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Abstract: Cephalopods, successful predators, can use a mixture of substances to subdue their prey,
becoming interesting sources of bioactive compounds. In addition to neurotoxins and enzymes,
the presence of antimicrobial compounds has been reported. Recently, the transcriptome and
the whole proteome of the Octopus vulgaris salivary apparatus were released, but the role of
some compounds—e.g., histones, antimicrobial peptides (AMPs), and toxins—remains unclear.
Herein, we profiled the proteome of the posterior salivary glands (PSGs) of O. vulgaris using two
sample preparation protocols combined with a shotgun-proteomics approach. Protein identification
was performed against a composite database comprising data from the UniProtKB, all transcriptomes
available from the cephalopods’ PSGs, and a comprehensive non-redundant AMPs database. Out of
the 10,075 proteins clustered in 1868 protein groups, 90 clusters corresponded to venom protein
toxin families. Additionally, we detected putative AMPs clustered with histones previously found
as abundant proteins in the saliva of O. vulgaris. Some of these histones, such as H2A and H2B, are
involved in systemic inflammatory responses and their antimicrobial effects have been demonstrated.
These results not only confirm the production of enzymes and toxins by the O. vulgaris PSGs but also
suggest their involvement in the first line of defense against microbes.

Keywords: cephalopods; common octopus; shotgun-proteomics; AMPs; toxins

1. Introduction

Cephalopods (octopus, squid, cuttlefish, and Nautilus) are highly competitive and efficient
predators, sharing such remarkable morphological and physiological innovations as their highly
advanced visual and nervous systems, camouflage abilities, diversified body shapes, sizes,
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and metabolic rates [1,2]. Considering the number of species, Cephalopoda is the third richest
class of the Phylum Mollusca, having around 845 extant invertebrate species [3], worldwide distributed,
from shallow to deep waters [4–9]. The highest competitiveness associated to cephalopods relies mostly
on their complex behavior combined with their capacity to produce venom and enzymes present in
their salivary glands [10–12].

The absence of an external protective shell combined with the active predatory lifestyle of Coleoid
cephalopods might be driving the venom evolution in those glands [13]. Indeed, the posterior salivary
glands (PSGs), also known as venom glands, are actively used in feeding by cephalopods such as
squids, octopuses, and cuttlefishes to subdue their preys through the inoculation of toxins [14–17].
Currently, cutting-edge approaches such as shotgun proteomics and transcriptomics have substantially
increased the knowledge about those gland metabolites [18–26].

Fingerhut et al. (2018) took an important step in this direction combining the transcriptome
of PSGs from O. vulgaris with the proteome of PSGs, anterior salivary glands, and saliva from
adults, as well as, with the proteome of PSGs from juveniles O. vulgaris [22]. This study described
the presence of degradative proteins and neurotoxins in the salivary apparatus of O. vulgaris and
related species [16,20,27,28]. However, a high percentage of the detected proteins by high-throughput
approaches is still annotated as “predicted” or “uncharacterized” in public databases. Therefore,
their biological role in the salivary apparatus needs to be uncovered.

Cephalopod toxins repertoire comprises SE-cephalotoxin (Decapodiformes restricted),
tachykinin-like peptides, “cysteine-rich secretory proteins, antigen 5, and pathogenesis-related
1 proteins superfamily members” (CAP), hyaluronidases, chitinases, phospholipase A2 (PLA2),
carboxypeptidases, serine proteases, pacifastin peptide precursors, and DNase [13,16–19].
Besides, some organic compounds, as tetrodotoxin (TTX) and TTX-like proteins produced by
endosymbiotic bacteria of the genus Vibrio, are used by several cephalopods to neutralize preys
or as a defense against predators [13,20,29]. All venom components, including enzymes, neurotoxins
and non-proteinaceous compounds seem to act in a cooperative manner to degrade membranes and
tissues, facilitating the access of neurotoxins to the synaptic targets [30–32]. For instance, the highly
toxic TTX has been found as one major components of the venom secretion in the blue-ringed octopus
Hapalochlaena sp. [33]. It has been suggested that some venom components like enzymes (e.g., proteases
and hyaluronidases) can facilitate the diffusion of the TTX into the prey tissues [19].

PSGs represent a source of underexplored bioactive compounds, including novel peptide classes
like AMPs that may be involved in the first line of defense against microbes [34,35]. In fact, it is likely that
octopus exploits secreted AMPs as part of an innate defense mechanism [36–39]. However, in O. vulgaris,
those compounds remain to be fully characterized; so far only the novel peptide OctoPartenopin
from the suckers has been characterized [36]. Despite the huge diversity present among AMPs,
some of them, such as cationic AMPs (CAMPs), share structural features with some histones or their
derivatives [40–43]. Interestingly, some classes of histones have been reported as highly expressed in
the salivary secretion of O. vulgaris [22], but its presence in the saliva remains unclear.

Therefore, in this study (Figure 1), we aim to provide additional insights about the venomous
repertoire of PSGs from O. vulgaris, as well as to unravel putative AMPs production. Thus, this study
intends to be the first step for further in vitro tests to assess its potential antimicrobial activity.
For this purpose, we profiled the PSGs proteome of three common Octopus specimens captured in the
Portuguese coast; using two protein sample preparation protocols for shotgun proteomics analyses.
Considering that AMPs are part of the first line of defense against microbes and virus, and that these
immune components remain unexplored [34], we mapped our mass spectrometry raw data against the
most comprehensive and non-redundant AMPs database published so far [44]. We dedicated special
attention to histones’ classes with known antimicrobial activity [40,41,45], as well as to detect CAMPs
sharing essential features with the histones [40] that were highly expressed both in the gland and
saliva proteome of O. vulgaris [22]. Herein, we have identified most of the toxin’s families previously
reported in PSGs of O. vulgaris. Likewise, the outcomes of this work shed new light on the PSGs
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functions, which might be involved in the immune responses through the production of putative
histones-related AMPs.
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liquid chromatography system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass 

Figure 1. Workflow of the methodologies used to profile the whole proteome of the posterior salivary
glands from the cephalopod Octopus vulgaris: (a) Sampling, dissection, and protein extraction of the
posterior salivary glands (PSGs) from three adult specimens of Octopus vulgaris (Ov) corresponding
to three biological replicates (Ov1_PSG, Ov2_PSG, Ov3_PSG); (b) Sample preparation protocols for
LC-MS/MS analyses (FASP: Filter Aided Sample Preparation and ISD: In solution digestion), and the
corresponding two technical replicates for each specimen (biological replicate); (c) Resulting 12 LTQ
raw files from LC-MS/MS peptide sequencing using a nanoLC-MS/MS, composed by an Ultimate
3000 liquid chromatography system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass
spectrometer (Thermo Scientific, Bremen, Germany); (d) Protein identification and quantitative analyses
(MaxQuant freeware v1.6.2.3), downstream analyses (Perseus v1.6.2.3) and leading proteins annotation
(BLASTp program against UniProtKB/Swiss-Prot and nr database).
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2. Results and Discussion

2.1. LC-MS/MS Analyses and Protein Identification

The resulting 12 LTQ raw files from LC-MS/MS analyses are provided as Supplementary Material
(Dataset S1–S6), deposited at the Mendeley Data repository (i.e., 2 raw files per Dataset). Overall,
the strategy employed in this study (Figure 1) allowed the identification of 10,075 proteins clustered
in 1868 proteinGroups (Table S1), assembled from 8704 unique peptide sequences. The term
“proteinGroup(s)” is considered throughout this work to mention a cluster of proteins sharing
peptide sequences identified with MaxQuant freeware.

Herein, to identify the highest possible number of peptide sequences, two sample preparation
methods (FASP and ISD) were applied (Figure 1). Both methodologies yielded 8704 unique
(non-redundant) peptide sequences. In total, 1133 and 8421 peptide sequences were identified
with ISD and FASP protocols, respectively. Regarding the number of proteinGroups, 1824 were
obtained from FASP, 447 from ISD, and 410 were identified in both protocols.

In general, FASP methodology provided better results regarding the number of proteins and
peptide sequences identified. However, this approach presents some disadvantages since it is a
filter-based method. In FASP protocol, samples are desalted and concentrated in the membrane of the
filter by subsequent centrifugation cycles. In the present study, filters with a molecular weight cut-off of
10 kDa were applied representing a limitation to detect proteins/peptides below that molecular weight.

Although the protein digestion step can be sometimes insufficient and more prone to be affected
by some contaminants present in the samples, ISD was applied as a complementary methodology
to overcome FASP associated disadvantages. Despite the small number of proteins obtained with
ISD, the unique and razor peptides identified with this approach increased the coverage of some
proteins clustered within the above mentioned 410 proteinGroups, thus giving more accuracy to those
protein reconstructions. Moreover, the ISD protocol allowed the identification of 37 exclusive clusters,
including an S1 type peptidase (lcl|SRR3105321_c16_frame_6_orf_1), showed in Table S2, and presented
a cluster yield of 1133 unique peptide sequences.

The original output files, obtained by MaxQuant, containing peptides’ sequences and the
summary of the analyses are provided as Supplementary Material within the Dataset S7, deposited at
the Mendeley Data repository. Those proteins were identified against a composite database named
“All_Databases_5950827_sequences.fasta” containing 5,950,827 protein sequences composed by the
data provided by the following six source databases (Database A to F). Such comprehensive database
is publicly available in the corresponding Data article ([46]: Dataset_1): Database A with a total of
19,087 sequences retrieved from Fingerhut et al. (2018) [22]; Database B, a non-redundant AMPs
database with 16,990 protein sequences from Aguilera-Mendoza et al. (2015) [44]; Database C made up
of 2427 proteins identified with the Proteome Discoverer software v2.2.0.388 (Thermo-Fisher, Waltham,
MA, USA); Database D with 84,778 protein sequences from de novo assembly of 16 cephalopod PSGs
transcriptomes analyzed by TransDecoder v5.5.0; Database E with 5,106,635 protein sequences obtained
with six-frame translation tool from 16 cephalopod PSG transcriptomes, which are not included in
Database D; Database F with 720,910 protein sequences obtained with six-frame translation tool from
the transcriptome of O. vulgaris (deposited by Fingerhut et al., 2018 [22]) but not included in Database
A. Details regarding the construction of the mentioned databases, as well as the corresponding FASTA
files, are provided in the associated Data article [46].

The number of proteins identified (10,075) were subdivided according to their source database
into (Table 1): 2073 protein sequences from Database A (i.e.,: 1961 transcript sequences obtained from
the O. vulgaris PSGs transcriptome analyzed by TransDecoder v.5.5.0; 84 transcript sequences obtained
from the O. vulgaris PSGs transcriptome analyzed by six-frame translation tool; 28 sequences from
UniProt); 44 AMPs sequences from Database B; 1845 protein sequences from Database C inferred with
the six-frame translation tool from 16 cephalopods PSGs transcriptomes which were not included
in Database D; 5275 transcripts of the 16 cephalopods PSGs assembled transcriptomes analyzed by
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TransDecoder v5.5.0 from Database D; 700 transcripts of 16 cephalopods PSGs assembled transcriptomes
translated by the six-frame translation tool from Database E; 138 transcripts of O. vulgaris not included
in Database A and analyzed by the six-frame translation tool, which integrated the Database F.

2.2. Comparison with a Similar Proteogenomic Study of the PSGs from O. vulgaris

Around 0.32% of the sequences, within the composite database, were retrieved from the Database
A, corresponding to the third smallest contribution among the source databases (Table 1). However,
the second highest percentage (20.58%) of the identified proteins (2073), by MaxQuant, was obtained
from the composite database generated in this study (Table 1). From those 2073 proteins, 1759 are also
leading proteins, representing 17.46% of the total of identified proteins in our analyses. Moreover,
84.85% of the proteins identified from the Database A are leading proteins, showing a qualitative
measure of accuracy and significance in their identification (Table 1).

Table 1. Summary of the number of protein sequences gathered in the composite database according to
their source database and identified by MaxQuant analyses.

Custom
Databases

# Protein
Sequences 7

% Protein
Sequences

Relatively to
the

Composite
Database 9

# Proteins
Identified 10

% Proteins
Identified

Relatively to
the Total of

Proteins
Identified 12

# Leading
Proteins 13

% Leading
Proteins

Relatively to
the Total of

Proteins
Identified 14

% (# Leading
Proteins

Relatively to
the # Proteins

Identified
Per Db) 15

A 1 19,087 0.32 2073 20.58 1759 17.46 84.85
B 2 16,990 0.03 44 0.44 12 0.12 27.27
C 3 2427 0.04 1845 18.31 1180 11.71 63.96
D 4 84,778 1.42 5275 52.36 3075 30.52 58.29
E 5 5,106,635 85.81 700 6.95 249 2.47 35.57
F 6 720,910 1.21 138 1.37 70 0.69 50.72

Total 5,950,827 8 100 10,075 11 100 6345 62.98 -
1 protein sequences from a database made available by Fingerhut et al. (2018) [22]. 2 non-redundant antimicrobial
peptides from a database made available by Aguilera-Mendoza et al. (2015) [44]. 3 proteins identified by Proteome
Discoverer v2.2.0.388. 4 protein sequences from de novo assembly of 16 transcriptomes of cephalopod PSG analyzed
by TransDecoder v5.5.0. 5 protein sequences obtained with six-frame translation tool from 16 PSG transcriptomes,
which are not included in Database D 4. 6 protein sequences obtained with six-frame translation tool from the
transcriptome of O. vulgaris (deposited by Fingerhut et al. (2018) [22]) but not included in Database A 1. 7 This is the
number (#) of protein sequences in each database. 8 This is the total of protein sequences present in the composite
database (All_Databases_5950827_sequences.fasta), used for MaxQuant analyses, that came from each one of the six
smaller source databases (A to F). 9 This is the percentage (%) of protein sequences from each database that is present
in the composite database, i.e.,: % = (# protein sequences 7/5,950,827 8) × 100. 10 This is the number (#) of protein
sequences identified by MaxQuant v1.6.2.3 in the composite database that came from each small database (A to F).
11 This is the total number of protein sequences identified by MaxQuant v1.6.2.3 in the composite database. 12 This is
the percentage (%) of protein sequences identified by MaxQuant software v1.6.2.3 in the composite database that
came from each smaller database (A to F), i.e.,: % = (# protein identified 10/10,075 11) × 100. 13 This is the number
(#) of leading proteins identified by MaxQuant v1.6.2.3 in the composite database that came from each smaller
database (A to F). 14 This is the percentage (%) of leading proteins identified by MaxQuant v1.6.2.3 in the composite
database, that came from each smaller database (A to F), and that is present in the total of proteins identified, i.e.,:
% = (# leading proteins 13/10,075 11) × 100. 15 This is the percentage (%) of leading proteins identified by MaxQuant
v1.6.2.3 in the composite database, that came from each smaller database (A to F) relatively to the number of proteins
identified per database (DB), i.e.,: % = (# leading proteins 13/# protein identified 10) × 100.

Fingerhut et al. (2018) found 3946 protein sequences clustered into 2810 proteinGroups using
the MaxQuant freeware against its custom protein database [22], which in fact corresponds to the
data contained within Database A of the present study. Out of the 3946 identified proteins by
Fingerhut et al. (2018) [22], 176 protein sequences had significant hits against a custom database
(UniProt_venom_and_toxin_26_06_2018) by using Protein Basic Local Alignment Search Tool (BLASTp)
searches. Comparing both results, our analysis reported 115 exclusive proteins (Figure 2 and Table S3)
and 1958 shared proteins with the one performed by Fingerhut et al. (2018) [22].
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Figure 2. Comparison between the proteins identified in the present study and the proteins identified in
a similar proteogenomic analyses of the posterior salivary glands from the cephalopod Octopus vulgaris:
(a) Number of proteins identified in this study against the Database A (in blue); (b) Number of proteins
previously identified by Fingerhut et al. (2018) against the sequences contained in the Database A, in a
similar proteogenomic analyses of Octopus vulgaris posterior salivary glands (in red); (c) Number of
proteins identified in both studies (shared proteins in the middle).

The number of proteins identified by Fingerhut et al. (2018) [22] was relatively higher, considering
the number of proteinGroups and non-shared proteins (Figure 2). Among them, Fingerhut et al. (2018)
identified a total of 116 protein sequences with homology to venom protein families, of which 95 protein
sequences (Table S1) were also found in 64 of our proteinGroups (Table S4). In addition, most of
these venom proteins, identified against the Database A, were leading proteins, except for the protein
“lcl|TRINITY_DN26408_c0_g1::TRINITY_DN26408_c0_g1_i1::g.15697::m.15697” that belongs to the
proteinGroup no. 1398 (Table S4). These results display a high reproducibility among proteogenomic
studies, showing a very consistent venomous repertoire in the PSGs proteome from O. vulgaris.
However, in general, the number of peptides identified as toxins was higher in the previous study.
These results obtained by Fingerhut et al. (2018) [22] may be explained firstly by the well-executed
methodology/strategy and, secondly, by the protein database used, built from the transcriptome of the
same samples profiled in the proteomic analyses [22].

The strategy in applying a composite database compared to the exclusive use of the Database A
(Figure 1) allowed to increase the number of the identified proteins (Table 1), to validate most of the
venom protein families (Tables S2 and S4), and to improve the identification of some leading proteins
(i.e., proteinGroup no. 1389, led by the protein tr|A0A0L8IA05_PD, Tables S2 and S4). Moreover,
26 additional clusters, encompassing known venom proteins and venom-like compounds, were
retrieved from the other gathered databases (Table S2). Among these clusters, 13 are related to serine
proteases family, 7 of which corresponded to S1 type peptidases, whereas 5 proteinsGroups belonged
to serine proteases inhibitors, 4 protein clusters to metalloproteases, and other 4 clusters made up of
CAP proteins (Table S2).

2.3. Leading Proteins Found with Homology to Venom Protein Families

Overall, we found a total of 90 proteinGroups encompassing most of the known venom protein
families reported for the PSGs from O. vulgaris (Tables S2 and S4). As previously described [18–20,22],
the venomous repertoire is composed by serine proteases, CAP, metalloproteases, serine proteases
inhibitors, secreted phospholipase A (sPLA2), chitinases, hyaluronidases, pacifastin, and others
SSCRs—short secreted cysteine rich proteins (Tables S2 and S4). Regarding the number of clusters,
the most represented were the serine proteases family with 49 clusters accounting for 54% of the total
of proteinGroups related to venom proteins, while CAP and metalloproteases accounted for 12% and
11% of the proteinGroups, respectively (Tables S2 and S4). Similarly, to previous studies [22], the most
abundant venom family, considering proteinGroups intensity Based Absolute Quantification (iBAQ)
scores, were serine proteases and CAP families, and to a lesser extent, metalloproteases and serine
proteases inhibitors (Figure 3).
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Figure 3. Heatmap showing proteinGroups abundance within the proteome of the posterior salivary
glands from the cephalopod Octopus vulgaris. The composite figure of heatmaps from the Octopus vulgaris
posterior salivary glands was built with the freeware Perseus v1.6.2.3. Cell colors show the log
normalized intensity for each proteinGroup based on the absolute protein abundance using the
intensity-based absolute quantification (iBAQ) score calculated by MaxQuant v1.6.2.3. The proteinGroup
abundance (rows) is represented by an intensity value (see the bar scale “Intensity” on the bottom right
corner) ranging from green (low protein expression) to red (more abundant proteins) for each sample
preparation protocol (columns): in solution digestion (ISD) and filter aided sample preparation (FASP).
Gray cells indicate that the protein was not observed in that sample. Dendrograms show hierarchical
clustering of all proteinGroups as shown in the centered heatmap. The heatmaps at both sides highlight
the abundance of the proteinGroups of interest (represented by ID columns), corresponding to the
toxins shared with the study published by Fingerhut et al., 2018 (Venom family or SSC—Short Secreted
Cysteine proteins) shown in font color blue, the venom family identified in this work (venom family
proteins) in font color green water, antimicrobial peptides in font color purple and histones in font
color brown. The details about the included proteins can be found in Supplementary Tables S1–S6.
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The venomous repertoire of the PSGs from O. vulgaris seems to be very reproducible [22]
and, in general, consistent with the role proposed for this gland in cephalopods [14,16,18–20,22].
Serine proteases (peptidase S1 family) are widely distributed among venomous animals [47],
being particularly diverse (Tables S2 and S4) and abundant (Figure 3) within the salivary gland
and saliva proteome of O. vulgaris [22]. The presence of serine proteases in the PSGs has been associated
with the external digestion of the prey after the venom inoculation [18,48], but also as an anticoagulant
agent to facilitate the diffusion of other toxins into tissues [18,20,47].

We also found 12 proteinGroups whose leading protein belongs to CAP superfamily
(Tables S2 and S4). This superfamily of proteins is widely present along the tree of life. Among
several venomous animals, they can also be found in cephalopods, being involved in a wide range
of envenomation strategies. Notwithstanding, its biological function in venoms has not been fully
elucidated [47]. As a hypothesis, it has been suggested the participation of CAP protein superfamily in
strategies involving the prey homeostasis disruption by the blockage of cyclic nucleotide-gated and
voltage-gated ion channels and by the inhibition of smooth-muscle contraction [49].

Other abundant enzymes in the PSGs proteome were metalloproteases, represented by
11 proteinGroups (Tables S2 and S4). In snakes’ venom, metalloproteases play significant roles
in bleeding, intravascular clotting, edema, inflammation, and necrosis [50], but these effects are not well
studied in the PSGs from cephalopods [20,22,47]. Snakes metalloproteases act essentially by degrading
the components of basement membranes underlying capillary endothelial cells, thus causing the
disruption of vessel walls [51–53]. In O. vulgaris, its proteolytic effect may interfere with the hemostatic
system of preys or facilitate the diffusion of other venom components promoted by its capacity of
breakdown the extracellular matrix [54].

As expected, we also found chitinases, which are ubiquitous enzymes in saliva and salivary glands
of cephalopods [19,22]. Chitinases are chitin degrading enzymes associated with external digestion in
a wide range of organisms from fungi to humans [13,55,56], but are also associated to host infection
by chitinase producing bacteria [56]. However, out of the two chitinases identified previously in the
salivary proteome from O. vulgaris, only one seems to be present in the adults PSGs [22]. Similar to the
aforementioned study, the “lcl|TRINITY_DN12896_c1_g1::TRINITY_DN12896_c1_g1_i1::g.9278::m.9278”
sequence, which is the leading protein of the proteinGroup 528, was identified (Table S4), whereas the other
chitinase “TRINITY_DN12584_c0_g1_i1” remains restricted to saliva and paralarvae PSGs [22]. In octopus,
their activity in the venom is suggested to facilitate envenomation, leading to the damage of the prey
(i.e., crustaceans) [13,19], but the functional differences between these two chitinases still need to be clarified.

Likewise, the hyaluronidases recruited into the venom act as diffusion factors across tissues,
through hydrolysis of specific peptide bonds, enhancing its permeability and thus facilitating the
spreading of toxins or hemostatic factors [47]. In this study, we only found one hyaluronidase cluster
corresponding to the proteinGroup 1124 (Tables S1 and S4), being the same as previously reported
in the PSGs from the common octopus [22]. Nonetheless, unlike O. vulgaris, hyaluronidases were
found as particularly abundant in PSGs of southern blue-ringed octopus, Hapalochlaena maculosa, where
they are suggested to facilitate the rapid dispersal of TTX (a potent and effective killing neurotoxin)
throughout tissues [19].

Besides, in the proteinGroup 434 was identified the same and unique secreted phospholipase A2

(sPLA2), reported previously in PSGs of cephalopods [22]. Unlike serine proteases that appear
highly diversified in octopods [18,19,22], sPLA2s seem constrained to a group of homologues
sequences identified in: the octopods O. vulgaris [22], Octopus kaurna, H. maculosa [19]; the cuttlefishes
Sepia latimanus, Sepia pharaonic; the squids Sepioteuthis australis and Loliolus noctiluca [18]. Phospholipase
A2 (PLA2) enzymes hydrolyze glycerophospholipids into lysophospholipids and fatty acids producing
several effects in envenomation that include antiplatelet, myotoxic, neurotoxicity, cardiotoxicity,
anticoagulant, and hemolytic activities [47,57]. In octopods, sPLA2s have not been proved to be a
particularly important component of the venom [58]; thus, their presence is still intriguing since they
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could be implicated in envenomation, or in the digestion of the prey, as suggested of venomous
snakes [57].

Serine proteases inhibitors were also found in 5 proteinGroups (Table S2), as part of the venom
components. Serine proteases are found as important venoms complement in different Phyla
(e.g., cnidaria, insects, and snakes). For instance, sea anemones contain a range of Kunitz-type
protease inhibitors with a dual effect, acting as a neurotoxin and as a protease inhibitor to prevent the
rapid degradation of the toxins injected into prey animals or predators [59–62]. In snakes’ [63–67] and
bees’ venoms [68], these proteins have shown antifebrin(ogen)olytic activities, acting in a cooperative
manner with other venom components (e.g., serine proteases) to promote the spread of the venom [68].
In general, these mechanisms may involve serine proteases inhibitor as an anti-bleeding agent
at the sting site of victims [63,64,68]. Interestingly, the leading protein of the proteinGroup 375,
“lcl|TRINITY_DN12299_c0_g1::TRINITY_DN12299_c0_g1_i2::g.8022::m.8022,” previously reported
in the PSGs proteome of O. vulgaris, had 42.5% of pairwise identity to saxiphilin-like from the snail
Pomacea canaliculate (with NCBI accession XP_025083285.1), 30.6% to equistatin (Uniprot: P81439)
from the sea anemone Actinia equina, and 25.4% to the toxin U24-ctenitoxin-Pn1a (Uniprot: P84032)
from the spider Phoneutria nigriventer (Table S5). These three proteins share the thyroglobulin type
I domain, proposed as inhibitors of cysteine proteases [69]. Indeed, equistatin is a secreted protein
classified as a potent inhibitor of papain-like cysteine proteinases [70]. Hence, the protein found in this
study could have a similar function to equistatin, as a secreted protein, since it has their corresponding
signal peptide (Table S6). On the other hand, two leading proteins, tr|Q7M312_PD and sp|P00974_PD,
related to serine proteases inhibitors found in this study (Table S2), were clustered with AMPs in the
proteinGroups 1275 and 1276 (Table S6), respectively. Both proteins possess a Kunitz/Bovine pancreatic
trypsin inhibitor domain, showing homology to aprotinin (Tables S5 and S6).

Pacifastins found in 3 protein Groups (Table S4), also meet the requirements as serine proteases
inhibitor. Pacifastin is a cysteine-rich low molecular weight heterodimeric serine protease inhibitor
that has an unique compact globular folding within the group of the ‘canonical’ protease inhibitors [71].
In addition to their principal function, i.e., inhibitory activity towards serine proteases, the pacifastin
family presents an inhibitory action on high voltage-activated calcium channels, having been reported
to have a structural similarity with the Ca2+ channel inhibitorω-conotoxin GVIA [72,73]. Nonetheless,
their biological functions are probably related with distinct physiological processes, namely, immune
response and defense against microbial/fungal proteases [71]. Unlike the saliva fluids, pacifastin was
found highly expressed in the PSGs from O. vulgaris [22].

Other minor components related to venom were grouped into SSCRs comprising seven
proteinGroups (Table S4). Among these proteins, it was detected the protein NP2 of unknown
function (proteinGroup 673, Table S4), previously identified in the PSGs from O. vulgaris [22] and
H. maculosa [20]. Besides, a Ganglioside GM2 activator, previously reported in the PSGs of O. vulgaris,
was identified in the proteinGroup 1045 (Table S4) [22]. Gangliosides are sialylated glycolipids that act
as receptors for pathogenic bacterial infection on the gut epithelial cell [74].

In addition, the leading protein of the proteinGroup 140 (Table S2) showed homology to a
translationally-controlled tumor protein, a venom protein that causes edema, obtained from the
venom-gland transcriptome of the eastern coral snake Micrurus fulvius [75]. The translationally-controlled
tumor from M. fulvius causes edema, enhances vascular permeability, and it is likely related to the
inflammatory activity of the venom [75].

2.4. Histones and Antimicrobial Peptides Found in the Proteome of the Psgs from Octopus vulgaris

A total of 190 proteins clustered in 39 proteinGroups corresponded to histones (Tables S1 and S5).
Previously, it was reported that histones are the most expressed proteins in O. vulgaris salivary
apparatus [22], as expected in most tissues having a universal role in packaging DNA [76–78].
Histones are DNA binding proteins participating in the nucleosomes wrap inside the nucleus. However,
they are present in the cytoplasm and extracellular fluids in many animal species, including fish, where
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they show antimicrobial activity against bacteria, viruses, parasites, and fungi [45,79,80]. They also act
as neutrophil extracellular traps or mediators to bacterial killing and inflammatory responses.

Interestingly, in this work we identified 14 histones clustered in eight proteinGroups (Table S7) in
the O. vulgaris saliva, of which three proteinGroups also comprise AMPs. Histones had already been
detected as the most expressed protein in O. vulgaris saliva [22], despite mitosis are less significant in this
fluid. It is noteworthy that some classes of histones, once secreted, may enhance an antimicrobial effect
against pathogens [40], e.g., both H2A and H2B possess the capacity to neutralize endotoxins, possibly
being part of the host defense barrier in the salivary glands of common octopus. This hypothesis is
reinforced by the presence of AMPs in proteinGroups led by histones.

Are Amps and Histones Part of the Host Defense Barrier in the Salivary Apparatus of the
Octopus vulgaris?

AMPs are widely distributed among the prokaryotes, vertebrates, invertebrates, and plants,
constituting the first line of defense against microbes, and are considered part of their primary immune
system [81,82]. AMPs show a great diversity, being grouped according to their structure, activity,
mode of action and even according to their genetic origin [81,83]. AMP’s structural diversity can be
categorized by the amino acid composition (cationic, anionic and amphipathic) and by the adopted
secondary structure (α-helix, β-sheet, and extended AMPs) [83]; they commonly form amphipathic
structures enabling their interaction with bacterial cell walls and their insertion into the phospholipidic
membrane [84].

CAMPs and histones, mostly made up of basic and hydrophobic amino acids, are deemed to form
amphiphilic three-dimensional structures able to interact with cell membranes [41]. A high number of
them were detected/clustered together in the same proteinGroup by the MaxQuant (Tables S1 and S6).

Overall, the detection of 44 AMPs in 10 (Table S6) out of the 1868 proteinGroups (Table S1) shed
light on the putative production by O. vulgaris PSGs of such compounds as part of the primary immune
system. Moreover, most of the proteinGroups clustered with AMPs showed a relative high abundance
(Figure 3), led by histones, serine proteases inhibitors or by known AMPs such as the Buforin-II in the
proteinGroup 1277 (Table S6).

As can be observed in Table S6, the buforin II, a histone-derived AMP with bactericidal action
populates the proteinGroup 1277 (Table S6), forming an exclusive Buforin cluster identified with two
peptides, one of which is unique (Table S1). Buforin II (21 residues), found in the proteinGroup 92
(Table S6), is a shorter-length derivative of buforin I (39 residues). The latter was first isolated from
the stomach mucosa of the Asian toad Bufo gargarizans [85] and later detected in the gastric fluid of
pigs, cattle, and humans [43]. It shares complete amino acid identity with the N-terminal region of the
histone H2A. Thus, the histone H2A is a precursor of buforin I and II and they all share the cationicity
as a key feature to explain both functions, DNA packing and microbicidal activity [42]. Buforin II
can penetrate into cells without damaging the cell membrane to target the DNA and RNA, resulting
in a rapid bacteria death [86]. In toad gastric mucosal cells, H2A is overproduced; one fraction is
targeted to the nucleus and the remaining part is secreted into the gastric lumen, where it is processed
to Buforin II by pepsin C isoenzymes [87]. Something similar could occur in the salivary glands of the
common octopus where the histone H2A is widely detected (Tables S1 and S5) but being less abundant
than Buforin II (Figure 3).

Other AMPs detected in several proteinGroups are ubiquitin-derived peptides; in particular,
we have identified similarity with the ubiquitin-like AMP (cgUbiquitin) isolated from the Pacific oyster
Crassostrea gigas [88]. Ubiquitin is a house-keeping protein, highly conserved and present in almost all
living cells [89]. Ubiquitin has been primarily known as a marker for the degradation of other proteins
via proteolysis [90], and as an activator of the B-cell differentiation and of the adenylate cyclase in
many tissues [89,91]. Ubiquitin is covalently attached to histone H2A in the nucleus and to several cell
surface receptors in the membrane [92,93]. It also shows extracellular functions as a hormone [94] and
more recently its important role on antimicrobial responses of several organisms, including marine



Antibiotics 2020, 9, 757 11 of 20

species, has been reported [95–98]. For example, cgUbiquitin isolated from the oyster C. gigas is
active against gram-positive and negative bacteria without causing hemolysis to human red blood
cells up to 100 µg/mL. It is not membrane permeable and acts through a bacteriostatic process [88].
Ubiquitin-derived AMPs or their fragments have been already identified from the bladder of rats [99],
the secretions of bovine-stimulated chromaffin cells [100], the human amniotic fluid [101] and recently
from oyster gill extracts [88].

Peptides similar to the bovine pancreatic trypsin inhibitor (BPTI) were also clustered in two
proteinGroups. BPTI is a protease inhibitor of 58 amino acid length sharing common features with
AMPs such as (i) small size, (ii) positively charged (cationic), and (iii) disulphide bond stabilizer.
Its antimicrobial activity was demonstrated through the fungistatic action against Saccharomyces
cerevisiae and Candida albicans by inhibiting magnesium uptake into cells [102]. An ortholog of the
BPTI has been detected in the skin secretions of the tomato frog (Dyscophus guineti) where it probably
plays an alternative role as AMP, especially because magainin type AMPs were not detected in skin
secretions of such species, despite their role as an important defense strategy for several species of
frogs [103].

Last but not least, we detected in our samples an AMP of magainin-type as leading protein,
identified from the transcriptome of the salivary glands of the common octopus. Magainins are cationic
α-helical peptides, 21 to 27 residues in length, isolated from the skin of the African clawed frog Xenopus
laevis with broad spectrum activity towards gram-positive and gram-negative bacteria, fungi, protozoa,
viruses, and tumor cells [104]. Particularly, our peptide query matched with an ortholog of the original
magainin, found in skin secretions of the octoploid frog Xenopus amieti [105].

In addition to the AMPs identified among the proteinGroups, we have also found histone
fragments as leader hits in 39 proteinGroups (Tables S1 and S5) that could contribute to the defensive
barrier, set by the salivary glands. As we have previously mentioned, AMPs and histones or histone
fragments share relevant traits accounting for the antimicrobial activity. Most of the AMPs displayed
in Table S6 are CAMPs that share structural features with histones; in fact, buforin I and II, cathepsin
D, parasin I, and hipposin I are derivates from the histone H2A [40].

Furthermore, antimicrobial activity for the full-length histones in all classes (H1, H2A, H2B,
H3, and H4) [40] and more recently for the histone H5 from chicken erythrocytes [41,106] has been
reported. However, the fragmented histones only displayed antimicrobial action for the classes H1,
H2A, and H4 [40]. In agreement with this previous knowledge that supports the antimicrobial activity
of the histones, the most detected histone-like peptide within the proteinGroups belongs to the H2A
class in both the salivary gland tissue and the saliva fluid, including AMPs like the buforin II within such
proteinGroups (Table S7). The second most abundant, histone-like peptides of the H4 class, are present
in both samples and are also grouped with other AMPs like the cgUbiquitin. Lastly, histone-like
peptides of class H1 were identified in both samples as well (Table S7). All this evidence provides
relevant clues about the defensive role of the antimicrobial- and histone-like peptides detected in the
salivary gland of the common octopus.

3. Materials and Methods

3.1. O. vulgaris Sampling and Protein Extraction

Three fresh specimens of O. vulgaris caught in the eastern Atlantic (Portuguese waters) acquired
in the Matosinhos market (Porto, Portugal) were transported in isothermal bags to the laboratory.
Subsequently, the PSGs were dissected, and 0.5 g from each gland was introduced into lysis microtubes
(Lysis Tube with impact beads, Analytik Jena AG, Jena, Germany), containing the digestion buffer.
A proper volume of 1 mL of SDT buffer (2% SDS, 100 mM Tris/HCl pH 7.6, 0.1 M DTT) with
Protease inhibitors (PIs, 11697498001, Roche, Mannheim, Germany) was added to each 0.5 g of sample
tissue. Glands tissues were disrupted and homogenized in a cold support using the SpeedMill PLUS
homogenizer (Analytik Jena AG, Jena, Germany) in continuous mode (3 min, twice) and incubated



Antibiotics 2020, 9, 757 12 of 20

overnight at room temperature. Afterwards, samples were vortexed; heated for 3 min at 95 ◦C and
subsequently centrifuged at 16,000× g, for 20 min. Finally, the supernatant was collected, and the total
protein concentration was estimated according to the Bradford method [107]. Samples containing the
extracted proteins were stored at −20 ◦C.

3.2. Sample Preparation for LC-MS/MS Analyses

Protein samples from PSGs comprising three biological replicates were processed in duplicates
following two distinct protocols (i.e., a total of six protein samples for each protocol): FASP—filter aided
sample preparation [108] and ISD—in solution digestion using RapiGest SF Surfactant according to
fabricant specifications from (Waters Corporation, Milford, MA, USA). More details can be found below.

3.2.1. Filter Aided Sample Preparation

The extracted proteins from PSGs (30 µg) were alkylated and digested with trypsin (recombinant,
proteomics grade, Roche, Basel, Switzerland), at enzyme to protein ratio of 1:100 (w/w), for 16 h at
37 ◦C, in centrifugal filter units with nominal molecular weight limit (NMWL) of 10 kDa (MRCPRT010,
Millipore, Billerica, MA, USA). Peptides were subsequently recovered by centrifugal filtration, acidified
with formic acid (FA 10%, v/v), desalted and concentrated by reversed-phase extraction (C18 Tips,
100 µL, Thermo Scientific, 87784) using acetonitrile (ACN 70%, v/v) and trifluoroacetic acid (TFA 0.1%,
v/v) for peptide elution. Finally, the peptides were redissolved in 0.1% FA (v/v) in water to the
concentration of 0.04–0.06 µg/µL and conducted to LC–MS/MS.

3.2.2. In Solution Digestion

The extracted proteins from each replicate (200 µg) were solubilized in 50 µL of 0.1% RapiGest SF
surfactant (RapiGest™SF, Waters, Milford, MA, USA) in ammonium bicarbonate 50 mM. The disulfide
bonds were methylated by adding 5 µL of Dithiothreitol (DTT) solution in ammonium bicarbonate
50 mM to a final concentration of 5 mM and incubated at 60 ◦C for 30 min. Protein samples were
kept at room temperature for 10 min and posteriorly methylated by adding 5 µL of iodoacetamide
(IAA) to a final concentration of 15 mM and incubated in the dark for 30 min. Protein samples (100 µg)
were alkylated and digested with trypsin (recombinant, proteomics grade, Roche, Basel, Switzerland),
at enzyme to protein ratio of 1:100 (w/w), in a wet chamber for 3 h at 37 ◦C. Trypsin activity was inhibited
by acidification with 2.5 µL of 13% TFA to reach a final concentration of 0.5% TFA (approximately
pH = 2) and incubated at 37 ◦C for 30 min. RapiGest was removed by centrifugation at 16,000× g,
and the supernatant containing the trypsin digestion products was centrifuged and transferred to a new
microtube. The digested peptides were concentrated until removing all the solvent using a SpeedVac
System composed by one CentriVap concentrator, a CentriVap −50 ◦C cold trap (from LABCONCO,
Kansas City, MO, USA) and a vacuum pump (Welch-Ilmvac, Niles, IL USA). Finally, the peptides
were redissolved in 0.1% FA (v/v) in water to the concentration of 0.04–0.06 µg/µL and conducted
to LC–MS/MS.

3.3. LC-MS/MS Analyses

Protein samples prepared according to the above described FASP and ISD protocols were processed
using a nanoLC-MS/MS, composed by an Ultimate 3000 liquid chromatography system coupled to a
Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany).
Samples were loaded onto a trapping cartridge (Acclaim PepMap C18 100 Å, 5 mm× 300µm i.d., 160454,
Thermo Scientific, Bremen, Germany) in a mobile phase of 2% ACN, 0.1% FA at 10 µL/min. After 3 min
loading, the trap column was switched in-line to a 15 cm by 75µm inner diameter EASY-Spray column
(ES800, PepMap RSLC, C18, 3 µm, Thermo Scientific, Bremen, Germany) at 300 nL/min. Separation
was generated by mixing A: 0.1% FA, and B: 80% ACN, with the following gradient: 5 min (2.5% B
to 10% B), 60 min (10% B to 35% B), 5 min (35% B to 99% B), and 5 min (hold 99% B). Subsequently,
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the column was equilibrated with 2.5 % B for 12 min. Data acquisition was controlled by Xcalibur 4.0
and Tune 2.8 software (Thermo Scientific, Bremen, Germany).

The mass spectrometer was operated in data-dependent positive acquisition mode alternating
between a full scan (m/z 380–1580) and subsequent HCD MS/MS of the 10 most intense peaks from full
scan (normalized collision energy of 27%). ESI spray voltage was 1.9 kV and capillary temperature
was 275 ◦C. Global settings: use lock masses best (m/z 445.12003), lock mass injection Full MS, chrom.
peak width (FWHM) 15 s. Full scan settings: 70 k resolution (m/z 200), AGC target 3e6, maximum
injection time 50 ms. Data-dependent settings: minimum AGC target 8e3, intensity threshold 7.3e4.
Charge exclusion settings: unassigned, 1, 8, >8, peptide match preferred, exclude isotopes on, dynamic
exclusion 20 s. MS2 settings: microscans 1, resolution 35 k (m/z 200), AGC target 2e5, maximum
injection time 110 ms, isolation window 2.0 m/z, isolation offset 0.0 m/z, spectrum data type profile.

3.4. Protein Identification

3.4.1. Quantitative Proteomic Analyses

In total, 12 raw files comprising three biological replicates in duplicates from the two
sample preparation methods employed (deposited to the Mendeley Data repository: 6 from
FASP—Dataset S1–S3 and 6 from ISD—Dataset S4–S6) were searched against a custom protein
database (for more details about this database see the corresponding Data article [46]) using
MaxQuant v1.6.2.3 freeware software [109]. MaxQuant parameters for protein identification were:
MS and MS/MS tolerances of 20 ppm and 0.5 Da, respectively; two missed tryptic cleavages were
allowed; PSMs were accepted at a 1% false discovery rate (FDR) and trypsin was selected for
protein cleavage. Carbamidomethylation were selected as static modifications, while Oxidation of
Methionine and Acetylation of protein N-terminus were chosen as variable modifications. Protein
quantification was based on approximate absolute protein abundance, an iBAQ score calculated
by MaxQuant. The Posterior Error Probability (PEP) of proteinGroups was calculated using the
script maxquant_pepcalc, available at https://github.com/pstew/maxquant_pepcalc. Venn diagrams
were used to identify the shared proteins using an online free tool, available at the webserver of
the Bioinformatics and Evolutionary Genomics Center (BEG/Van de Peer Lab site, Ghent University,
Belgium, http://bioinformatics.psb.ugent.be/webtools/Venn/).

3.4.2. Maxquant Proteingroups Annotation

All proteinGroups obtained with MaxQuant software were annotated through the leading protein
as the best hit of each cluster. The strategy employed was based on homology search using a
local BLAST with BLASTp program against the “UniProtKB/Swiss-Prot, the Manually Annotated
Section of the UniProt KnowledgeBase” (accessed 13 May 2019) [110], “UniProtKB/Swiss-Prot
Tox-Prot” (http://www.uniprot.org/program/Toxins; accessed 13 May 2019) [111], and against the
National Center for Biotechnology Information (NCBI) non-redundant protein database (nr database:
ftp://ftp.ncbi.nlm.nih.gov/blast/db; accessed 25 June 2018), setting a cut-off e-value of 1e−3. When the
leading protein of the proteinGroup returned no hit and/or the annotation was “uncharacterized
protein”, an additional search with the BLASTp program was performed online using automatic
adjustment parameters. Considering that toxins and AMPs are secreted proteins and peptides, thus
signal peptides were predicted using the SignalP v5.0 server (https://services.healthtech.dtu.dk/service.
php?SignalP-5.0) [112], as well as Secretory/Non-secretory pathway inference using the DeepLoc-1.0
server (http://www.cbs.dtu.dk/services/DeepLoc) [113].

4. Conclusions

The proteomic profile of the PSGs from O. vulgaris was demonstrated to be very reproducible and
consistent with the previous studies [14,16,18–20,22]. The proteome was dominated by venom protein
families, histones, and other ubiquitous cellular proteins. The venomous repertoire encompasses
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http://www.uniprot.org/program/Toxins
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https://services.healthtech.dtu.dk/service.php?SignalP-5.0
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
http://www.cbs.dtu.dk/services/DeepLoc
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serine proteases, CAP, metalloproteases, serine proteases inhibitors, sPLA2, chitinases, hyaluronidases,
pacifastin, and others SSCRs. As previously described [22], serine proteases, CAP and metalloproteases
are more abundant within the venomous proteome, whereas serine protease inhibitors, sPLA2s,
pacifastins, and other SSCRs can be either considered as complementary components for the venom
function or their role should be further clarified.

The methodology employed in this study using a large protein database built from
cephalopods PSGs resulted suitable for our aims and support our findings. The search engine
“Andromeda” (embedded into MaxQuant freeware) translates our experimental data, from spectra
to peptide sequences considering the information contained in the composite protein database
provided (All_Databases_5950827_sequences.fasta file). Therefore, we increased the probabilities to
detect/identify our raw data against the protein database by considering the most comprehensive
proteomic database about cephalopod PSGs built so far, and by adding a non-redundant AMPs
database, as an interesting approach to recover some information that usually have been discarded.
Thus, this approach is suitable for a large-scale characterization of proteomes, being more useful to
perform exploratory analyses of complex biological samples (presence/absence, relative abundance),
than extensive qualitative characterizations such as the determination of full-length protein sequences
and structures.

Although it is recommended to use a custom protein database derived from the transcriptome
of the same samples, our strategy allowed us to increase the number of identified proteins by using
a composite protein database. The use of a composite protein database including translated PSGs
transcriptomes from cephalopods provided additional insights about toxins protein families and
bioactive compounds such as putative AMPs.

Most of the proteinGroups containing AMPs showed a relative high abundance, and some of them
were clustered in AMPs-exclusive proteinGroups. These AMPs were mainly related to the antimicrobial
compounds such as to the ubiquitin fragment and carboxyl ribosomal protein S27 extension, histones
H2B and H4, antibacterial and bactericidal fragment of BPTI, and the Buforin-II. This study sheds
new light about a putative role of the cephalopods PSGs in the first line of defense against pathogens.
However, both the presence of AMPs, and the high expression of histones in salivary secretion still
need to be unequivocally confirmed.
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