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Abstract

Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected
the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145
SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist
methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance
(BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of
factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these
relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant
or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence
for an association with asthma (OR = 1.43(1.2–1.8); p = 361024). The possible role of the FRMD6 gene in asthma was also
confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found
relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on
chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which
allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK
and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors
more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to
include partial relevance, global characterization of relevance and multi-target relevance.
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Introduction

Asthma is a multifactorial disease influenced by wide range of

genetic and environmental factors. Despite the numerous genetic

studies carried out to gain insight into its complexity, our

understanding of the nature and consequences of the genetic

variations remains limited. Several potentially important genomic

regions have already been identified but the causal alterations

which could be responsible for the observed linkages are

sometimes not discovered or more frequently the results of the

association studies cannot be confirmed by other studies. One of

the disputed genomic regions in asthma is the chromosome 11q13

where positive linkage to atopy was first reported by Cookson

et al. [1]. Subsequent association tests carried out on this region

revealed the importance of the genes MS4A2 (earlier FceRI-b or b
chain of the high-affinity receptor for IgE), SCGB1A1 (earlier
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uteroglobin or Clara cell secretory protein (CC16)), glutathione S-

transferase pi (GSTP1) and GPR44 (earlier CRTH2) in asthma and

asthma related phenotypes [1,2,3,4].

Another frequently investigated asthma-related genomic region

is the chromosome 14q22. Its attendance in the asthma

development has been suggested by different whole-genome

linkage studies [5]. Since then several genes have been shown to

be involved in asthma-related processes in this region. These are

genes for prostanoid transmembrane receptors, such as the

prostaglandin-D2 receptor (PTGDR), the prostaglandin-E2 recep-

tor (PTGER2) and the gene for galectin-3 (LGALS3) [6,7,8].

Despite the fact that associations of these regions and genes to

asthma phenotypes were found earlier, none of them was

confirmed subsequently by genome-wide association studies

(GWAS) and meta-analyses [9,10,11].

This frequent phenomenon of genetic association studies has

been explained by several theories, like the insufficient phenotypic

descriptors (e.g. oversimplified case-control approach), insufficient

observations (e.g. the negligence of rare genetic and epigenetic

variants), ethnic differences between the study populations,

confounding factors (population stratification and admixture),

conventional design errors (small sample size, the multiple testing

problem, small minor allele frequencies, curse of dimensionality,

bias-variance dilemma, model complexity and significance, etc.),

the inappropriate approach towards complex traits (i.e. disregard-

ing the role of high-number of weak factors, gene-gene

interactions, pathway-based interpretation), and the high redun-

dancy of predictors (e.g. the discovery of non-causal, transitively

associated descriptors) [12].

To overcome several of these limitations, probabilistic graphical

models (PGMs) were proposed. Thanks to their ability to

efficiently and accurately represent complex networks, PGMs

represent powerful tools to dissect the genetic susceptibility of

complex diseases. Bayesian networks are a popular class of PGMs,

because they provide a clear, graphical semantics for representing

a complete dependency-independency map of the domain.

Therefore, the graphical representation presents a crucial

advantage to allow the distinction between direct (causal) and

indirect (due to LD) SNP-phenotype dependencies, thus ensuring a

precise mapping of causal mutations. Additionally, BNs have the

advantage of being able to efficiently deal with SNP–SNP

interactions impacting the phenotype, a situation that is called

epistasis.

Due to the high computational complexity and particularly

because of the high sample (statistical) complexity, the learning of

complete Bayesian network models is computationally prohibitive.

To cope with complexity several ‘local’ approaches have emerged

which limit their scope, and focus on the identification of strongly

relevant variables, and possibly their interaction and causal

structure. Thus, they omit a global and detailed characterization

of relevance relations [13].

Other approaches apply a resampling scheme (i.e. bootstrap) or

the Bayesian statistical framework to cope with the relatively small

sample size, and to provide uncertainty and robustness measures

for various model properties [14,15,16]. Although these methods

have a much higher computational complexity than local causal

identification approaches, their main advantage is that the

modeling is not restricted, thus global characterization of the

dependencies in the domain is possible. In fact, these approaches

provide an overall characterization of the domain without the use

of dedicated target variables [15].

Specifically within the Bayesian statistical framework the

uncertainty of the validity of a discrete hypothesis given the

observations is expressed by a probability, which is interpreted as

an a posteriori belief in the hypothesis (e.g. above 0.5 it is more

probable than not, see [17]). On the contrary, a p-value for a

hypothesis in the frequentist approach is defined using the concept

of repeatability and used indirectly through rejection to confirm a

hypotheses.

Previously, we investigated the applicability of Bayesian

networks using the Bayesian framework to learn the relevant

variables with respect to a set of target variables. This could be

seen as the Bayesian interpretation of the feature subset selection

problem. We reported Monte Carlo methods to efficiently

estimate posteriors over structural model properties, such as

Markov blanket sets and Markov blanket graphs, which represent

the strongly relevant variables and their interactions [18]. Based

on these basic concepts we introduced a new statistical

methodology, named Bayesian network based Bayesian multilevel

analysis of relevance (BN-BMLA), which supports association

analysis by estimating posteriors of strong relevance. In the context

of genetic association studies, strongly relevant variables with

respect to a phenotype represent the genetic and phenotypic

factors that directly influence the phenotype (e.g. disease

susceptibility). Strongly relevant variables statistically isolate the

target variable from all other variables. However, the standard

concept of pairwise association is not identical with the concept of

strong relevance. First, if the dependency of a SNP to the

phenotype is indirect due to LD with the causal SNP, then it is

(transitively) associated but not strongly relevant to the phenotype.

Second, if a SNP has no main effect on the phenotype, but has an

epistatic effect along with an other factor, then this SNP is not

associated (according to the prevailing terminology), but strongly

relevant to the phenotype (i.e. it is in pure interaction with the

phenotype). Therefore, strong relevance indicates either a strong,

direct association or a pure interactionist relevance. See Figure S1

for further comparison of the concept of association and strong

relevance.

Additionally, posteriors for strong relevance and partial strong

relevance for subsets of variables can also be computed. The

concept of partial strong relevance, that a set of k predictors are

strongly relevant, is particularly useful, because it defines a

hierarchical, embedded hypotheses space with varying complexity.

For a given domain and sample size the posteriors over k-(strong)-

relevance can be used to determine the sufficiency of the data and

these posteriors can also be used to investigate statistical

interactions [19]. These model properties with varying complex-

ities support the overview, the post hoc interpretation, and the

offline meta-analysis of weakly significant results [20]. We tested

the BN-BMLA method in a case-control setup using artificial

datasets for identifying interactions and conditional relevance and

it was proven to be superior over other multivariate methods using

conditional models designed to detect associations between

genotypic variables and the target variable [21].

In this paper we report results of the BN-BMLA statistical

method on real-world genotype data from our partial genome

screenings of the 11q13 and 14q22 regions in asthmatic patients

and controls. We apply and demonstrate the unique ability of BN-

BMLA to provide (1) a complete overview about partial

multivariate relevance (i.e., posteriors of partial relevance of k

predictors for varying k), (2) an overview about various types of

dependencies between a predictor and a target based on global

characterization (i.e., posteriors that a predictor is directly or

transitively dependent, or is in pure interaction), and (3) a joint

characterization of relevance for multiple target variables (i.e. to

model the dependencies of the targets). We compare these results

with results from traditional frequentist methods, and discuss the

relevant candidate genes and their interactions from the aspect of
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association with asthma in our population. Among the newly

identified genes FRMD6 showed the strongest association with

asthma, and we confirmed the possible role of this gene in the

disease in an animal model and in human asthmatics.

Methods

Subjects
The study population comprised 1201 unrelated individuals of

Hungarian (Caucasian) population. Approximately, 5% of tested

subjects were probably of Gypsy origin (estimation based on state

population statistics).

Four hundred and thirty six asthmatic children, age 3–18 were

recruited to the study. All the asthmatic children had specialist

physician-diagnosed asthma with the following characteristics: (1)

recurrent breathlessness and expiratory dyspnea requiring treat-

ment; (2) physician diagnosed wheeze; (3) reversibility of the

wheezing and dyspnea by bronchodilator treatment measured as

forced expiratory volume 1 s (FEV1) by a spirometer. All the

asthmatics (or their parents) were instructed to record their

symptoms accurately for 2 weeks, the treatment, and the peak

expiratory flow (PEF) twice daily (in the evening and in the

morning). PEF 100% was determined by calculation from the

personal best value and the expected value according to the height

of the patient.

If the patient is younger than 5 years old, the determination of

lung function tests (PEF or FEV1) is usually not possible. In that

case the diagnosis and classification of the disease were made

according to the frequency and severity of other symptoms.

The treatment of the patients remained unchanged before the

blood was drawn. None of the asthmatic had experienced an

exacerbation or a respiratory infection for at least 4 weeks as

indicated by increased symptoms.

The control children were randomly selected from outpatients

from the Orthopaedic Department in the Budai Children’s

Hospital and from the Urological Department of Heim Pal

Hospital, Budapest. Children in the control group had mild

musculoskeletal alterations (like pes planus or scoliosis), phimosis,

or other small urogenital problems, showed no symptoms of

asthma and required no medication. The adult controls were

blood donors without asthma, and according to questionnaires

they had not experienced asthma symptoms earlier. The control

group comprised 765 subjects (mean age: 19612 years, 405

males/360 females).

In this paper we also demonstrate the ability of the BN-BMLA

method to predict various types of dependencies from small

amount of available data. For this purpose we applied the method

to three embedded datasets: (1) the asthma status was known in all

cases (1201 subjects, ‘‘A’’ dataset); (2) in all asthmatics (436) and in

664 controls, altogether in 1100 cases the status of rhinitis was also

known (‘‘RA’’ dataset). Rhinitis was diagnosed in 278 asthmatics

(64.0%), and in 233 controls (35.1%). Rhinitis was defined by

troublesome sneezing or blocked or runny nose severely affecting

the well being of the patient in periods without common cold or

flu. Only those subjects were involved in this dataset whose rhinitis

status was verified by specialists; (3) in 200 children (106 asthmatics

and 94 controls) the status of rhinitis and the serum levels of total

IgE and eosinophil were known (‘‘CLI’’ dataset, Table 1).

For the measurement of gene expression level in induced

sputum, 31 adults between 19 to 61 years old were enrolled in the

study, but 10 of them were excluded from the analysis because the

qualities of the sputum samples were not appropriate. The study

population comprised of 12 asthmatic patients (5 males and 7

females; mean age 36.3613.0 years) and 9 controls (4 males and 5

females; mean age 29.364.9 years). The 12 asthmatic patients had

mild atopic stable asthma, no other lung diseases and no lower

respiratory tract infection. Patients were required to have FEV1 of

greater than 70% of predicted, baseline methacholine PC20 (the

provocative concentration of methacholine causing a 20% fall in

FEV1) of less than 16 mg/ml. The 9 healthy volunteers were

recruited from the staff and students of the participating

Hungarian universities. They gave no history of respiratory

diseases, had a FEV1/FVC.80% and normal methacholine

airway responsiveness (PC20.16 mg/ml).The included groups

did not differ statistically regarding age, sex, smoking status and

allergy.

The study was conducted according to the principles expressed

in the Declaration of Helsinki, and approved by the Ethics

Committee of the Hungarian Medical Research Council (ETT

TUKEB; http://www.ett.hu/tukeb/tukeb.htm). Written informed

consent was obtained from all patients or from the parents or

guardians of the minors involved in the study.

Laboratory analysis
Genomic DNA was extracted from peripheral blood using DNA

blood isolation midi kit (Qiagen, Valencia, CA).

Multiplex PCR and SNP genotyping for 144 SNPs were

performed using 48- and 12plex genotyping assays on GenomeLab

SNPstream genotyping platform (Beckman Coulter Inc. Fullerton,

CA) using single-base primer extension technology. In addition,

SNP rs545659 was genotyped using TaqMan SNP Genotyping

Assay (Applied Biosystems, Warrington, UK) on an Applied

Biosystems 7900 Real Time PCR System as per instructions of the

manufacturer. Some samples were genotyped in duplicate in the

same and in different plates. Only those SNPs where the

genotyping call rate was .90% were included in the analysis.

Some SNPs genotyped on GenomeLab SNPstream genotyping

platform were also genotyped using TaqMan SNP Genotyping

Assays. No difference between the results of the two methods was

revealed.

Total serum IgE levels were determined by 3gAllergy blood tests

in Immulite 2000 Immunoassay System (Siemens Healthcare

Diagnostics; Deerfield, IL USA).

The eosinophil cell counts were measured by Coulter MAXM

Analyser.

RNA was isolated with the Qiagen Mini RNeasy kit (Maryland,

USA). RNA was transcribed to cDNA with the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Foster

City, CA). Real-time quantitative PCR was performed for the

genes found to be relevant in asthma in our analyses (FRMD6,

PTGDR, PTGER2, MS4A2, AHNAK, PRPF19, TXNDC16) and b-

actin using an ABI 7900HT Fast Real-Time PCR System (Applied

Table 1. Some characteristics of the study subjects belonging
to the CLI dataset.

Clinical and biological characteristics Asthmatics Controls

Number 106 94

Age, years 11.566.1 13.064.2

Gender, male/female 63/43 55/39

Rhinitis (%) 66.0 31.9

Total IgE kU/l 260.46111 94.6663

Eosinophil cell count 106/ml 0.3460.25 0.1460.07

doi:10.1371/journal.pone.0033573.t001
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Biosystems, Foster City, CA) and TaqMan Gene Expression

Assays. Relative gene expression was determined by the

comparative CT method (ddCT) with b-actin as the endogenous

control.

Sputum induction and analysis
Sputum was collected from 20 asthmatic and 11 healthy

volunteers. The participants inhaled 4.5% saline solution gener-

ated by a De Vilbiss Nebulizer (Ultra-NebTm 2000 model 200HI)

for 5 minutes after pre-treatment with 400 mg of inhaled

salbutamol. Induction was performed three times and the

pulmonary function was measured each time after the sputum

induction. All portions that macroscopically appeared free of

salivary contamination were selected. Samples were diluted with

phosphate buffered saline containing 0.1% dithiotreitol (Sigma, St

Louis, MO, USA), portions were agitated with a vortex and placed

on a bench rocker for 30 minutes. Samples were filtered through a

40 mm Falcon cell strainer, and centrifuged at 1500 rpm for

10 minutes. The cell pellet was resuspended in 1 ml PBS and

viability (Trypan blue exclusion method) was determined using

Burker chamber. After differential cell count, cells were stocked on

lyses buffer at 280uC until use.

SNP selection
SNPs in chromosome region 11q12.2-q13.1 and 14q22.1-22.3

were selected using HapMap data analyzed with Haploview 4.1

(http://www.hapmap.org). Our gene coverage pipeline included

tag SNPs for all of the detected haplo blocks with minor allele

frequency .0.05 and selected at an r2 of 0.8 for the CEU

population. In addition to using LD criteria, we also added SNPs

based on spacing across the region and their estimated

functionality. In this manner we selected 145 SNPs in the given

regions of Chr 11 and Chr 14 (68 and 77 SNPs, respectively) for

genotyping. See Table S1 for detailed information on the

examined SNPs.

Statistical methods
Frequentist methods. Allele frequencies were calculated by

allele counting. Data were analyzed using MedCalc 5.0 and SPSS

11.5 programs. Hardy-Weinberg equilibrium was tested by using a

x2 goodness-of-fit test. x2 test was used to test for differences in

allele distribution between the groups. Logistic regression adjusted

for age and sex was applied to assess the effect of the genetic

background to dichotomous clinical characteristics. Confidence

intervals were calculated at the 95 percent level. Estimated

haplotype frequency was calculated by Haploview 4.1: http://

www.broad.mit.edu/mpg/haploview/. Haplotype-specific ORs

were estimated using conditional logistic regression to model the

log odds of disease as a function of the individuals’ haplotype

probabilities. Normalized gene expression levels were compared

by t-test. Power analysis was carried out by genetic power

calculator (http://pngu.mgh.harvard.edu/,purcell/gpc [22].

In order to facilitate a multivariate based frequentist analysis we

applied multivariate logistic regression and multifactor dimension-

ality reduction (MDR). MDR is a nonparametric and genetic

model-free data mining method for detecting nonlinear interac-

tions among discrete genetic and environmental variables [23].
BN-BMLA method. A Bayesian Network (BN) is a directed

acyclic graph (DAG) that represents a joint probability distribution

of a set of random variables{X1, X2, …, Xn}. These refer to the

observed or measured factors (e.g. SNPs, clinical parameters) from

a specific domain. A node of the graph represents a variable and

an edge between two nodes represents a direct dependency

between the variables.

Learning a BN structure (i.e. the dependence relations of the

variables) is finding a DAG that best describes the dataset. In most

cases, where the amount of available data is modest relative to the

number of variables there are likely to be many models that have

non-negligible posteriors. However, there might be certain

structural features, e.g. the presence of an edge, that we can

extract reliably. A central structural feature is related to the

concept of strong relevance of a single variable or a set of variables.

For the definition of Markov blanket sets (MBS), see [24], for

strong relevance, see [25], for Markov blanket membership

(MBM), see [26] and for their relation, see [27].

With Bayesian learning we can estimate the strength with which

the data indicates the presence of a certain feature by estimating its

a posteriori probability (Eq. (1)):

P(f DD)~
X

G

P(GDD)f (G)

where G represents a BN structure, D is the dataset, and f(G) is 1 if

the feature holds in G and 0 otherwise (for an overview, see [28].

For example, we refer to p(MBS = s|D) as the MBS posterior of s.

Bayesian learning. To calculate the first term of the

summation in Eq.(1) we use Bayes rule, and we have that

P(GDD)!P(DDG)P(G):

The term P(D|G) is the marginal likelihood of the data given

structure G, and the term P(G) is the prior probability of a structure

G. We used uniform prior over structures in our experiments.

Assuming that the dataset D is complete (i.e., there are no

missing values), the variables are multinomial with a Dirichlet

parameter prior for every possible instantiations of their parents,

and the prior P(G) satisfies parameter independence, parameter

modularity, and structure modularity then the marginal likelihood

has an efficiently computable closed form [29].

Bayesian model averaging. As it is mentioned before, our

goal was to compute the posterior probability of a feature (i.e.,

Eq.(1)). Because the number of BN structures is super-exponential in

the number of random variables in the domain, exact summation of

all possible structures G is computationally intractable (see [29,30].

We used Metropolis Coupled Markov Chain Monte Carlo (MC3)

[31] methods for the approximation of Eq.(1). We defined parallel

Markov chains over the space of DAGs, whose stationary

distribution were the posterior distribution P(G|D). We then

generated samples by doing random walks in these chains, and

used them to estimate Eq. (1) (for convergence and confidence

diagnostics, see [32].

Each step in a Markov Chain corresponds to local transforma-

tions of the DAG, called operators [33,34]. Following Castello, we

used three operators: (1) adding an edge to the DAG, if it does not

violate the acyclic constraint, (2) reversing an edge, if it does not

violate the acyclic constraint and (3) removing an edge from the

DAG. The probability of the operator selection was uniform.

We ran the MCMC sampler with a burn-in period of 106 steps

and then collected 56106 samples. We restricted the space of the

possible structures limiting the number of parents per node to 8.

We computed a posteriori probabilities for structural features

summarized in Table 2.

See Figure 1 for a graphical example.

In a post-processing step, we introduced the concept of k-MBS

as the k sized subset of the strongly relevant variables [19]. The a

posteriori probability of the sub-relevance of a k-sized set s is

Bayesian Analysis in Asthma Genomics

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e33573



p(sDD)~P(MBS(Y )~sDD)z
X

s5s’

P(MBS(Y )~s’DD),

where the terms are the exact MBS posterior of the set s and the

MBS posterior for all its superset.

The concept of k-MBS was motivated by the observation that

typically the most probable strongly relevant variable sets often

share a significant common part. This partial multivariate

approach provides an intermediate and scalable complexity for

the analysis. Note that the cardinality of the k-MBS features is

O(nk) and the aggregation involves optionally 2n MBS subsets,

which is limited by the number of the DAG structures visited in

the MCMC run, i.e. by the number of steps, which is typically

56106, resulting in 104 different DAGs and MBS sets.

Posterior values are between 0 and 1, where 0 indicates no

relevance, 1 indicates 100% relevance between a predictor and a

target variable. In our study we consider a variable relevant when

its posterior is greater than or equal 0.5.

Results

Frequentist analysis
From the 145 genotyped SNPs 5 SNPs were monomorphic

(MAF = 0), 5 deviated from Hardy-Weinberg equilibrium in

controls (p,0.005) and 33 had poor genotyping results (poor

genotype clusters or low call rates) and were not considered for

further analyses leaving 102 SNPs (59 in 14q22.1-22.3 and 43 in

11q12.2-q13.1) for frequentist and BN-BMLA analyses.

Table S2 shows the minor allele and genotype frequencies in

asthmatic and control patients. Table S3 presents the statistical

evaluation for association of SNPs with asthma at allele and

genotype levels.

When allele frequencies were considered, one SNP (rs3751464)

in the FRMD6 gene provided an evidence for an association with

asthma (OR = 1.43 (1.18–1.75); p = 361024). Only this SNP could

withstand the correction for multiple testing. Because 102 SNPs

were considered, the Bonferroni corrected significance level was

561024. This result is compatible with a power analysis which

showed that the power of frequentist statistical tests are less than

0.2 for OR below 1.3 at sample size of 1200 (complete dataset).

When the genotype frequencies were considered, the CC

genotype of the SNP rs17831682 provided strong evidence for an

association (P = 3.961024), indicating a recessive model. This SNP

is located in the 39 UTR of the PTGDR gene and considered as an

exonic splicing enhancer (Genecards). Haplotypes were construct-

ed from the investigated SNPs (Figure S2). The permutation based

Table 2. Structural features that indicate different dependence types between the variables.

Relation Abbreviation Graphical

Pairwise features

Direct causal relevance DCR(X,Y) There is an edge between X and Y

Transitive causal relevance TCR(X,Y) There is directed path between X and Y

Confounded relevance ConfR(X,Y) X and Y have common ancestor

Association A DCR or TCR or ConfR

Pure interactionist relevance PIR(X,Y) X and Y have common child

Strong relevance SR(X,Y) PIR or DCR

Relevance of variable sets

Strong relevance MBS(Y) The set consisting of Y’s parents, its children, and the other
parents of its children (the Markov Blanket Set of Y)

Relevance for multiple target variables

Direct relation to one or more targets EdgeToAny(X, Y) There is an edge between X and Y

Strong relevance to one or more targets SR(X, Y) There is an edge between X and Y or X and Y have common
child

doi:10.1371/journal.pone.0033573.t002

Figure 1. Illustration of different dependency types between
variables in a Bayesian Network structure. Pairwise relevance
relations: Direct causal relevance (e.g., Y1 and SNP1 have common
edge), Transitive causal relevance (e.g., there are two directed paths
between Y3 and SNP5), Confounded relevance (e.g., Y2 and SNP3 have
a common ancestor SNP1), Association (e.g., Y1 and SNP1, because
SNP1 is directly related to Y1; Y3 and SNP5, because SNP5 is transitively
related to Y3; Y2 and SNP3, because they are in a confounded relation),
Pure interactionist relevance (e.g., Y1 and SNP7 have common child),
Strong relevance (e.g., Y1 and SNP1, because SNP1 is directly related to
Y1; Y1 and SNP7, because they are in pure interaction). Relevance of
variable sets: Strong relevance (e.g., the variable set consisting of Y2’s
parents, its children, and the other parents of its children is {Y1, SNP9,
Y3, SNP7}). Relevance for multiple target variables: Strong relevance to
one or more targets (e.g., the variable set consisting of {Y1,Y2,Y3}’s
parents, its children, and the other parents of its children is {SNP1, SNP4,
SNP7, SNP9}). Red nodes: potential target variables, Green nodes: SNP
variables.
doi:10.1371/journal.pone.0033573.g001
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association test of Haploview indicated two haplotypes consisting

of two SNPs (rs3751464 and rs17666653) in the FRMD6 gene for

association with asthma. The TC haplotype increased the

susceptibility to asthma (OR = 1.41 (1.07–1.87); permutation p

value 0.048), while the CC haplotype reduced it (OR = 0.73 (0.57–

0.92); permutation p = 0.02) constructed from rs3751464 and

rs17666653, respectively. The haplotype frequencies were for TC:

0.191 and 0.251 and for CC 0.606 and 0.528, in controls and

cases, respectively. The rs17666653 is located in intron 4 of the

FRMD6 gene.

Bayesian network based Bayesian multilevel analysis of
relevance

Sufficiency of the data. In the Bayesian context we first

investigated the sufficiency of the sample size of all datasets (A:

1201, RA: 1100, CLI: 200) for performing a full-scale multivariate

analysis to identify the set of relevant variables. This confirmed the

necessity of a partial multivariate approach, because there was

neither a dominant set nor a set of highly significant sets for the A/

RA and especially not for the CLI datasets (Figure S3).

Strong univariate relevance. The most relevant SNPs and

genes (i.e. with high posteriors for strong relevance with respect to

asthma) according to the BN-BMLA are presented in Table 3. In

the last column the p values and odds ratios calculated with logistic

regression are also shown. Altogether 5 SNPs in 4 genes were

found relevant in connection with asthma phenotype: PRPF19 on

chromosome 11, and FRMD6, PTGER2 and PTGDR on

chromosome 14. The SNP rs7928208 in the gene PRPF19 is

also associated with early childhood asthma (in case of children

under 6 years).

Table 4 summarizes the posterior probability of strong

relevance for the most relevant SNPs for asthma and for multiple

targets, in case of RA and CLI data sets. By multiple targets we

mean rhinitis+asthma (RA data set) and IgE level+eosinophil

level+rhinitis+asthma (CLI data set) respectively. In case of the RA

data set two SNPs in the AHNAK gene gave the strongest

correlation with the phenotype asthma+rhinitis. Interestingly, a

SNP in the most studied gene of the 11q13 region, the MS4A2, the

gene for the high affinity IgE receptor b subunit showed an

association when the CLI data was considered.

Partial multivariate relevance. The multivariate analysis

of strong relevance (i.e. the posterior probabilities of Markov

blanket sets with asthma as a target, for details see Methods)

indicated a very flat posterior distribution. This means that there

are several possible strongly relevant sets with low posteriors

instead of a dominant set with a high posterior. On the other

hand, the aggregation of the multivariate results into univariate

conclusions, i.e. strong univariate relevance (described previously)

indicated that model averaging can unhinge significant results.

Furthermore, it is also possible to aggregate multivariate results

into partial multivariate results (i.e. k-sized subsets, as detailed in

the Methods section),

This allows the investigation of SNP-SNP interactions, because

a subset with a high posterior can indicate that these SNPs have a

joint effect on the susceptibility of asthma (for a detailed

investigation of interactions, see [19]. Results for partial relevance

are systematically presented in Figure 2 showing the highest

posteriors for various subset sizes (k). In this case the ‘‘A’’ dataset

was evaluated using asthma as a target variable. The high

posteriors for k = 1,2,3,4 indicate that the data is sufficient to infer

that these variables are jointly strongly relevant, but above that

level (k$5) as shown in Figure S4 the multivariate results are

weakly significant.

We applied the MDR method on the ‘‘A’’ dataset for model

sizes (k = 1,2,3,4) using an exhaustive evaluation. The results

confirmed the strong significance of rs3751464 of FRMD6,

because it was the most frequent part of the models. However,

the difference in model scores within a certain model size was low.

The range of scores for the 20 highest scoring models containing 1,

2, 3, and 4 variables were 0.548–0.521, 0.561–0.556, 0.592–0.586,

and 0.639–0.630 respectively. Furthermore, the 20 highest scoring

models of each size (1–4) contained 51 different SNPs altogether,

which also confirms the low power of MDR in case of this data set.

In contrast to the approach followed in BN-BMLA, model

averaging was not possible because of the frequentist nature of the

MDR score (compare with Eq.1.). Manual investigation of MDR

results indicated that the following SNPs were often parts of the

highly significant models: rs3751464 in FRMD6, rs17831675 and

rs17831682 in PTGDR, rs708502 and rs708486 in PTGER2.

We also performed logistic regression analysis on the ‘‘A’’ data

set with SPSS using PIN = 0.05 as the probability threshold for

variable entry, and POUT = 0.1 as the threshold of removing a

variable from the model. The forward variable selection method

confirmed the strong significance of rs3751464 in FRMD6

(exp(B) = 1.51, C.I. 95%: [1.23–1.86], p-value,0.001) and

rs7928208 in PRPF19 (exp(B) = 0.56, C.I. 95%: [0.33–0.92], p-

value = 0.024). The logistic regression with backward variable

selection method was also applied for the 10 most significant

variables and their interactions indicated by BN-BMLA. It

confirmed the strong significance of rs3751464 (FRMD6),

rs708502 (PTGER2), and rs7928208 (PRPF19) and their interac-

tions (see detailed analysis in Gene-gene interactions Section).

Gene-gene interactions. The k-MBS concept from BN-

BMLA represents the joint relevance of k variables. However,

their effects can be linear or non-linear at some scale, which

is indicated by the absence or presence of interaction terms

in appropriate statistical models. Furthermore, (non-linear)

Table 3. Properties of the most relevant SNPs including posteriors for strong relevance with respect to asthma.

SNP Gene Influenced trait Localization Posterior probability* OR (95%CI) P-value

rs7928208 PRPF19 asthma 11q12.2 0.73 1.78 (1.08–2.95) 0.02

rs3751464 FRMD6 asthma 14q22.1 0.86 1.43 (1.18–1.75) 0.0003

rs17831682 PTGDR asthma 14q22.1 0.51 1.38 (1.00–1.80) 0.05

rs708502 PTGER2 asthma 14q22 0.85 0.98 (0.77–1.25) 0.9

rs17197 PTGER2 asthma 14q22 0.82 1.05 (0.82–1.33) 0.7

rs7928208 PRPF19 asthma at 6 years 11q12.2 0.91 4.38 (1.89–10.14) 0.0005

*Strong relevance.
doi:10.1371/journal.pone.0033573.t003
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interactions can be epistatic, i.e. a SNP has no main effect on the

phenotype, but has an effect along with an other factor. As can be

seen in the last column of Table 3, the distribution of the two SNPs

in the PTGER2 gene does not differ between the asthmatic and

control groups. It implies that these SNPs do not influence asthma

risk alone, only in interaction with other variables, in this case with

other SNPs. Table 5 presents the most probable gene-gene (SNP-

SNP) joint relevances and interactions for asthma as a target

variable. In this evaluation significant interactions between 2 and 3

SNPs were revealed. The table shows the p-values and the

Figure 2. The most probable univariate (MBM), bivariate (2-MBS), trivariate (3-MBS) subsets of variables (Asthma dataset). Relevant
SNPs having high or moderately high posteriors, i.e. high probability of being a member of the Markov blanket (MBM) of the target variable Asthma
(A). Relevant SNP sets of size 2 (B); and of size 3 (C) indicating partial strong relevance. 2-MBS and 3-MBS denote the k = 2 and k = 3 sized subsets of
Markov blanket sets. A high k-MBS posterior of a set of SNPs indicates their joint relevance and possible interactions between the SNPs.
doi:10.1371/journal.pone.0033573.g002

Table 4. The posterior probability of strong relevance for the most relevant SNPs in case of RA and CLI data.

RA* CLI**

Gene SNP Asthma Multitarget Asthma Multitarget

AHNAK rs11231128 0.801 0.826 0.394 0.684

AHNAK rs11827029 0.798 0.810 0.426 0.774

FRMD6 rs3751464 0.324 0.280 0.039 0.267

MS4A2 rs569108 0.098 0.151 0.441 0.787

PRPF19 rs7928208 0.801 0.781 0.145 0.449

PTGDR rs17831675 0.371 0.365 0.424 0.669

PTGDR rs17831682 0.542 0.598 0.466 0.703

PTGER2 rs12587410 0.367 0.348 0.772 0.922

PTGER2 rs17197 0.380 0.371 0.596 0.881

PTGER2 rs708498 0.248 0.206 0.557 0.688

TXNDC16 rs1565970 0.754 0.717 0.235 0.484

*RA – Asthma: RA dataset, Asthma as target.
RA – Multitarget: RA dataset, Asthma and Rhinitis as targets.
**CLI – Asthma: CLI dataset, Asthma as target.
CLI – Multitarget: CLI dataset, IgE level-Eosinophil level-Rhinitis-Asthma as targets.
doi:10.1371/journal.pone.0033573.t004
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corresponding odds ratios for the interaction terms in logistic

regression calculated with SPSS using the enter method. The most

relevant interactions include intrachromosomal (e.g. rs708502 in

PTGER2 and rs3751464 in FRMD6) and interchromosomal

interactions: rs7928208 in PRPF19 (chr. 11) with rs708502 in

PTGER2 (chr. 14) and rs7928208 in PRPF19 (chr. 11) with

rs3751464 in FRMD6 (chr. 14). Interestingly, the joint interaction

of these three variables is also significant (exp(B) = 0.72, C.I. 95%:

[0.58–0.89], p-value = 0.002) which is indicated by the logistic

regression backward method (described in the previous section).

According to these results, the most significant SNP in this study is

the rs3751464 in the FRMD6 gene. It influences the asthma risk

both alone and in interactions with other SNPs in PRPF19 and

PTGER2 genes. In all the interactions with the minor rs3751464

TT genotype significantly increase the asthma risk, while

interactions with the more frequent CC genotype decrease the

asthma risk (data not shown).

Detailed characterization of association relations. The

association of a genetic variant to a phenotypic feature can have

multiple types. First, because of the dependency of the genetic

factors (due to linkage disequilibrium or evolutionary patterns), the

markers typically found in genetic association studies are rarely

directly associated to the phenotype. In these cases, the association

is transitive, i.e. it is mediated by the causal SNP. For example, in

case of PTGDR, the posterior of association of the SNPs

(rs17831675, rs17831682, and rs803012) to asthma are larger

than 0.9, but rs803012 can be excluded as strongly relevant,

because its posterior of strong relevance is lower than 0.005, which

indicates its non-causal, non-functional role. Second, in case of

multiple targets, which originate potentially from a complex

dependency model, the association can be mediated by phenotypic

variables. For example in case of the asthma a possible

dependency model is shown in Figure 3, in which a SNP

affecting IgE might be both directly and transitively associated

with asthma.

To evaluate the global characterization of association types

shown in Table 2, we computed the a posteriori probability

Table 5. Gene-gene (SNP-SNP) joint relevance and interactions for asthma susceptibility.

# Genes SNPs * Posterior probability** p-value*** exp(B) (95%CI)***

1 PTGER2 rs17197 0.81 0.134 1.51 (0.88–2.59)

PTGER2 rs708502

2 FRMD6 rs3751464 0.80 0.00377 0.55 (0.36–0.82)

PTGER2 rs708502

3 PTGER2 rs17197 0.79 0.012 1.68 (1.12–2.5)

FRMD6 rs3751464

4 PRPF19 rs7928208 0.61 0.00067 1.19 (1.08–1.32)

FRMD6 rs3751464

5 PRPF19 rs7928208 0.59 0.0049 0.2 (0.07–0.62)

PTGER2 rs708502

6 PRPF19 rs7928208 0.58 0.038 3.1 (1.06–9.05)

PTGER2 rs17197

7 PTGER2 rs17197 0.78 0.0166 0.62 (0.42–0.92)

FRMD6 rs3751464

PTGER2 rs708502

8 PRPF19 rs7928208 0.58 0.256 1.16 (0.89–1.5)

PTGER2 rs17197

PTGER2 rs708502

9 PRPF19 rs7928208 0.56 0.0012 0.71 (0.57–0.87)

FRMD6 rs3751464

PTGER2 rs708502

10 PRPF19 rs7928208 0.55 0.018 1.26 (1.04–1.53)

PTGER2 rs17197

FRMD6 rs3751464

*Interaction terms were forced into logistic regression using the enter method. The main effects entered are indicated with underscore.
**Posterior probability of joint relevance.
***P-value and exp(B) values corresponding to the interaction terms in logistic regression using continuous variables.
doi:10.1371/journal.pone.0033573.t005

Figure 3. A possible dependency model in asthma. An example
for a possible transitive association between IgE and Asthma. Although
there is a possible direct relationship, IgE level may relate to asthma
indirectly via eosinophil or a presence of allergy.
doi:10.1371/journal.pone.0033573.g003
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whether a variable is directly relevant or its association is only

mediated in cases where the rhinitis status was known (RA dataset;

Table 6). Additionally, we computed whether a variable is in pure

interaction or its association is pure confounded.

Here we present some examples how the results in Table 6 can

be interpreted. The posterior that rs7928208 (PRPF19) is

transitively associated to asthma is 0.822, and the posterior for a

‘‘direct’’ relation, which is not blocked by any other variable, is

similarly high (0.718; RA dataset, asthma as a target variable). On

the contrary, the posterior that, rs569108 in MS4A2 is transitively

associated with asthma is 0.633, but the posterior for a ‘‘direct’’

relation is only 0.087. Another interesting example is rs11231128

in AHNAK. The posterior that it is transitively associated with

asthma is 0.535, the posterior that it is strongly relevant is 0.736,

and the posterior for a ‘‘direct’’ relation is only 0.029, The higher

probability of strong relevance compared to the posterior for a

transitive relation indicates a pure interaction (0.708), which

suggests that this SNP is relevant only if the rhinitis status is

known. Furthermore, when rhinitis status was excluded from the

data set the strong relevance of rs11231128 for asthma vanished

(data not shown). This shows that this SNP is strongly relevant

through interaction with rhinitis.

Association to multiple targets. To decompose the

relevance of genetic factors for various phenotypes we computed

and compared the posteriors for the strongly relevant variables

with respect to each target variable, namely IgE, and eosinophil

levels, rhinitis and asthma (CLI dataset), which participate in a

complex causal model with multiple paths. Posteriors of the

decomposed relevance for multiple target variables are presented

in Table 7.

We would like to demonstrate how the results in Table 7 can be

interpreted through an example. Following the earlier discussion

of rs569108 in MS4A2, the results on the CLI data indicate that

this SNP is strongly relevant to some of the CLI targets with a

posterior of 0.77. In case of rs708498 in PTGER2 the difference

between the posteriors is more significant. The posteriors for

strong relevance with respect to IgE, eosinophil level, rhinitis and

asthma is 0.09, 0.04, 0.05,0.61, which clearly indicates that a

relationship between rs708498 and asthma is more probable than

a relationship with any other targets. Furthermore, the posterior

probability that rs708498 is strongly relevant exclusively to IgE,

eosinophil level, rhinitis or asthma are 0.03, 0.01,0.02, 0.50, which

shows that it is more probable that this SNP is exclusively related

to asthma than to any other phenotype. This is also supported by

the posteriors that this SNP is strongly relevant to other targets,

but not to IgE,eosinophil level, rhinitis or asthma: 0.58, 0.64, 0.62,

and 0.07, with the lowest posterior for asthma in this respect.

Finally, the posterior for rs708498 being a relevant SNP for

multiple phenotypes (0.67) is relatively close to the posterior of

strong relevance for asthma (0.61), which shows that relations to

other targets are negligible.

Figure 4 displays the posteriors for strong relevance detailed in

Table 7 providing an overall view on strong relevance with respect

to the targets in CLI data set on the level of genes. It indicates that

PTGER2 (rs12587410, rs17197, rs1254600, rs708498) is related to

asthma with a higher probability, whereas PTGDR (rs17831682,

rs17831675, rs17125273) is slightly more relevant with respect to

IgE levels, though the difference between posteriors for strong

relevance of different targets is lower in the latter case.

The fact that the average posterior for strong relevance in case

of the most relevant SNPs is moderate (in case of asthma as a

target) or low (in case of IgE, eosinophil and rhintis) indicates that

the CLI data set is at its limit in terms of data sufficiency. In fact,

this resembles the flat posterior case mentioned previously.

However, even in this case, the results provided by the BN-

BMLA method at least allow a restricted analysis of the domain.

Furthermore, in case of multiple targets, the joint strong relevance

(multi-target relevance) approach provides a more robust poste-

rior.

Figure 4 also shows the relationship between the strong multi-

target relevance and its approximation based on single target

posteriors. The former accounts for the interdependencies

between targets, while the approximation treats the targets as

independent factors. Therefore, in domains that contain a

complex dependency model, the multi-target approach is more

viable, since the assumption of independency will not hold. Thus

the approximation for a joint relevance based on independently

treated posteriors of targets will yield inaccurate results.

Table 6. The a posteriori probability that a SNP is directly relevant (D-Relevant), associated, strongly relevant (S-Relevant),
transitive or in pure interaction with asthma using the RA data set.

GENE SNP Associated D-Relevant S-Relevant Interaction Transitive

AHNAK rs11231128 0.643 0.029 0.736 0.708 0.535

AHNAK rs11827029 0.868 0.021 0.728 0.707 0.399

FRMD6 rs3751464 0.862 0.284 0.300 0.016 0.331

MS4A2 rs569108 0.653 0.087 0.111 0.024 0.633

PRPF19 rs7928208 0.878 0.718 0.843 0.125 0.822

PTGDR rs17831675 0.923 0.326 0.362 0.035 0.747

PTGDR rs17831682 0.923 0.524 0.578 0.000 0.863

PTGDR rs803012 0.973 0.000 0.002 0.002 0.539

PTGER2 rs1254600 0.970 0.088 0.090 0.000 0.353

PTGER2 rs1254601 0.989 0.013 0.046 0.033 0.126

PTGER2 rs12587410 0.618 0.157 0.405 0.248 0.522

PTGER2 rs17197 0.970 0.350 0.354 0.004 0.604

PTGER2 rs708498 0.983 0.002 0.227 0.225 0.108

TXNDC16 rs1565970 0.309 0.008 0.722 0.713 0.189

doi:10.1371/journal.pone.0033573.t006
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Analysis of gene expression in mice and men
Earlier we have carried out measurements of gene expression

levels by Agilent Whole Mouse Genome Oligo Microarray

4644 K chips in the lungs of mice with allergic airway

inflammation and control mice (GSE11911 record number in

GEO database) [35]. All of the genes found to be relevant in the

present study were expressed in the lung of the mice. We

compared the expression level of the genes in the lungs of mice

with OVA-induced allergic airway inflammation and control mice.

Altogether, 1134 transcripts showed .2.0-fold statistically signif-

icant differential expression [35], but none of the relevant genes in

this study showed this level of difference. However, in all mice with

OVA-induced experimental asthma the expression level of

FRMD6 was consequently lower (in average with 1.52 fold). From

Table 7. The posterior probability of strong relevance of predictors for each target and for a multi-target case based on the CLI
data set.

Exist Only Other than

GENE SNP IgE Eos Rhi Ast AP IgE Eos Rhi Ast IgE Eos Rhi Ast MT

PTGER2 rs1254600 0.08 0.12 0.15 0.31 0.52 0.04 0.07 0.08 0.21 0.44 0.40 0.38 0.21 0.46

PTGER2 rs12587410 0.31 0.38 0.53 0.81 0.96 0.02 0.02 0.04 0.16 0.65 0.58 0.43 0.15 0.91

PTGER2 rs17197 0.08 0.17 0.22 0.73 0.84 0.01 0.03 0.05 0.43 0.76 0.67 0.62 0.11 0.85

PTGER2 rs708498 0.09 0.04 0.05 0.61 0.68 0.03 0.01 0.02 0.50 0.59 0.64 0.62 0.07 0.67

PTGDR rs17125273 0.17 0.13 0.15 0.10 0.45 0.12 0.08 0.10 0.06 0.27 0.32 0.30 0.35 0.31

PTGDR rs17831675 0.52 0.41 0.48 0.44 0.92 0.09 0.06 0.08 0.06 0.40 0.51 0.44 0.48 0.66

PTGDR rs17831682 0.59 0.53 0.53 0.53 0.96 0.06 0.05 0.05 0.05 0.37 0.43 0.42 0.43 0.71

MS4A2 rs569108 0.31 0.47 0.37 0.43 0.87 0.06 0.12 0.08 0.10 0.56 0.40 0.50 0.44 0.77

Target variables: IgE level - IgE, Eosinophil level – Eos, Rhinitis – Rhi, Asthma – Ast.
‘‘Exist’’ denotes the probability of strong relevance with respect to a given target.
‘‘Only’’ denotes posteriors for strong relevance to exactly one of the targets.
‘‘OtherThan’’denotes posteriors for strong relevance to any other target than the one specified by the subcolumn.
‘‘AP’’ column contains an approximation of multi-target strong relevance based on the individual strong relevance posteriors of the targets.
‘‘MT’’ denotes the posterior of multi-target strong relevance.
doi:10.1371/journal.pone.0033573.t007

Figure 4. The posterior probability of strong relevance of predictors for each target and for a multi-target case based on the CLI
data set. Posterior probabilities for strong relevance to Asthma, Rhinitis, Eosinophil and IgE level are indicated by different columns. Posteriors of
joint strong relevance, i.e. multi-target relevance and its approximation based on the individual posteriors for strong relevance with respect to
Asthma, Rhinitis, Eosinophil and IgE level are denoted by orange and blue curves, respectively. The approximation assumes independence between
the targets, whereas the multi-target posterior accounts for the possible dependencies between the targets.
doi:10.1371/journal.pone.0033573.g004
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the relevant genes in the present study no other genes showed such

a consequent correlation.

Next, we studied the changes in the expression levels of genes in

the known pathway involving FRMD6. The FRMD6 is part of the

conserved Hippo pathway playing a critical role in controlling

organ size by regulating both cell proliferation and apoptosis [36]

(Figure 5). One of the best known target genes of this pathway is

the antiapoptotic Birc5 [37,38] (also known as survivin) whose

expression level showed 5.94 fold increase (corrected P = 0.001) in

the lung of OVA induced mice.

We compared the gene expression levels of genes found to be

relevant in asthma in the SNP analysis in sputum samples of 12

asthmatics and 9 controls using TaqMan Gene Expression Assays

(FRMD6, PTGDR, PTGER2, MS4A2, AHNAK, PRPF19, TXNDC16).

Sputum mRNA level of FRMD6 was significantly lower in the

asthmatic patients compared to healthy controls with a fold change

of 2.73 (p = 1026). No other gene showed statistically significant

difference in this comparison.

Discussion

In this paper we presented the results of a partial genome

screening in asthma evaluated by several statistical methods. In

11q12.2-q13.1 and 14q22.1-22.3 genome regions, which were

earlier identified as asthma susceptibility regions, we successfully

genotyped 102 SNPs in 57 genes. Earlier, in different association

studies several asthma genes were identified in these regions, but

none of them were confirmed later by GWAS, although two of

them (PTGDR and GSTP1) were verified in candidate gene

association studies in several independent populations [9].

Additionally, in a study where the results of GWAS were

combined with a candidate gene approach, polymorphisms in

GSTP1 also showed an effect on asthma susceptibility [9]. In our

present study, using the BN-BMLA method, several earlier results

were confirmed. Associations were confirmed between SNPs in

PTGDR, PTGER2, MS4A2 and asthma. Interestingly, however, the

frequentist method could only identify the association of the

PTGDR gene, and was unable to detect it in the case of the other

two genes. The explanation for this phenomenon is, that according

to our evaluation, SNPs in the PTGER2 influence asthma

susceptibility in interactions or indirectly, and similarly, the

association between a SNP in MS4A2 and asthma is transitive,

which is hard to detect with traditional frequentist methods. This

might be one explanation why the association of the polymor-

phisms in this gene, which is otherwise a very plausible gene in

asthma and atopic diseases, could not be confirmed in the majority

of the studies using traditional statistical methods [39,40,41].

MS4A2 gene (earlier known as FceRI-b), which codes for the

high affinity IgE receptor b subunit has a central role in mast cell

degranulation and IgE mediated allergy.

The rs569108 SNP, which corresponds to the E237G amino

acid substitution, is predicted to introduce a hydrophobicity

change within the C-terminus of the receptor. It is adjacent to the

immunoreceptor tyrosine activation motif, and may affect the

intracellular signaling capacity of the receptor. The MS4A2 was

one of the first candidate genes in atopic diseases, and already in

1996 associations were found between E237G and significantly

elevated skin test responses to different allergens and bronchial

reactivity to methacholine in a UK population [42]. Since then,

several studies in different populations have investigated the role of

this polymorphism in asthma and atopy with very controversial

results. In this study we could not confirm a direct association

between E237G and asthma, but found a transitive association

only when each target variable, namely IgE, and eosinophil levels,

rhinitis and asthma (CLI dataset) were considered, which

corresponded to a complex model with multiple paths.

It is well documented that, in asthmatics, prostaglandin D2

modulates the physiology of the airways by causing bronchocon-

striction, vasodilation, and increase in capillary permeability and

mucus production. Mice, lacking PTGDR fail to develop bronchial

hyperresponsiveness upon ovalbumin challenge, suggesting that

this receptor has an important role in the disease [43].

Polymorphisms in the gene have been reported to be associated

with asthma in American, European and Japanese populations,

but not in Chinese children, Latinos or Koreans [44]. In our study

on Hungarian children, several SNPs showed different types of

associations (direct or transitive). Interestingly, three SNPs

(rs17831682, rs17831675, rs17125273) were slightly more relevant

with respect to IgE levels, than asthma or other targets.

Prostaglandin E2 exerts anti-inflammatory and bronchoprotec-

tive mechanisms in asthma, it inhibits the chemotaxis of

eosinophils toward eotaxin, prostaglandin D2 and C5a [45].

Polymorphisms in its receptor PTGER2 were mainly found to be

associated with aspirin-intolerant asthma, but in some studies also

with asthma in general [46]. In our study the distribution of the

SNPs in the PTGER2 gene did not differ between the asthmatic

and control groups. But, when SNP-SNP interactions were

calculated, polymorphisms of the PTGER2 participated in each

significant association. This implies that these SNPs do not

influence asthma risk alone, but in interaction with other SNPs.

When multiple targets were considered the SNPs of this gene

showed relevance only to asthma and the relations to other targets

(IgE and eosinophil levels or rhinitis) were negligible.

Besides confirming previous results, the present study also

detected new asthma genes in these regions. The most remarkable

result of the study is the role of FRMD6 in asthma. Association

between a SNP in FRMD6 and asthma risk was identified with

both the frequentist and BN-BMLA methods. A haplotype in this

gene also influenced the disease susceptibility, and the rs3751464

Figure 5. Hypothesized connection between FRMD6 and Birc5
in the conserved Hippo pathway. Hypothetic hippo pathway
components in mammals are shown in various colors, with pointed and
blunt arrowheads indicating activating and inhibitory interactions,
respectively. The pathway regulates transcriptions of several genes,
among others that of Birc5. Based on [36,37,38]. According to this
pathway lower level of FRMD6 might be associated with higher level of
Birc5, as was found in the lung of the animal model of asthma.
doi:10.1371/journal.pone.0033573.g005
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showed an influential role in interactions with other SNPs in this

respect. Additionally, the expression level of the FRMD6 was

consistently lower in the lungs of mice with allergic airway

inflammation and it was significantly lower in human asthmatics

compared with controls. The exact function of this gene and its

possible role in asthma are unknown, but some theories can be

generated from earlier and our present data. FRMD6 (FERM

domain containing 6, earlier also EX1, or Willin) is suspected to be

an upstream component of the Hippo signaling pathway [36].

Several recent publications establish that the pathway is one major

conserved mechanism governing cell contact inhibition and organ

size control [36,37]. Clearly, even small changes in this pathway

can alter the lung morphogenesis which can lead to modified

response to environmental challenges and susceptibility to asthma.

The role of this pathway in asthma is also supported by our

findings that the expression of the antiapoptotic Birc5 (also known

as survivin), one of the best known target genes of this pathway was

drastically reduced in the lung of mice with airway inflammation.

This finding supports the theory that one of the mechanisms which

can play a role in asthma is the reduced apoptotic potential of the

airway epithelium. Studies supporting this theory showed that

after rhinovirus infections, the epithelial cells of the asthmatic

lungs were unable to enter into apoptosis with the consequence

that the replicating virus caused cytopathic cell death with

extensive virus shedding [47,48]. It can be asked, however, why

earlier GWAS were unable to detect FRMD6? The simplest

explanation is that in these studies only one SNP in the FRMD6

gene was genotyped (rs7140150), which is not in LD with

rs3751464. This supports the observation of Michel et al that

GWAS coverage is insufficient for many asthma candidate genes

[9]. In addition, these GWASs were carried out in other

populations, which could significantly influence the results.

The rs3751464 SNP localizes in the 59 untranslated region of

the FRMD6 gene on chromosome 14q22.1 at 52117892 base pair.

With in silico methods, we were unable to find out the role of this

SNP (or SNPs in LD with rs3751464) in the expression or function

of FRMD6, or in the disease. In public databases no data were

available whether this SNP or its haplotype influence the binding

of any regulator elements.

Another interesting and novel finding of this study is the indirect

but strong relevance of the SNPs in the AHNAK gene to asthma.

The SNPs in this gene influenced asthma risk in interaction with

rhinitis. AHNAK is a ubiquitous protein expressed in a variety of

cell types. In epithelial cells AHNAK is distributed mainly on the

cell membranes, suggesting its role in the formation of tight

junction. Now, it is widely accepted that impaired formation of

tight junction leads to reduced barrier function and increased

susceptibility to asthma [49,50,51]. Notably, the rs11231128 is a

missense SNP, causing a serine proline amino acid substitution at

position 3724, which might influence the 3D structure of the

protein. In addition, according to the Ingenuity database, AHNAK

interacts with several factors playing important role in the disease,

like TGFB1, EGFR, IL6 and STAT4 (Ingenuity Pathway Analysis

(IPA) 9.0 Software (Ingenuity Systems, Redwood City, CA, USA;

www.ingenuity.com)).

Similarly to the SNPs in AHNAK, a SNP in the TXNDC16 gene

also influenced asthma risk in interaction with rhinitis. Until now,

however, there has been no information about the function of this

gene in any databases.

Strong and direct association was found between rs7928208 in

the PRPF19 gene and asthma and this SNP was also associated

with asthma development before 6 years of age. Although its

possible role in asthma is unknown, the product of the gene,

similarly of some earlier found asthma genes (e.g. RAD50) plays a

role in DNA repair, thus theoretically its altered function might

influence the resistance of the cells to environmental stress

[52,53,54].

The above discussed results clearly show the several advanta-

geous features of the BN-BMLA method over the traditional

frequentist methods generally used in gene association studies. As

can be seen from the results, the advantage is not only that the BN-

BMLA can detect more relevant variables, but the Bayesian

networks offer a rich language for the detailed representation of

types of relevance, including causal, acausal, and multitarget

aspects. Additionally, Bayesian statistics offers an automated and

normative solution for the multiple hypothesis testing problem.

The computational complexity is manageable using high-through-

put and high-performance computing resources for medium sized

problems with hundreds of variables. This extends the scope of

local ‘causal’ discovery methods, and because of the direct

interpretation of Bayesian posteriors, contrary to p-values from

the frequentist approach, makes it an ideal candidate for creating

probabilistic knowledge bases to support off-line meta-analysis and

fusion of background knowledge.

We analyzed partial multivariate strong relevances, because the

Bayesian statistical framework allows the calculations of posteriors

over a wide range of hypotheses, such as strong relevance of

variables, pairs of variables, triplets of variables, etc. This shows

the advantage of the Bayesian framework, because it allows the

selection of appropriate level of complexity of hypotheses, which is

not possible in the traditional hypothesis testing approach.

Conclusion
In a partial genome screening of asthma we identified FRMD6

as a novel asthma gene. The possible role of this gene was also

confirmed in an animal model and in human asthmatics. Beside

FRMD6, using BN-BMLA method, we identified several addition-

al genes (PTGDR, PTGER2, MS4A2, AHNAK, PRPF19,

TXNDC16), which directly, or indirectly might play a role in the

disease. In contrast to BN-BMLA, the traditional and novel

frequentist based methods (x2 test, multivariate logistic regression

and multifactor dimensionality reduction) could consistently

identify only the direct effect of FRMD6 on asthma risk, and in

some models the possible effect of PTGDR, PRPF19 and PTGER2.

The BN-BMLA on one hand extends the scope of strong relevance

based methods towards (1) partial multivariate relevance, (2) global

characterization of pairwise relevances, and (3) multi-target relevanc-

es. On the other hand it can be seen as focusing the general, global

feature learning techniques towards relevance analysis, i.e. from

learning arbitrary dependency substructures to learning strongly

relevant sets. Furthermore, this Bayesian global relevance analysis

method provides posteriors, which are direct statements about

hypotheses, thus it can also be used to construct probabilistic data

analytic knowledge bases in genetic association studies to support

complex quering, off-line meta-analysis, and fusion with background

knowledge. Although, in artificial datasets we have previously

demonstrated the superior ability of the BN-BMLA method to detect

real factors and interactions in genetic association studies, the method

must be applied to other real word datasets, and the results must be

validated in alternative methods. If these studies confirm the

usefulness of this new statistical method, it could be a good alternative

to evaluate the results of gene or genome association studies.

The tool is accessible at http://webbmla.genagrid.eu.
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Figure S1 Comparison of standard concept of (pair-
wise) association and strong relevance. The concept of
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strong relevance and association (with respect to a target) has only

one common element, direct relevance, i.e. non-mediated

relationship between the target and a variable. Association also

includes confounded and transitive relevance, where there is a

mediator between the given variable and the target. In cause-effect

relationship terms, the confounded case corresponds to a common

cause; the transitive case corresponds to a cause- effect path.

Strong relevance, on the other hand, includes interactionist

relevance, i.e. a common effect type relationship.

(TIF)

Figure S2 Haplotype blocks of the investigated SNPs in
the present study. SNPs are numbered sequentially and their

relative location is indicated along the top. Markers 1–54 and

markers 55–102 correspond to the studied SNPs on Chromosome

14 and 11, respectively. Triangles surrounding markers represent

haplotype blocks.

(TIF)

Figure S3 The peakness of the posteriors of the most
probable 100 MBS sets. The x axis denotes the rank of a

Markov blanket set (MBS) of SNPs, the y axis denotes the joint

probability of an MBS, e.g. an MBS with rank = 5 is the fifth most

probable set. The ‘‘RA’’ and ‘‘CLI’’ prefixes denote the

corresponding dataset, and the ‘‘asthma’’ and ‘‘multitarget’’

suffixes indicate the target variables. RA- multitarget: Rhinitis,

Asthma; CLI- multitarget: Asthma, Rhinitis, Eosinophil and IgE

level. Note, that the peakness of the posteriors decreases within the

same dataset in the multitarget case; and between different data

sets, the smaller sample size (CLI:200, RA:1100) results in weaker

posteriors. In terms of data sufficiency, the flatness of the CLI

MBS posterior curve (both in the single target and the multitarget

case) indicates that the CLI data is not sufficient for a complete

multivariate analysis. The RA dataset, on the other hand, is more

appropriate having a relatively peaked posterior, although the

maximum posterior is not particularly high.

(TIF)

Figure S4 The most probable univariate (MBM), bivar-
iate (2-MBS), trivariate (3-MBS), 4-MBS, 5-MBS subsets
of variables. All posteriors of partial k-relevance are ordered, x

axis denotes the rank (e.g.: the number 2 means the second highest

posterior), and y axis denotes the posterior probabilities. As k

increases (i.e. the set size of jointly considered SNPs) the maximum

posteriors decrease, and the slope of the posteriors are much less

‘‘peaked’’, which means that the lower ranked posteriors are

significantly higher than those with higher ranks. The univariate

case can be considered as a relatively peaked curve, and as k

increases, the curve ‘‘flattens’’. The curve of whole sets (MBS) is

the ‘‘flattest’’, showing only a small difference between the lower

ranked and the higher ranked posteriors. In this case, estimating

the top 20 MBS is less informative than estimating the top 10

partial k-relevance of k = 2. This indicates the viability of the

concept of partial k-relevance.

(TIF)

Table S1 Information on the examined SNPs.

(XLS)

Table S2 Minor allele and genotype frequencies (%) in
asthmatic (n = 436) and control (n = 765) patients.

(DOC)

Table S3 Statistical evaluation for association of SNPs
with asthma at allele and genotype levels.

(DOC)
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