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ABSTRACT

Massively parallel sequencing of microbial genetic
markers (MGMs) is used to uncover the species com-
position in a multitude of ecological niches. These
sequencing runs often contain a sample with known
composition that can be used to evaluate the se-
quencing quality or to detect novel sequence vari-
ants. With NGS-eval, the reads from such (mock)
samples can be used to (i) explore the differences
between the reads and their references and to (ii)
estimate the sequencing error rate. This tool maps
these reads to references and calculates as well
as visualizes the different types of sequencing er-
rors. Clearly, sequencing errors can only be accu-
rately calculated if the reference sequences are cor-
rect. However, even with known strains, it is not
straightforward to select the correct references from
databases. We previously analysed a pyrosequenc-
ing dataset from a mock sample to estimate se-
quencing error rates and detected sequence vari-
ants in our mock community, allowing us to obtain
an accurate error estimation. Here, we demonstrate
the variant detection and error analysis capability of
NGS-eval with Illumina MiSeq reads from the same
mock community. While tailored towards the field
of metagenomics, this server can be used for any
type of MGM-based reads. NGS-eval is available at
http://www.ibi.vu.nl/programs/ngsevalwww/.

INTRODUCTION

Microbial genetic markers (MGMs) are genes or other
DNA sequences that are widely used in phylogenetic and
taxonomic analyses, for instance, in species classification
and profiling of community structures in environmental
sequencing (metagenomic) samples (1). The properties of

MGMs that make them suitable for such analyses are their
universal presence across species as well as their highly in-
formative and relatively conserved sequence composition
(2). The most commonly used MGMs for eukaryotes in-
clude the internal transcribed spacer region (3) and the 18S
ribosomal RNA (rRNA) gene (4), and for prokaryotes, the
spacer region between the 16S and 23S rRNA genes (5), as
well as these genes themselves (6).

Although limited by laborious and costly molecular tech-
niques, earlier studies relying on the cloning and (partial)
sequencing of MGMs have uncovered the previously un-
known biological diversity in various ecosystems (7,8). Re-
cently, next-generation sequencing (NGS) has become a
standard method for determining the community structure
in environmental samples and other samples of microbial
communities, for example, in seawater (9) and soil (10).
Moreover, the same technique initiated the characteriza-
tion of the human microbiome in health (11) and in disease
(12), making it possible to establish relations between mi-
crobiome and host health status.

Environmental sequencing studies often include a ‘mock’
community sample, which is a low-diversity community
with known composition. The sequencing data acquired
from the mock samples has been used to (i) determine
the influence of experimental noise on diversity estimates
(13,14), (ii) standardize and improve experimental proto-
cols to ensure consistency between sequencing runs (15) and
(iii) evaluate the accuracy of data cleaning and taxonomic
analysis pipelines (16–20). Furthermore, the mock samples
can be used to determine the overall quality of a sequenc-
ing run, as well as error rates, such as the insertion, dele-
tion and substitution rate (21,22). The accurate estimations
of these errors predominantly depend on the use of cor-
rect reference sequences. This makes it essential to detect
sequence variants that are missing in the reference dataset,
which may otherwise lead to inflated errors (23). The iden-
tification of variants in metagenomic samples by the use of
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genetic markers is also key to detect clinically relevant novel
bacterial strains (24) and taxonomic reconstruction (25).

Numerous tools exist for the correction of errors in high-
throughput sequencing data (26), including those specifi-
cally developed for MGMs (19,20,27). However, there are
only a limited number of methods for error rate calcula-
tion. DRISEE is an error estimation tool designed specif-
ically for whole-genome shotgun metagenomics sequences
and depends on the presence of artificially duplicated reads,
making it unsuitable for reads from MGMs (28). To our
knowledge, the only computational tool currently available
for estimating sequencing error in reads from MGMs is
the seq.error command in mothur (29). Here, the reads are
aligned to a reference alignment of marker genes (e.g. 16S
rDNAs). Next, the leading and trailing bases in reads that
do not fall into an overlapping alignment region are consid-
ered artefacts and are trimmed before error rate estimation.
This may lead to undesired effects. Since no visualization is
provided, it is difficult to get insight into the error rates due
to the likely presence of novel variants.

There are existing methods for variant calling and sin-
gle nucleotide polymorphism discovery (30–32). However,
these tools mainly focus on determining the significance
of rare variants in single-organism studies using whole-
genome shotgun data. Here, our purpose is different; we
are looking for common variants in MGMs in microbial
community samples that may affect error rates. Note that
rare variants typically do not influence the accuracy of er-
ror rates. NGS-eval, presented here, facilitates the identifi-
cation of common variants by visualizing the frequency of
errors on each reference sequence; this allows the user to
compare such frequencies to expected error rates and to de-
termine whether they result from the presence of a variant
sequence.

We have developed NGS-eval, a user-friendly web server,
for estimating different types of sequencing errors in (mock)
samples from MGM-based sequencing runs. The interac-
tive plots in our tool can be used to explore the differences
between the reads and their reference sequences to detect
novel sequence variants. Using a mock community sample
sequenced on an Illumina MiSeq platform, we show that
accurate error rate estimations can only be achieved by the
detection of such variants. While most suitable in the field
of environmental sequencing, the NGS-eval server can be
used for any type of marker-based sequencing output.

MATERIALS AND METHODS

Data preparation

The reads should be processed to ensure that contaminants,
that is, reads from species not included in the sample, are
removed. In addition, to estimate only the sequencing er-
ror, experimental bias other than that of sequencing, such as
chimeric sequences formed during PCR amplification (17),
should be removed from the reads. A number of data pro-
cessing methods exist for this purpose (29,33,34). A descrip-
tion is also available in the NGS-eval online documentation.
Please note that remaining contaminants can still inflate the
estimated error.

Web server

Input. The required inputs consist of two sets of nu-
cleotide sequences; the NGS reads (e.g. from Roche 454
or Illumina platforms, from a single sample) and the refer-
ence sequences corresponding to the reads. The references
should be in FASTA format, whereas the reads can be up-
loaded in FASTA or FASTQ format, without or with com-
pression (gzip or zip).

Optional inputs include the (gene-specific part of the)
primer sequences used in the amplification of the marker
gene or sequence. To prevent non-specific priming in reads
from leading to inflated error estimates (cf. 23), the degen-
erate primer bases in the reference sequences can optionally
be expanded to the corresponding IUPAC ambiguity char-
acters. We also recommend using the processing option to
trim (PCR) full-length reference sequences to the region of
interest, for instance, full-length 16S rDNA sequences to the
V4 hypervariable region. Likewise, in the case of paired-end
sequencing, where the forward or the reverse reads may not
fully cover the region of interest, these trimmed reference
sequences can be further truncated to a length specified by
the user (sequences shorter than this length are not filtered
out).

Processing. First, the reads are dereplicated: one read be-
comes the representative read for each unique sequence and
the IDs of all reads identical to it are stored. Next, the
best-matching reference for each representative read is de-
termined using the usearch global command in USEARCH
v.8.0 (35). Subsequently, optimal alignments are calculated
by globally aligning each representative read to its refer-
ence sequence using the Needleman–Wunsch alignment al-
gorithm implemented in EMBOSS needleall v6.6.0 (36).
These alignments are parsed and sequencing errors, such
as mismatches, insertions and deletions, are calculated for
each reference sequence and for the overall sample. Finally,
javascript objects are produced, which are used to plot the
interactive graphs for each reference sequence in the user’s
web browser (using jqPlot, an open source project by Chris
Leonello; http://www.jqplot.com/).

RESULTS AND DISCUSSION

Overview

NGS studies of microbial genetic markers (MGMs), for in-
stance, the 16S rRNA gene, often include a ‘mock’ sample
with a known species profile. Such a sample can be used for
a variety of tasks, ranging from the evaluation of sequenc-
ing quality to the optimization of computational pipelines
that handle NGS datasets. The NGS-eval server enables the
analysis of the reads obtained from such microbial commu-
nity samples for two main purposes:

(i) Calculating the rates of different sequencing error
types, such as insertions, deletions and substitutions.
The results can be used to evaluate the overall quality
of a sequencing run as well as to assess the influence of
corrective tools, such as error correction algorithms, on
the resulting data.

http://www.jqplot.com/
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Figure 1. An example of interactive error plots for the (forward) reads obtained from the V4 region of the 16S rRNA gene of Fusobacterium nucleatum.
(A) The reads were mapped to a single F. nucleatum reference sequence. At position 60 in the read above, a variant can be observed as a high substitution
peak. Here, the server suggests a consensus base with IUPAC code R (A or G). (B) The reference sequence for the variant was added to the set of reference
sequences and the reads were re-mapped to the new set, which led to the removal of the substitution peak and a reduced error rate. (C) When zooming into
the region between positions 42 and 80, the complete absence of the substitution peak at position 60 can be observed, as well as two sequencing errors.
Note the change in the number of mapped sequences (blue line) between (A) and (B), resulting from the mapping of variant sequence reads to the new
reference (not shown) sequence during the re-mapping.

Table 1. Sequencing error statistics, such as the percentage of insertions, deletions and mismatches, are reported for each reference sequence and for the
sample as a whole

Reference InF InR DelF DelR SubF SubR MisF MisR

S. oralis 0.03 0.02 0.03 0.02 1.2 1.6 1.3 1.7
S. mutans 0.004 0.05 0.005 0.02 0.45 1.9 0.46 2.0
P. gingivalis 0.009 0.08 0.01 0.05 0.56 2.6 0.58 2.7
P. nigrescens 0.007 0.04 0.02 0.03 0.21 1.8 0.23 1.9
All references 0.01 0.04 0.01 0.03 0.60 1.6 0.62 1.7

The table shows the values for the chimera-free forward and reverse reads after separate calculations by NGS-eval. In: insertions, Del: deletions, Sub:
substitutions, Mis: mismatches ( = In+Del+Sub), F: forward and R: reverse reads. All values are percentages.
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(ii) Detection of common sequence variants in the sample
and correction of reference sequences, which is essential
for accurate error rate estimates. This functionality can
also be helpful for the identification of novel variants.
The user can add such variants to the set of reference
sequences and the server can be rerun to obtain an error
rate that is more representative of sequencing error only.

Error analysis and variant detection

Previously, we analysed a pyrosequencing dataset, where
the V5–V7 hypervariable region of the 16S rRNA gene was
sequenced for a mock community (23). Using an initial ref-
erence dataset, the error rate calculated for substitutions
was 10-fold higher than the values reported in literature.
Further analysis with an earlier NGS-eval version led to the
identification of seven novel sequence variants. The error
rates were reduced to expected values after including these
variants as additional reference sequences.

Here, we analysed 251-bp long forward and reverse reads
from a paired-end Illumina MiSeq dataset, where the V4 hy-
pervariable region was sequenced for the same mock com-
munity, following a MiSeq 16S rDNA protocol (37). Before
mapping, chimeras in the forward or reverse reads were re-
moved using USEARCH v.8.0 (35) by following the chimera
removal procedure described in the NGS-eval online doc-
umentation. NGS-eval was separately run for the forward
and reverse reads. The high substitution peak in Figure 1A
shows an example of a common variant from this dataset,
which was later confirmed with BLAST (NCBI BLAST
against nr) to be present in sequences of the same strain,
illustrating how error rates can be estimated more correctly
using our server (Figure 1B and C). The overall error rate
was calculated by summing the number of mismatches in
all alignments and dividing the result by the total length
of the alignments. A detailed description of this calcula-
tion is given in the online server documentation. The over-
all estimates for the error rates in the forward and reverse
reads were 0.62% and 1.7%, respectively. This difference is
expected since the reverse reads are generally of lower qual-
ity than the forward reads. Table 1 shows an overview of
the error statistics reported by NGS-eval. The overall com-
bined error rate, 1.2%, was similar to the values obtained
previously (0.8%) for the MiSeq platform (38). The error
rate reported for the same platform can be as low as 0.1%
in the case of shotgun reads and trimming low-quality tails
(39,40).

Interactive visualization and server output files

The interactive analysis and visualization of the frequencies
and positions of the errors in each reference resulted in the
discovery of a sequence variant for one of the species (Fig-
ure 1). This functionality is provided by plotting the error
data (e.g. insertions, deletions and substitutions) along the
sequence coordinate of a selected reference. The data series
to be plotted can be selected as well as the error axis scale(s)
(unscaled, relative or logarithmic). In addition, the refer-
ence sequence itself can be added to the plot, which pro-
vides detailed insight into the bases at different positions on
the zoomable sequence axis. Furthermore, the data points

in the plots are clickable: upon a click, the corresponding
position in the consensus sequence below the plot is high-
lighted. To support off-line usage and more in-depth anal-
ysis by the user, the error reports, as well as the calculated
consensus sequences, can be downloaded. These reports in-
clude separate files for each reference sequence separately
and a report for the total error rates.

CONCLUSION

The NGS-eval server provides a user-friendly way to in-
spect NGS datasets obtained from the sequencing of genetic
markers in microbial communities. The error calculation
functionality enables the evaluation of the overall sequenc-
ing quality and can further be used to assess the outcome
of NGS data processing pipelines. The interactive plots in
NGS-eval quickly illustrate the read coordinates where the
errors occur. High frequency of errors at specific positions
can be useful for detecting novel (common) sequence vari-
ants and identifying the differences between the strains that
are present in the sample and that are used as reference se-
quences.
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