrobials varied
among the strains (Table 2).
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Table 2. Mean diameter of inhibition zones (mm) obtained by the agar diffusion method and the interpretation according to the European Committee on Antimicrobial
Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 9.0, valid from 2019-01-01.

A. a. strains

Inhibition Zone Diameter (mm) 1*

p-value

EO Antimicrobials

O. vulgare
27.6 µg

AMC 2 AML 3 DO 4 SP 5 CIP 6 MH 7 VA 8 MTZ 9

25 µg 25 µg 30 µg 100 µg 5 µg 30 µg 30 µg 5 µg

Breakpoints

S ≥ 15
R < 15 note10 note11 no info S ≥ 30

R < 30
S ≥ 24
R < 21 no info no info

clinical strain 1
37.33 ± 2.08 31.66 ± 1.15 30.33 ± 0.57 25.00 ± 0.00 ** 29.66 ± 0.57 28.33 ± 0.57 36.00 ± 1.73 0.00 0.00

<0.001S S S S – R S – R

clinical strain 2
51.33 ± 0.57 ** 32.66 ± 0.57 ** 29.33 ± 1.15 ** 23.33 ± 0.57 22.66 ± 0.57 26.66 ± 0.57 ** 36.33 ± 0.57 ** 14.33 ± 0.57 ** 0.00

<0.001S S S S – R S – R

clinical strain 3
65.66 ± 0.57 ** 30.66 ± 0.57 30.66 ± 1.15 25.66 ± 0.57 28.66 ± 1.15 29.33 ± 1.15 38.33 ± 2.08 ** 15.66 ± 0.57 ** 0.00

<0.001S S S S – R S – R

clinical strain 4
63.66 ± 0.57 ** 32.00 ± 1.00 28.66 ± 1.15 27.66 ± 0.57 27.66 ± 1.15 33.00 ± 1.00 39.33 ± 0.57 ** 15.00 ± 0.00 ** 0.00

<0,001
S S S S – S S – R

clinical strain 5
65.33 ± 0.57 ** 31.00 ± 1.73 27.33 ± 0.57 ** 23.33 ± 0.57 ** 28.33 ± 0.57 31.66 ± 0.57 38.00 ± 1.73 ** 14.66 ± 0.57 ** 0.00

<0.001S S S S – S S – R

clinical strain 6
56.33 ± 1.52 ** 31.00 ± 0.00 27.66 ± 0.57 22.66 ± 0.57 ** 27.00 ± 1.00 31.66 ± 0.57 34.66 ± 0.57 ** 15.33 ± 0.57 ** 0.00

<0.001S S S S – S S – R

ATCC 43717 (Suny
aB75)

69.66 ± 0.57 ** 40.33 ± 0.57 ** 25.66 ± 0.57 28.33 ± 0.57 29.33 ± 0.57 30.66 ± 0.57 33.66 ± 0.57 ** 24.66 ± 0.57 0.00
<0.001S S S S – S S – R

ATTC 43718 Y4
65.33 ± 0.57 ** 25.33 ± 0.57 34.33 ± 0.57 28.66 ± 0.57 28.66 ± 1.15 ** 31.00 ± 1.00 ** 33.33 ± 0.57 24.33 ± 0.57 0.00

<0.001S S S S – S S – R

HK1651 (JP2) 67.66 ± 1.52 ** 28.33 ± 0.57 27.66 ± 0.57 28.33 ± 0.57 27.33 ± 0.57 34.33 ± 0.57 32.00 ± 1.73 23.66 ± 0.57 ** 0.00
<0.001S S S S – S S – R

HK 921 (JP2) 37.00 ± 1.73 29.66 ± 0.57 27.66 ± 0.57 29.00 ± 0.00 25.66 ± 0.57 34.66 ± 0.57 29.33 ± 1.15 20.33 ± 0.57 ** 0.00
<0.001S S S S – S S – R

HK1605 (non JP2) 46.00 ± 1.00 ** 29.33 ± 0.57 22.66 ± 0.57 ** 26.66 ± 1.15 ** 29.33 ± 1.15 29.33 ± 1.15 ** 32.00 ± 1.00 ** 19.66 ± 0.57 ** 0.00
<0.001S S S S – R S – R

Calculation of Inhibition Zone Diameter includes the diameter of the well (6mm). * Mean ± Standard deviation; R: resistant;S: susceptible; EO: essential oil. ** p < 0.01: the inhibition
zone diameter of a group (EO or antimicrobials) vs. the inhibition diameters of all other groups for each strain. 1 Diameter of inhibition zones, including diameter of well 6 mm, 2

Amoxicillin + Clavulanic Ac, 3 Amoxicillin, 4 Doxycycline; 5 Spiramycine; 6 Ciprofloxacine; 7 Minocycline; 8 Vancomycin; 9 Metronidazol. 10 Breakpoint is missing for Amoxicillin;
however, susceptibility can be interred from ampicillin, for which the breakpoint is: S ≥ 16 and R< 16 mm. 11 breakpoint is missing for Doxycycline; however, isolates susceptible to
tetracycline are also susceptible to Doxycycline. Breakpoint for tetracycline is: S ≥ 25 and R< 22.
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The serial diffusion test in 96-well microplates showed MIC values in the ranges of 0.05 to
1.51 µg/mL and 0.09 to 2.01 µg/mL for MBCs (Table 3). For MBC/MIC ratio, all the values found were
lower than 4, considering EO as bactericidal agents.

Table 3. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC)
of O. vulgare EO for the selected A. actinomycetemcomitans strains.

A. Actinomycetemcomitans Strains
O. vulgareEO

MIC(µg/mL) * MBC (µg/mL) * MIC/MBC *

clinical strain 1 1.00 ± 0.43 1.51 ± 0.00 0.99 ± 0.87
clinical strain 2 0.49 ± 0.21 0.62 ± 0.21 1.34 ± 0.58
clinical strain 3 0.15 ± 0.51 0.18 ± 0.00 1.00 ± 0.00
clinical strain 4 0.12 ± 0.05 0.15 ± 0.51 0.49 ± 0.05
clinical strain 5 0.12 ± 0.05 0.15 ± 0.05 1.00 ± 0.86
clinical strain 6 0.49 ± 0.21 0.75 ± 0.00 0.66 ± 0.29

ATTC 43717 (Suny aB75) 0.09 ± 0.00 0.09 ± 0.00 1.00 ± 0.00
Y4 ATTC 43718 0.18 ± 0.00 0.18 ± 0.00 1.00 ± 0.00
HK1651 (JP2) 0.09 ± 0.00 0.09 ± 0.00 1.00 ± 0.00
HK 921( JP2) 1.51 ± 0.00 2.01 ± 0.87 0.83 ± 0.28

HK1605 (non JP2) 0.62 ± 0.21 0.75 ± 0.00 0.83 ± 0.29

* Mean± standard deviation.

2.3. Cytotoxicity

The O. vulgareEO showed a dose-dependent cytotoxic effect in cultures of PMA-differentiated
THP-1 cells (Figure 2). Concentrations of oil above 125 µg/mL causedsubstantial decreased cell viability
after 24 h of exposure.
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Figure 2. Cytotoxicity of O.vulgare essential oil.

PMA-differentiated THP-1 cells were exposed to different concentrations of oil for 24 h and cell
viability determined with neutral red uptake staining. Mean ± standard deviation of three independent
experiments are shown.
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2.4. A. actinomycetemcomitans Leukotoxin Neutralization

The O. vulgare EO showed no neutralizing effect on A. actinomycetemcomitans leukotoxicity
estimated in cultures of PMA-differentiated THP-1 cells (Table 4). The presence of oil from O. vulgare did
not affect the inhibitory effect on leukotoxicity exhibited by the extract from the Psidium guajava leaves.

Table 4. Leukotoxicity (200 ng/mL) in presence of Psidium guajava or O. vulgare EO alone or in
combination after 2 h incubation in cultures of PMA-differentiated THP-cells. Result is expressed as
percent viable cells in relation to control cells (100%) based on quantitative neutral red uptake analyses.
Mean ± SD of triplicate analyses.

Concentration (µL/mL) Oil (%) Guava (%) Association oil and Guava (%) p

0 99.99± 0.93 * 100 ± 0.93 100 ± 0.93 <0.001

4 93.82 ± 3.13 * 93.55 ± 0.98 96.27 ± 0.98 <0.001

8 95.73 ± 0.31 * 91.92 ± 2.72 106.33 ± 1.65 <0.001

16 98.99 ± 0.41 * 106.60 ± 6.14 90.01 ± 8.17 <0.001

31 102.52 ± 1.22 * 108.51 ± 10.02 105.79 ± 20.35 <0.001

62 78.86 ± 3.86 * 85.39 ± 7.24 93.55 ± 2.52 <0.001

125 59.28 ± 1.72 * 98.72 ± 6.81 84.30 ± 2.61 <0.001

250 −4.07 ± 0.31 * 93.01 ± 4.31 98.99 ± 9.99 <0.001

* Significant difference (p < 0.001).

3. Discussion

The use of natural products, such as Eos, as antibacterial agents is expanding in oral hygiene and
dentistry. In Morocco, a major herbal-producing nation, many studies have been carried out on the
antimicrobial activity of Moroccan plant extracts and EOs [23,24].

However, there are few reports on the effects of Moroccan EOs on periodontal pathogens. The
EO of O. vulgare was selected for this study on the basis of its traditional use for the treatment of oral
diseases [13].

The results of the present study showed that the essential oil of O. vulgare exhibited a strong
antimicrobial activity against all tested clinical and reference strains of A. actinomycetemcomitans.

The antimicrobial activity of an EO is well-known, and it is linked to its main constituents. The
O. vulgare EOs is characterized by the dominance of various antibacterial compounds. Chemical
analyses of this oil revealed that the main constituents of the oil were carvacrol 32.36%, α-terpineol
16.70%, p-cymene 16.24%, and thymol 12.05% (Figure 1 and Table 1). All these compounds have
strong antibacterial activity, as shown in previous studies [25–27]. Linalool (an alcohol) is one of the
components of the essential oil of O. vulgare present in lower concentration (Table 1). However, this
compound was found to have antimicrobial activity against various oral and non-oral microbes [28–30].

In this study, we used the agar diffusion test to study the antibacterial activity of O. vulgare EO
against clinical and reference strains of A. actinomycetemcomitans. Substantial antibacterial activity
against both JP2 and non-JP2 strains was observed. The diameters of the inhibition zones obtained
were greater than 20 mm, (going from 37.00 ± 1.73 mm for strain HK 921(JP2), to 69.66 ± 0.57 mm for
strain ATCC 43717 Sunny aB75) (Table 3). The studied strains showed a high sensitivity to the studied
essential oil when 27.6 µg of it was used.

For analyzing the susceptibility of the A. actinomycetemcomitans strains to the tested
antimicrobials, and according to the EUCAST (European Committee on Antimicrobial Susceptibility
Testing), breakpoints for Haemophilus influenzae was used, as there is not one associated to
A. actinomycetemcomitans [31].

Based on the EUCAST interpretation values, all 11 tested A. actinomycetemcomitans strains were
susceptible to AMC and MH. All isolates were also susceptible to AML if ampicillin-derived breakpoints
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were used. Furthermore, eight strains were susceptible to DO if tetracycline-derived breakpoints were
used. Susceptibility to SP, VA and MTZ could not be validated, since no breakpoints for H. influenzae
are available in the EUCAST database. Inhibition zones are usually absent when susceptibility of
A. actinomycetemcomitans to MTZ is tested under aerobic conditions.

For studying the antibacterial effect of the essential oil to the selected A. actinomycetemcomitans
strains, compared with corresponding effect of the antimicrobials, the inhibition zones were used.
Since all inhibition zones induced by the essential oil (27.6 µg) were significantly larger, it indicates
that the oil has a substantial antibacterial effect on A. actinomycetemcomitans.

A range of different antimicrobials have been used as adjuvant for treatment of periodontitis
during the last decades. This has raised questions about risk for resistance development among the
antimicrobials and also doubts about the beneficial value of this treatment strategy. However, a range
of clinical studies have shown that use of a combination of MTZ and AML in conjunction with standard
periodontal treatment of aggressive forms of periodontitis achieves better clinical and microbiological
results than treatment without these antimicrobials [32–34].

Regarding resistance development among these antimicrobials, different results are reported.
However, the breakpoint for MTZ is not available. Thus, susceptibility testing of this antimicrobial is not
relevant. Based on usage of breakpoint value for Haemophilus influenzae, most reports of susceptibility
of A. actinomycetemcomitans to AML show that the prevalence of resistant isolates of the bacterium is
low [35]. In addition, when isolates earlier found to be resistant to this antimicrobial were retested, the
opposite result was achieved [36].

For the microdilution test, the results obtained for MIC are mainly in accordance with the diameters
of the inhibition zones observed in the well diffusion test. On the other hand, the O. vulgare EO showed
bactericidal activity with promising MBC results and an MBC/MIC ratio below 4. The MBC values
were similar or almost identical to those of MIC. O. vulgare EO had the highest inhibitory activity
against ATTC 43717 (Suny aB75) (CMI = 0.09 µg/mL) and the highest bactericidal effect against the
reference strains ATTC 43717 (Suny aB75) and HK1651 (JP2) (CMB= 0.09 µg/mL) (Table 3). These
results are consistent with those obtained in previous work on other tested non-oral Gram-negative
bacteria [37–39] reflecting a higher antibacterial activity on this oral bacterium.

The cytotoxicity of the essential oil of O. vulgare EO in concentrations was below 125 µg/mL when
analyzed in cultures of human macrophages (THP-1 cells). The IC50-value for the oil was much lower
than the MIC-values for antibacterial effect, suggesting an advantage for its use as a clinical chemical
agent. EO seems to be toxic for cells. Previously, it has been shown that carvacrol and other oregano
constituents can be cytotoxic at high doses [40,41]. Thus, further investigations are needed to achieve
maximum positive antimicrobial effect of O.vulgare EO without cytotoxic effects. In addition, this oil
did not interfere with the LtxA neutralizing capacity of extract from Psidium guajava leaves. It has
been shown that components extracted from Psidium guajava bind to LtxA and completely abolish its
activity [42].

A mouth rinse containing water extract from Psidium guava leaves has been tested on adolescents
in Morocco with the presence of A. actinomycetemcomitans from the JP2 genotype in their subgingival
plaque [22]. Results from this pilot study are limited, but they indicate that LtxA neutralization alone
was not sufficient for eradication of A. actinomycetemcomitans and its pro-inflammatory effect.

A. actinomycetemcomitans is a germ that is mostly associated with aggressive forms of periodontitis.
One of its virulence factors is LtxA, which plays an important role in pathogenicity. Periodontal
infections due to strains that produce high levels of LtxA are strongly associated with a serious
disease. LtxA selectively kills human leukocytes and can affect the body’s functioning local defensive
mechanisms [5]. Previous studies on the role of LtxA in host–parasite interactions have focused mainly
on polymorphonuclear leukocytes (PMN) [43,44]. In periodontal inflammation, macrophages have
an important role in regulating inflammatory reactions and tissue degradation and remodeling [45].
LtxA causes a rapid inflammatory cell death in macrophages, which might cause an imbalance in the
pro-inflammatory response [46].
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We can conclude that the O. vulgare EO has the potential to be used as a preventive or therapeutic
agent against periodontitis in individuals colonized with A. actinomycetemcomitans. Its cytotoxic
properties can be overcome by the possibility to cooperate with the LtxA neutralizing compounds of
Psidium guajava.

4. Materials and Methods

The present study was carried out after obtaining approval from the Biomedical Ethics Committee
(Ref. 400/2010); the individual patient’s written informed consent was obtained before the collection of
the plaque samples for the study.

4.1. Plant Material and Extraction of Essential Oil

The aerial part of O. vulgare was purchased at a local market in Rabat, Morocco. A portion (100 g)
of the aerial parts of the plants was hydrodistilled during 3 hours, using a Clevenger system. The
obtained essential oil was dried over anhydrous sodium sulphate and, after filtration, stored at +4 ◦C,
until it was tested and analyzed.

4.2. Gas Chromatography Coupled with Mass Spectrometry (GC/MS)

The chemical composition of the EO was analyzed by using a gas chromatograph (Perkin Elmer
ClarusTM GC-680) fitted to a mass spectrometer (Q-8 MS Ion Trap), operating in electron-impact EI (70 eV)
mode. Non-polar column HP-5MS (Methylpolysiloxane 5% phenyl, 60 m× 0.25 mm× 0.25µm thickness)
was used (the GC/MS was done atthe Platform of physicalchemistry analysis and characterization,
Faculty of Sciences, Mohammed V University in Rabat, Morocco). The chromatographic conditions were
as follows: injector temperatures at 280 ◦C; carrier gas, helium at flow rate of 1 mL/min; temperature
program ramp from 60 to 200 ◦C, at gradient of 2 ◦C/min. After holding 1 min at 200 ◦C, another ramp
was operated from 200 until 300 ◦C, at 20 ◦C/min, and final hold for 5 min. The GC/MS system was
controlled by TurbomassTMsoftware; a library search was carried out, using the combination of NIST
MS Search and literature. The NIST version was 2.0 g, built May 19, 2011. The relative number of
individual components of the total oil was expressed as a percentage of each peak area relative to total
peak areas. The retention indices (RI) were obtained by injecting in HP-5MS a mixture of continuous
series of straight chain hydrocarbons (C8-C31), under the same conditions as described above.

4.3. A. actinomycetemcomitans Strains

The antimicrobial capacity of O.vulgare EO and of following selected antimicrobials, Amoxicillin
(AM), Amoxicillin and clavulanic acid (AMC), Doxycycline (DO), Ciprofloxacin (CIP), Minocycline
(MN), Vancomycin (VA), and Metronidazole(MTZ) was tested against six clinical isolates and the
following reference strains: ATTC 43717 (Suny aB75), Y4 (ATCC 43718),HK1651(JP2),HK 921 (JP2), and
HK1605 (non JP2). HK 1651 was obtained from Department of Odontology, Umeå University, Sweden.
HK 921 (JP2) and HK1605 (non JP2) were obtained from Department of Dentistry and Oral Health
Aarhus University, Denmark.

The bacterial strains and essential oil were stored at the laboratory of oral biology and biotechnology,
Faculty of Dental Medicine, Mohammed V University in Rabat. The tests were performed at the
same laboratory.

4.4. Subgingival Plaque Sampling

The clinical A. actinomycetemcomitans strains were obtained from subgingival plaque samples
collected from patients with periodontitis. The patients were recruited at the Clinical Department of
Periodontology in the Center of Consultations and Dental Treatments (CCTD) in Rabat-Morocco.

The sampled patients were diagnosed with aggressive periodontitis and had pockets of 5 mm
or greater confirmed by clinical and radiological examination. Subgingival sampling of periodontal
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biofilm was performed, using absorbent paper point (medium size, Maillefer, Ballaigues, Switzerland).
Then, the papers were pooled and placed in a tube containing 1.5 mL of phosphate buffer saline (PBS).
All plaque samples were collected by the same examiner.

4.5. Culture and Isolation

Once in the laboratory, the sample was vortexed before being seeded into the culture medium
Dentaid-1 [47] and used for selective isolation and growth of A actinomycetemcomitans. Plates were
incubated at 37 ◦C, in air, with 5% CO2; and after 3–5 days, they were carefully examined for the
presence of A. actinomycetemcomitans. Identification of the bacterium was based on colony morphology,
positive catalase reaction, and negative oxidase reaction. Putative A. actinomycetemcomitans colonies
were further elucidated by microscopy, Gram stain, and enzymatic activity, including indole and
fermentation of glucose, xylose, maltose, and mannitol [48]. The isolates were then stored at −80 ◦C in
glycerol broth.

4.6. In Vitro Antimicrobial Susceptibility Assay

The antimicrobial effect of O. vulgare was tested in two ways. The agar well diffusion method
was used to determine the antibacterial activity in comparison with corresponding activity of selected
antimicrobials. A microdilution assay was used for the calculation of MIC (minimum inhibitory
concentration). MBC (minimal bactericidal concentration) of the oil was also determined.

4.6.1. Agar Well Diffusion Method

Agar well diffusion method [49–51] was used to evaluate the antimicrobial activity of essential oil
from O. vulgare.

Initially, the bacterial strains were cultivated on slant cultures for 24 hours. Subsequently,
bacterial suspensions were prepared in 0.85% NaCl, and the turbidity was adjusted to McFarland 0.5
(approximately 1 × 108 CFU/mL). The turbidity was confirmed by a Sensititre®Nephelometer. At first,
the agar plates were seeded by swabbingwith a cotton swab. Then, 30 µLof the essential oil (27.6 µg)
was added to wells (diameter 6 mm) made in the center of each agar plate after 15 minutes [52,53].
Doxycycline (disc: 30 µg) was used as positive control [54]. The plates were incubatedat 37 ◦C, in an
aerobic atmosphere containing 5% CO2, for 48 hours. All tests were carried out in triplicate, in separate
experiments. Diameters of the inhibition zones were measured as (mm), including the diameter of the
well. The antibacterial activity was considered if an inhibition halo of growth larger than 6 mm (size of
the well) was produced.

4.6.2. Minimum Inhibitory Concentration (MIC) Determination

The MIC of O. vulgare EO was determined by using a broth assay in 96-well microplates
(Sigma-Aldrich, USA), as recommended by NCCLS, for the determination of the MIC (NCCLS,
1999). All tests were performed in Mueller Hinton broth (MHB) supplemented with Tween 80, (final
concentration of 0.5% v/v), aimed to improve the solubility. The bacterial strains were cultured
overnight, at 37◦C, in Dentaid-1. The turbidity of the inoculums was adjusted to McFarland 0.5.
The turbidity of the suspensions was confirmed with the Sensititre®Nephelometer. Serial dilutions
ranging from 48.42 to 0.09 mg/mL of the EO were prepared in a 96-well microplate, including one
growth control with “MHB + Tween 80”, one sterile control containing “MHB and Tween 80”, and
another sterile control made of “MHB +Tween 80 +EO”. Amoxicillin (10 mg/mL) was used as positive
control. The plates were incubated under normal atmospheric conditions, at 37 ◦C, for 24 hours. After
incubation time, 40 µL of 2 mg/mL Triphenyl Tetrazolium Chloride (TTC) indicator solution (indicator
of microorganism growth) was added to all wells of the microplate. Subsequently, the plates were
re-incubated for 2 hours, at 37 ◦C [55]. Bacterial growth was monitored when the TTC indicator
was red.
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4.6.3. Minimum Bactericidal Concentration (MCB) Determination

To measure the minimum bactericidal concentration (MBC), 10 µL of cultures was taken from
wells of the microplate of MIC, with no visible turbidity, inoculated on blood agar plates, and incubated
for 48 hours, at 37 ◦C, under 5% CO2 [56]. MBC was defined to be the lowest concentration of essential
oil that killed 99.9% of the microorganisms in culture on the agar plate after the incubation time.

The MBC/MIC ratio was calculated to show the nature of the antibacterial effect of essential oils.
In a ratio less than 4, the essential oil was classified as a bactericidal essential oil, and in a ratio more
than 4, it was classified as a bacteriostatic essential oil [57].

Each MIC and MBC value was obtained from three independent experiments.

4.7. Cell Culture

Cells of the human acute monocytic leukemia cell line THP-1 (ATCC 16) were cultured in
RPMI-1640 (Sigma-Aldrich, St. Louis, MI, USA) with 10% fetal bovine serum (FBS) (Sigma-Aldrich),
at 37 ◦C, in 5% CO2. Before determination of leukotoxic activity, the THP-1 cells were seeded in
96-well cell-culture plates, at a cell density of 105 cells/mL in 100 µL culture medium supplemented
with 50 nMphorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich), and incubated for 24 hours. The
PMA-activated THP-1 cells exhibited adherent properties and enhanced sensitivity to the LtxA.

After differentiation with phorbol 12-myristate 13-acetate (PMA), THP-1 cells acquire a macrophage
phenotype, which is similar to primary human macrophages in many aspects [58,59]. This is the
common way to use THP-1 cells in cell assays. The adherent phenotype is macrophage-like and easier
to study in cytotoxicity assays.

Twenty-four hours prior to LtxA exposure, the culture medium was discarded, and 100 µL fresh
medium without PMA was added to each well of the THP-1 monolayer.

4.8. Cytotoxicity Assay

The cell monolayers of PMA-differentiated THP-1 cells were exposed to different concentrations
of the oil for 24 h, at conditions described above. The proportion of viable cells in each well was
determined by the neutral red uptake method and expressed in relation to that of the control cells
cultured in plane medium [60]. Cytotoxicity (LD50) was expressed as the lowest concentration (ppm)
that kills ≥ 50% of the cells.

4.9. LtxA Purification

LtxA was purified from A. actinomycetemcomitans strain HK 1519, described in detail previously [61].
The purified LtxA was basically free from lipopolysaccharides (LPS) (<0.001% of total protein) and
visualized by SDS-polyacrylamide gel separation.

4.10. Preparation of Psidium Guajava Leave Extract

Guava leaves were collected in Ghana by Dr. F.Kwamin and transported with a courier to Umeå
University, Umeå, Sweden. Guava leaves at a concentration of 250 g/liter of water, were boiled for
10 minutes before the leaves were removed by filtration, and cleared from debris by centrifugation.
The supernatant was aliquoted and stored in a refrigerator until use. The amount of dry substance was
determined by evaporation of the extract, which contained 10.0 mg/mL H2O.

4.11. LxtA Neutralization Assay

The cell monolayers of PMA-differentiated THP-1 cells were exposed to different concentrations
of the oil or guava for 15 min, before the LtxA (200 ng/mL) was added. The different mixtures were
incubated for 2 h, at conditions described above. The proportion of viable cells in each well was
determined by the neutral red uptake method, as described above.
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4.12. Statistical Analyses

Statistical analysis was carried out by using SPSS for Windows (SPSS, Inc., Chicago, IL, USA).
Inhibition zone diameter, MIC, MBC, MBC/MIC, and cell viability values, as continuous variables with
a normal distribution, were expressedas mean ± standard deviation. For statistical differences between
the inhibition diameter of the nine antimicrobial agents (EO, AMC, AMX, DO, SP, CIP, MH, VA, and
MTZ), andthe cell viability in presence of EO, Guava, and the association “EO +Guava”, the One-Way
Analysis of Variance (ANOVA) with Bonferroni correction was performed. A p-value < 0.05 was
considered as statistically significant. Statistical analyses were carried out, using SPSS for Windows
(SPSS, Inc., Chicago, IL, USA).

5. Conclusions

The present study indicates that O. vulgare EO may find application as an antibacterial agent on
periodontitis associated with A. actinomycetemcomitans and shows the possibility of Psidium guajava
to overcome its cytotoxic properties. However, further investigations on mechanisms of action and
toxicity need to be continued.
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