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Introduction

According to the International Agency for Research on Cancer, 
the world’s most commonly diagnosed cancer is lung cancer, 
with 1.8 million cases or 13% of total in 2012. Additionally, 
lung cancer was the first cause of death in the world, with 
1.6 million deaths or 19.4% in 2012 [1]. This analysis was 
conducted in 184 countries. This work intends to facilitate 
uncovering new information related to cancer using publicly 
available lung cancer microarray data. The aim is to find 
those genes that changed their relative expression the most 
in order to propose potential lung cancer biomarkers.

Microarray experiments quantify the relative expression 
of tens of thousands of genes. These experiments have 
been highly utilized in the past decade to study a number 
of health conditions, including cancer [2, 3]. These ex-
periments, however, are often times measured in different 
units, thus making it difficult to analyze several of them 
simultaneously. Furthermore, because the measured level 
of expression is relative, a normalization process is com-
monly required. All of these have hampered the search 
for cancer biomarkers in the past.

The strategy to detect potential biomarkers utilized in 
this work is based on mathematical optimization. 
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Abstract

Microarrays can provide large amounts of data for genetic relative expression 
in illnesses of interest such as cancer in short time. These data, however, are 
stored and often times abandoned when new experimental technologies arrive. 
This work reexamines lung cancer microarray data with a novel multiple criteria 
optimization-based strategy aiming to detect highly differentially expressed genes. 
This strategy does not require any adjustment of parameters by the user and 
is capable to handle multiple and incommensurate units across microarrays. In 
the analysis, groups of samples from patients with distinct smoking habits (never 
smoker, current smoker) and different gender are contrasted to elicit sets of 
highly differentially expressed genes, several of which are already associated to 
lung cancer and other types of cancer. The list of genes is provided with a 
discussion of their role in cancer, as well as the possible research directions for 
each of them.
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Optimization can be defined as a decision-making process 
aimed to obtain the best possible values in a series of 
performance measures (PMs) of interest. The decision vari-
ables are habitually constrained to fall within specific ranges 
or to maintain mathematical relationships among them [4, 
5]. Mathematical optimization (MO) has been widely used 
in many fields, including Economics and Engineering, and 
clearly it can be applied to biological analysis. MO can 
make a system or design effective, functional, or in its 
most basic form, possible [6, 7]. Multiple Criteria 
Optimization (MCO) is an optimization problem that finds 
a set of solutions corresponding to the best possible bal-
ances among two or more conflicting PMs under study 
[8]. These solutions are known as Pareto-Efficient solutions 
and are mathematically characterized by the well-established 
Pareto-optimality conditions. In general terms, then, the 
idea behind a MCO problem is to find the Pareto-Efficient 
Frontier formed by the Pareto-efficient solutions.

In this work the analysis of a publicly available mi-
croarray database for lung cancer is presented as a MCO 
problem. The genetic expression changes in this analysis 
were quantified using two metrics that do not have a 
perfect correlation and thus, are in conflict: difference of 
means and difference of medians. For the analysis, the 
MCO solutions will be those genes that have associated 
the greatest differences in the selected metrics. The solu-
tion genes are the ones that changed their expression the 
most between the compared conditions and could be 
potential biomarkers and can, after further study and 
confirmation, help with the diagnosis, prognosis, treat-
ment, and recurrence prediction for the condition under 
analysis [9]. It can be appreciated that the method seeks 
to minimize the likelihood of false positives due to its 
focus on frontier analysis. This, expectedly, comes at the 
cost of false negatives in genes that might not appear in 
the Pareto-efficient frontier due to experimental error. A 
simple strategy of finding several consecutive frontiers is 
proposed to alleviate this issue.

The analysis strategy in this paper has, however, the 
advantage of providing objectivity, as it does not require 
the analyst to change or adjust any parameters, thereby 
fostering repeatability across analysts. It has also been 
shown to have a high discrimination power. The method 
used to solve the associated MCO problem is a full pair-
wise comparison scheme that effectively finds the genes 
that show high expression change across multiple PMs. 
This scheme is an improvement in terms of precision 
and convergence over the Data Envelopment Analysis ap-
proach presented by our group in [9]. The genes identified 
this way are located on the Pareto-efficient frontier of 
the MCO problem, that is, they are demonstrably Pareto-
efficient [10] and are, in consequence, proposed as potential 
biomarkers.

Literature Review

Microarray experiments have been very popular among 
researchers [11]. In the Gene Expression Omnibus (GEO) 
as of May 2015 there are 3848 databases with 1,392,278 
samples. Microarray experiments are sufficiently accepted 
as a reliable technology where the most common use is 
to find differentially expressed genes between two experi-
mental conditions or samples [12]. Moreover, microarrays 
have been used to study how different biological processes 
or pathways work in several organisms [13]. To analyze 
the experimental data, statistics have been used for these 
types of studies [14, 15]. However, producing a standard 
method for analysis has never been accomplished.

In the literature there are many methods to find highly 
differentially expressed genes to characterize them as po-
tential biomarkers. Most of them focus on statistical pro-
cedures [15, 16]. This research adopts multiple criteria 
optimization and Pareto conditions to find biomarkers 
following the direction of our research group [9, 17], 
and proposes extending the application to this end through 
simultaneous analysis of multiple independent experiments, 
that is carrying out meta-analysis. In 2010, in our group, 
Sanchez-Peña [9] used a combination of two performance 
measures (two P-values) obtained from a single-microarray 
database to cast the MCO problem and Data Enveloped 
Analysis (DEA) to solve it. The pairwise comparison scheme 
in the present work yields a more precise Pareto-efficient 
frontier than DEA, as it can deal with nonconvexity from 
the onset.

An important direction of this work is to use the 
proposed method for meta-analysis of high throughput 
biological experiments, starting with microarrays. Glasser 
and Duval [18] provide the definition: “Meta-analysis 
refers to methods for the systematic review of a set of 
individual studies or patients within each study, with the 
aim to quantitatively combine their results.” Meta-analysis 
is a method capable of taking independent, but associ-
ated studies to obtain a set of solutions through all stud-
ies. It is possible to find different applications and examples 
about meta-analysis. Li and his research group led a 
systematic review and meta-analysis to determine whether 
two polymorphisms (V89L and A49T) are associated with 
the risk of prostate cancer. They found 31 articles and 
reviews related to such risk [19]. On the other hand, R 
makes available a tool for microarray meta-analysis called 
MetaOmics. MetaOmics integrates Quality Control (Meta 
QC), Differentially Expressed (Meta DE), and Pathway 
(Meta pathway) [20]. Also, Zhuohui et al. (2014) research 
developed a tool, “MAAMD” [21]. They carried out meta-
analysis using Affymetrix microarray data. The tool au-
tomates the process to analyze microarrays and requires 
normalization and several statistical methods to detect 
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differential gene expression. To this end, they used Kepler, 
AltAnalyze and Bioconductor software packages. The 
parametric approaches in these works differ from our 
nonparametric approach. Therefore, it is clear that mul-
tiple criteria optimization differs from the reviewed ap-
proaches and constitute a novelty in meta-analysis. It 
must be emphasized, however that meta-analysis is a 
study that comprehends a larger area than afforded by 
the use of a single technique and that it requires a me-
thodical design to be reliable. Especial care, for instance, 
must be given to the selection of studies to be included 
[22], as well as their heterogeneity [23]. Meta-analysis 
has become a cornerstone for evidence-based medicine 
[24] and follows widely accepted standards for its realiza-
tion [25–27].

As noted earlier, the MCO problem has been approached 
in our group by Sánchez-Peña, et  al. [9] through Data 
Envelopment Analysis (DEA). This work approaches the 
larger problem of analyzing multiple microarray databases 
simultaneously that is, to carry out meta-analysis, formu-
lating the analysis as an MCO problem and solving it 
through a pairwise-comparison scheme that facilitates the 
evaluation of Pareto-efficiency conditions. In the literature, 
the authors of [28] have successfully applied Pareto – 
concepts for gene selection coupled with the use of a 
series of parametric statistical methods [28]. It is the 
intention of this work to keep the analysis strategy as 
nonparametric as possible, so as to not depend heavily 
on statistical assumptions or –in a different sense of 
nonparametric- the adjustment of parameters by the user 
that might bias the analysis results.

Method: MCO Problem Formulation

Figure  1 shows the elements of the graphical representa-
tion of the MCO problem. G denotes the universe of 
solutions that comprises the n genes to be analyzed with 

gi representing each gene under analysis, (i  =  1, 2, … 
n). Figure  2 shows the space defined by two criteria or 
PMs under analysis, m1 and m2. In the generalization of 
this figure, mk

i
 is the value for the i-th gene in the k-th 

PM. Then k  =  1, 2, … C, where C is the number of 
PMs considered in the analysis. The Pareto-efficient frontier 
in Figure  2 is formed by the genes g∗

i
. These genes have 

indeed the best possible balances among the two PMs to 
be minimized and are the ones proposed as potential 
biomarkers.

When it comes to microarray analysis, the PMs of choice 
are usually related to the difference of gene expression 
measured in two distinct states for comparison purposes. 
Looking for the most differentially expressed genes is akin 
to looking for potential biomarkers, and it is a problem 
that can be casted as described up to this point.

According to Deb [29] and Ehrgott [30] the Pareto-
efficient solutions must meet the Pareto-optimality condi-
tions. In practical terms, this relates to finding 
nondominated solutions in the following sense: a solution 
X(1) is said to dominate the other solution X(2), if both 
conditions 1 and 2 are true:

1.	The solution X(1) is no worse than X(2) in all PMs.
2.	The solution X(1) is strictly better than X(2) in at least 

one PM.

These conditions can be evaluated for every single pair 
of genes to find those that are not dominated by any 
other gene. These are the Pareto-efficient genes that form 
the Pareto-efficient frontier of the MCO problem at hand.

As stated previously, in the search for the most dif-
ferentially expressed genes, the expressions of all candidate 
genes are measured in two states to be then further 

Figure 1. Problem representation where G  =  {gi}, i = 1,2,3,…,n and 
g*

i
∈G.

Figure 2. Representation of the Pareto-efficient frontier of the MCO 
problem.
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A new matrix γ is then build by assessing the values 
αij. For C=2, for example, the following assessment 
applies:

In general for any value C  ≥  2

(2)

Thus, in summary, this process will result in the γ 
matrix:

In order to find g∗
i
, a vector β is built containing the 

sums of each row of matrix γ as follows:

(3)

�
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compared. It is common, then, to use the difference of 
the means or the medians of the relative gene expression 
in these two states, for example. In this work, each of 
the C experiments will contribute one difference of me-
dians between two states termed “control” and “cancer.” 
This translates into each gene being evaluated through C 
PMs. The absolute value of these differences will then be 
transformed to follow a minimization direction to match 
the illustration in Figure  2, where the following notation 
is introduced:

Let us represent the i-th gene in terms of its values 
on each of the C PMs as g

i
⇔

(

m1
i
, m2

i
,… , mk

i
,… ,mC

i

)

, 
for i  =  1, 2, 3, …, n. Then, the objective of the analysis 
is to find the set of Pareto-efficient solutions: 
g∗

i
⇔

(

m1∗
i

, m2∗
i

,… , mk∗

i
,… , mC∗

i

)

. This is accomplished 
through a full pairwise comparison among the n genes 
as explained next.

First, a matrix δk is built for the k-th PM resulting in 
C squared matrices of size n built as follows:

where:
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for i=1, 2, … , n j= 1, 2, … , n; k =1, 2, … ,C ;

and W is defined as a large positive integer number used 
as a penalty. In this work, W  =  1000 is used.

Next, a summation matrix is computed with elements 

�
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=

C
∑
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. This is exemplified in Table  1 when C  =  2:

Table 1. All the possible combinations of a minimization problem for 
two criteria.
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number

�
1

ij
�

2

ij
αij Outcome

1 0 0 0 Xi is not worse and not better 
either in m1 or m2

2 0 −1 −1 Xi is better in m2

3 0 W W Xi is worse in m2

4 −1 0 −1 Xi is better in m1

5 −1 −1 −2 Xi is better in both m1 and m2
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The Pareto-efficient frontier will, then, contain all solu-
tions that meet equation  (4):

(4)

With this last step, the Pareto-efficient solutions, 
g∗

i
=

{

m1∗
i

, m2∗
i

,…mk∗

i
, … , mC∗

i

}

, are clearly identified.
This algorithm identifies all the solutions of the Pareto-

efficient frontier. The maximum number proved and coded 
in this work is five PMs. The MatLab code is available 
in Appendix  A1. In addition, Appendix  A2 contrasts the 

g∗
i
=

{

g
i
|𝛽

i
<CW, i=1, 2,… n

}
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proposed method with the use of a volcano plot to detect 
differentially expressed genes. Indeed, the mathematical 
description provided here is sufficient for the interested 
reader to code the method. The next illustration should 
help in this endeavor.

Implementation of method

The next example will explain the application of the 
method. The objective is to find the Pareto-efficient solu-
tions g∗

i
 for the minimization of two PMs (C  =  2).

Let G  =  {g1, g2, g3, g4, g5, g6} be a set of n  =  6 genes. 
The values for the PMs per gene are g1(1, 4); g2(3,4); 
g3(5,6); g4(7,5); g5(3,2); g6(4,1). This leads to having 
{m1

1
m1

2
m1

3
m1

4
m1

5
m1

6
}  =  {1, 3, 5, 7, 3, 4} and 

{m2
1
m2

2
m2

3
m2

4
m2

5
m2

6
}  =  {4, 4, 6, 5, 2, 1}. Figure  3 shows 

the MCO problem for the case of minimization of both 
performance measures and its mathematical solution.

Finally, applying equation  (4) the Pareto-efficient 
solutions implies comparing the beta values to a thresh-
old of 2000. The solutions g∗

i
, for this MCO problem 

are g∗
1
,g∗

5
,g∗

6
. These solutions are graphically shown in 

Figure  4.

Analysis and Results of Lung cancer 
Microarray

In this analysis, the database with GEO identifier GDS3257 
was used. This database was first reported by Landi MT 
and collaborators [31]. The database contains measures 
of relative expression for 22,283 genes  from 107 samples: 
49 control and 58 cancerous tissues. The age of the donors 
was between 44 and 79 years old. Samples were from 
never smokers, former smokers, and current smokers (See 
Fig.  5).

Case 1: Comparative analysis between 
different pairs of subgroups

For the first analysis the group of never smokers was con-
sidered and the comparison was between controls and cancer 
samples. There were fifteen controls (HNS) and sixteen 

Figure 3. Graphical and Mathematical representation of the sample problem. (A) The six candidate solutions of the sample problem. (B) Mathematical 
formulation of the problem.

A B
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cancer (CNS) samples. The absolute value of the differences 
of means and medians for each gene were calculated. The 
analysis in MatLab tool was run in a computer with 4 
GB of memory RAM and 2.66 GHz CPU. Due to this 
memory constraint, the Pareto-efficient frontier was found 
in a tournament fashion [32] as explained next. The 22,283 
genes were divided into three groups: two groups of 7500 
and one of 7283 genes. The MatLab tool was used to find 
the locally efficient frontier in each group. Finally, the genes 

in each one of the three efficient frontiers were analyzed 
together to find the global Pareto-efficient frontier. It is 
important to point out that the order of the partition and 
input of the data does not affect the final efficient frontier, 
as this is a case of explicit full comparison. In one criterion, 
the process would be similar to finding the tallest person 
in a room by picking the tallest one in different subgroups 
and comparing the local winners in the end to find the 
global winner. With enough computing memory, partition-
ing the data is not necessary. For each group, the locally 
nondominated subset was identified (Fig.  6). Then the lo-
cally nondominated subsets were used to obtain the globally 
optimal Pareto-efficient frontier, as seen in Figure  7. For 
this first analysis RAGE and SPP1 are the genes in the 
global Pareto-efficient frontier. It is important to recall that 
the user does not need to normalize or use a threshold 
value to achieve this result.

For the second analysis the selected group was the one 
for the current smokers, and again the comparison was 
between control current smokers (HCS) and cancer cur-
rent smokers (CCS). The group had 16 samples for HCS 
and 24 samples for CCS. The process was performed as 
in the previous analysis. In this case the global Pareto-
efficient frontier had just one gene, the SPP1.

A third analysis compared groups HNS and CCS. There 
were 15 HNS samples and 24 CCS samples and RAGE Figure 4. Pareto-efficient solutions for the sample problem.

Figure 5. Organization of database GDS3257. “C” indicates cancer and “H” indicates controls.
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was the only solution. In the fourth analysis comparing 
the 16 HCS samples and the 16 CNS samples the gene 
with the largest change is SPP1.

In a fifth analysis, the 15 HNS samples are compared 
with the 16 samples of HCS, resulting in three genes in 
the efficient frontier: RPS4Y1, CYP1B1, and XIST. When, 
in the sixth analysis, the comparison is done for the cancer 
group between nonsmokers (CNS, 16 samples) and current-
smokers (CCS, 24 samples) there is only one gene present 
in the solution: XIST.

Figure  8 shows a summary of the six analyses between 
never smoker versus current smoker in cancer and control 
tissues. The circles on the left side represent the controls 
never smoker (HNS) and controls current smoker (HCS) 
tissues, while the circles on the right hand side represent 
the cancer never smoker (CNS) and cancer current smoker 

(CCS) tissues. Additionally, the upper circles represent 
never smoker tissues, whereas the lower circles symbolize 
current smoker tissues.

Case 2: Analysis of lung cancer in women: 
never smoker versus current smoker in 
cancer and control tissues

Figure 9 shows the result with the same analysis described 
before, but selecting only for women’s tissues. For this 
representation, the only efficient solution is RAGE, which 
showed a large change when controls (HNS and HCS) 
were compared to cancer.

Case3: Analysis of lung cancer in men: never 
smoker versus current smoker

Figure  10 shows the results with an analysis similar to 
the one described before, but using only men samples. 
For this representation, as in previous cases, RAGE and 
SPP1 showed significant changes when controls (HNS or 
HCS) were compared to cancer.

Table  2 shows the scientific names of genes obtained 
in the Pareto-efficient frontier from all previous 
analyses.

Case 4: The possibility of meta-analysis with 
four performance measures: a prototype for 
meta-analysis

In the previous analyses two PMs (absolute value of dif-
ferences in means and absolute value of differences in 
medians) were used. In this analysis, MCO meta-analysis 
is carried out using four PMs, which were the absolute 
value of differences in medians for each group [16]. The 
medians were used for their nonparametric characteristics, 

Figure 6. Local Pareto-efficient frontiers of all groups. For the first and second groups, two genes are at the local Pareto-efficient frontier, and only 
one gene for the third group.

Figure 7. Globally-optimal Pareto-efficient frontier consisting of RAGE 
and SPP1 genes.



1891© 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. 

Joint Analyses in Lung CancerK. I. Camacho-Cáceres et al.

Figure 8. Diagram representing six analyses between four different conditions (HNS, HCS, CNS, CCS). The edges of the graph list the genes in the 
associated Pareto-efficient frontier.

Figure 9. Diagram representing six analyses between four different conditions for women samples (HNSW, HCSW, CNSW, CCSW). The edges of the 
graph list the genes in the associated Pareto-efficient frontier.

Figure 10. Diagram representing six analyses between four different conditions for men samples (HNSM, HCSM, CNSM, CCSM). The edges of the 
graph list the genes in the associated Pareto-efficient frontier.
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as it has been habitual in analyses previously carried out 
by our group. Continuing with the case, the difference 
in medians between the groups of cancer and control 
tissues is calculated for each one of the 22,283 genes in 
the database. These groups are: HNS (15 samples) versus 
CNS (16 samples), HNS (15 samples) versus CCS (24 
samples), HCS (16 samples) versus CNS (16 samples), 
HCS (16 samples) versus CCS (24 samples) as seen in 
Figure  11.

In this way, the four PMs were calculated and MCO 
was applied to find the genes with high variation levels 
of the relative expressions throughout all PMs. Among 
all the 22,283 genes and using four PMs, the genes with 
high variation were RAGE and SPP1. This analysis 

supports the potential of the proposed method for 
meta-analysis.

Discussion

Table  3 presents the summary of genes obtained from 
eighteen analyses of the lung cancer database. The first 
group consists of the genes obtained from an analysis 

Table 3. Summary from Pareto-efficient frontier genes and their related 
cancer.

Gene name Examples of cancer types where 
the gene is involved

Reference

RAGE Pancreas, colon and prostate, 
colorectal, gastric, liver, lung

[42–47]

SPP1 Oral, lung, bone, bladder, 
prostate, cervical, breast, head 
and neck, liver

[36, 48–54]

XIST Meninges, breast, ovarian [55–57]
RPS4Y1 Meninges [55]
CYP1B1 Lung, cervical, head and neck, 

prostate
[58], [59, p. 1], 
[60], [61, p. 1]

Genes from the analysis with data pertaining only to Women
FABP4 Prostate and breast, ovarian [62, 63]
MSMB Prostate [64]
CEACAM6 Head and neck, breast, colon, 

lung
[65–68]

SCGB1A1* Lung [69]
Genes from the analysis with data pertaining only to Men
FGG Liver [70]
KRT15 Lung, ovarian [71, 72]
ADH1B Esophageal, colorectal, head and 

neck
[73–75]

CYP4B1 Bladder [76]
SCGB1A1* Lung [69]

Table 2. Scientific names the genes identified in the analyses of this 
work.

Official 
symbol

Official name

RAGE Receptor for Advanced Glycosylation End Products
SPP1 Secreted PhosphoProtein 1
XIST X Inactive Specific Transcript (nonprotein coding)
RPS4Y1 Ribosomal Protein S4, Y-linked 1
CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1
FABP4 Fatty Acid Binding Protein 4, adipocyte
CEACAM6 Carcinoembryonic Antigen-related Cell Adhesion 

Molecule 6 (nonspecific cross reacting antigen)
MSMB Microseminoprotein, beta
SCGB1A1 Secretoglobin, family 1A, member 1 (uteroglobin)
ADH1B Alcohol Dehydrogenase 1B (class I), beta polypeptide
CYP4B1 Cytochrome P450, family 4, subfamily B, polypeptide 1

KRT15 Keratin 15
FGG Fibrinogen Gamma chain

Figure 11. Groups for meta-analysis with four PMs.
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from both women and men. The second group is ob-
tained from a group analysis of only women, and the 
last group is the results of a group analysis of only men. 
The common genes for all groups are RAGE, SPP1, and 
SCGB1A1. The products of these three genes are associ-
ated with inflammatory processes and different cancer 
types including lung [23, 33–38]. From this table, three 
important conclusions are obtained. First, those genes 
found in the literature as biomarkers such as CYPIB1 
[39] and FABP4 [40] validate our method. Secondly, 
those genes found in the literature as associated with 
other types of cancer, such as, XIST (a nonprotein cod-
ing gene) [41], among others, could eventually be validated 
and proposed as lung cancer biomarkers with the precur-
sor that they are important genes for other types of cancer 
and could uncover relations between different cancer 
types. Also, these genes could possibly have a relation 
with lung cancer biomarkers in a pathway to be researched. 
Third, the genes that do not have any evidence found 
in literature indicating or any identification as biomarkers 
in other types of cancer, are the opportunities for dis-
covery and thus, offer the potential for a larger 
contribution.

Conclusions

The method applied in this study could be used to analyze 
data related to biological health care research where mi-
croarrays and other –omics are the driving experiments 
for exploration.

The tool coded in MatLab can currently analyze five 
criteria, that is, it can be used to meta-analyze up to five 
different datasets in one run. The discrimination rate 
makes the analysis very manageable. Also, the results will 
be friendly and conveniently available to physicians or 
biological researchers, as this analysis does not require 
normalization, preference of objectives, parameter adjust-
ments by user, or the definition of a threshold value. 
Importantly, the mathematical treatment is easy to translate 
into a functional code of the analyst’s choice.

In the case study in lung cancer the general conclu-
sions are: RAGE and SPP1 showed large change between 
controls and cancer. Moreover, SPP1 showed a large 
change between the Control Current Smoker and the 
Cancer Nonsmoker, and RAGE showed large change be-
tween Control Never Smoker and Cancer Current Smoker. 
Also, XIST showed a large difference when comparing 
Never Smoker and Current Smoker (both in control and 
cancer tissues). The fact that these genes have already 
been related to cancer, indicate the capability of the 
proposed method.

It should be taken into consideration that SCGB1A1 
was found in this study to have an over expression in 

both Cancer Never Smoker and Cancer Current Smoker. 
However, SCGB1A1 expression has been found to be re-
duced in current smokers [60]. Further biological studies 
should be performed to validate the results obtained by 
the methodology applied in this study.

Currently we are working on improving the usability 
of the code to make the method more amicable to the 
users. Future work should include further investigation 
of the potential biomarkers proposed in this document 
and experimental validation. It is certainly also envisioned 
the future tests of the proposed method with different 
–omics.
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Appendix A1 Matlab code to run the proposed 
MCO strategy
%Program: Analysis of Pareto frontier for five criteria
%Author: Katia I Camacho-Caceres
dataT = load(&‘data5Criteria.txt&#x2019;); %Load data
[x,y] = size(dataT);
data = dataT(:,2:end);
[n,m]=size(data);

c1 = 1000*ones(n,n,m); % matrix for first condition
for j=1:m
	 for a=1:n
		  for b=1:n
			   if data(a,j) == data(b,j)
				    c1(a,b,j)=0;
			   elseif data(a,j)<data(b,j)
				    c1(a,b,j)=-1;
			   end
		  end
	 end
end

% Sum two matrices
c2=zeros(n,n);
for a=1:n
	 for b=1:n
		  if c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5)==0
			   c2(a,b)=2500;
		  elseif c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5)==1000
			   c2(a,b)=2500;
		  elseif c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5)==2000
			   c2(a,b)=2500;
		  elseif (c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5))==3000
			   c2(a,b)=2500;
		  elseif (c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5))==4000
			   c2(a,b)=2500;
		  elseif (c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5))==5000
			   c2(a,b)=5000;
		  end
	 end
end

% Find non-dominated set (ncd), and dominated set (cd)
cnd = zeros(x,y);
cd = zeros(x,y);

i=0;
j=0;
for a=1:x
	 sumfila=sum(c2(a,:));
	  if sumfila>=5000; % condition for dominated set
		  i=i+1;
		  cd(i,:)=dataT(a,:);
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Appendix A2 MCO compared to the use of a 
volcano plot

Volcano plot

In the literature there are many methods to detect DE 
genes from microarrays comparing two states. One of 
those methods is the Volcano Plot, which is a graphic 
method widely used by scientists and biologists [77]. This 
method is implemented in different software packages. 
The MCO method proposed in this research is here com-
pared to the volcano plot in a series of analysis.

Volcano plot is a scatter plot built using p-values versus 
gene expression ratios of fold change (FC). This scatter 
plot used the negative log10-transformed p-values from 
the gene specific t-test against the log2 fold change. Genes 
with statistically significant differential expression accord-
ing to the gene-specific t-test will lie above a horizontal 
threshold line. Genes with large fold-change values will 
lie outside a pair of vertical threshold lines [78].

P-values were calculated by unpaired t-test using the 
gene expression values from two experimental conditions: 
healthy and cancer tissues.

Fold Change is calculated as the ratio of the mean con-
trol and mean treatment observations. This is the extension 
of the difference of the logarithm of the control mean 
(y1) and the logarithm of the control treatment (y2):

The ordinary t-statistic selects genes with low standard 
deviations while the fold-changes select genes with large 

shifts between control and treatment. Since the fold-changes 
and the ordinary t-statistic select different sets of genes, 
a researcher must decide whether a gene’s importance is 
best quantified by the shift in expression or by the shift 
relative to the standard deviation.

According to the literature on the use of volcano plot, 
a researcher should choose the measure of differential 
expression based on the biological system of interest. On 
the one hand, if large absolute changes in expression are 
relevant to the system, then fold-change should be used; 
on the other hand, if changes in expression relative to 
the underlying noise are important, then a modified t-
statistic is preferable. This, however, is the point of view 
from which this thesis wants to depart: the choice of 
ad-hoc threshold values to select genes.

The analysis is required to choose threshold values for 
both measures to select important genes. The volcano 
plot is available in the bioinformatics toolbox for MatLab.

Given a particular microarray set with genetic expres-
sion levels measured. In two distinct states, the tool in 
MatLab obtains a p-value per gene using a t-test, and 
measures the FC in a logarithmic scale with base 2.

Comparison of volcano method using 
lung cancer microarray

The original database GDS3257 of lung cancer was used 
for this analysis. The samples HNS and CNS were used 

FC= log(y
1
)− log((y

2
)

	 else % non-dominated set
		  j=j+1;
		  cnd(j,:)=dataT(a,:);
	 end
end

index = 1:x;
disp([round(index&#x2019;) cd]);
disp([round(index&#x2019;) cnd]);

%Show non-dominated set in notepad file
%Position of gene,f1 ,f2 ,f3 ,f4 ,f5 for each criteria
disp(‘   Non-dominated set    ‘);
cnd=cnd(1:j,:);
filecnd = fopen(‘cnd5CriteriaBio.txt&#x2019;,&#x2019;w&#x2019;);
fprintf(filecnd,&#x2019;%6s   %12s   %12s   %12s   %12s    %12s\r\n&#x2019;,&
#x2019;Posicion&#x2019;,&#x2019;F1&#x2019;,&#x2019;F2&#x2019;,&#x2019;F3&#x2019;, 
‘F4&#x2019;, ‘F5&#x2019;);
fprintf(filecnd,&#x2019;%6.4f   %12.4f   %12.4f   %12.4f   %12.4f    
%12.4f\r\n&#x2019;,cnd&#x2019;);
fclose(filecnd);
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to build the Volcano plot. As mentioned previously, 
the Volcano plot requires the user to define thresholds 
for two parameters: p-value and FC to select genes. A 
32 factorial experiment was used to explore these pa-
rameters as shown in Figure  A1. The results are shown 
in Table  A1.

From Table  A1, it can be seen how the results 
depend highly in the user’s selection of thresholds. 
The  combinations that exactly match the output of 
MCO in this instance are the ones with FC = 24 at 
any of the values chosen for P-value in this 
experiment.

P-value =10–2 ; Fold change = 2 P-value = 10–2 ; Fold change = 8

P-value = 10–2 ; Fold change = 24 P-value = 10–7 ; Fold change = 2

P-value = 10–7 ; Fold change = 8 P-value = 10–7 ; Fold change = 24

Figure  A1. Figures represent the results of genes with high DE using Volcano plot and varying the P-values and FC. The dark blue color indicates the 
genes most differentially expressed.
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Table  A1. Summary of important genes expressed using volcano plot.

P-value Fold 
change

Differential 
expression

Overexpressed Underexpressed

10−2 2 934 645 289
10−2 8 29 23 6
10−2 24 2 1 1
10−7 2 649 516 133
10−7 8 27 22 5
10−7 24 2 1 1
10−12 2 130 121 9
10−12 8 12 11 1
10−12 24 2 1 1

P-value = 10–12 ; Fold change = 2 P-value = 10–12 ; Fold change = 8

P-value = 10–12 ; Fold change = 24

Figure  A1. Continued


