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A B S T R A C T   

COVID-19 is a form of disease triggered by a new strain of coronavirus. Automatic COVID-19 recognition using 
computer-aided methods is beneficial for speeding up diagnosis efficiency. Current researches usually focus on a 
deeper or wider neural network for COVID-19 recognition. And the implicit contrastive relationship between 
different samples has not been fully explored. To address these problems, we propose a novel model, called deep 
contrastive mutual learning (DCML), to diagnose COVID-19 more effectively. A multi-way data augmentation 
strategy based on Fast AutoAugment (FAA) was employed to enrich the original training dataset, which helps 
reduce the risk of overfitting. Then, we incorporated the popular contrastive learning idea into the conventional 
deep mutual learning (DML) framework to mine the relationship between diverse samples and created more 
discriminative image features through a new adaptive model fusion method. Experimental results on three public 
datasets demonstrate that the DCML model outperforms other state-of-the-art baselines. More importantly, 
DCML is easier to reproduce and relatively efficient, strengthening its high practicality.   

1. Introduction 

In 2020, the World Health Organization (WHO) officially declared 
the outbreak of COVID-19 [1], the disease caused by SARS-CoV-2, a 
pandemic. COVID-19 is highly infectious and can potentially evolve to 
fatal acute respiratory distress syndrome (ARDS). Early detection and 
effective diagnosis are very helpful to control the spreading of COVID-19 
[2]. As we know, the most common screening method to detect COVID- 
19 is reverse-transcription polymerase chain reaction (RT-PCR) testing. 
However, it is very laborious and some studies have reported its low 
sensitivity in the early stages. Additionally, the availability of RT-PCR is 
still limited in many parts of the world. Therefore, many medical im-
ages, including medical computed tomography (CT) and X-ray, may be 
the next options for effectively detecting this virus because most hos-
pitals usually have the corresponding equipment to generate these 
medical images. Moreover, CT or X-ray images are easily obtained 
without RT-PCR. Contrarily, health workers need to receive proper 
training to collect PCR samples, while the processing and generation of 
CT or X-ray images are relatively easy. Therefore, the computer-aided 
COVID-19 recognition method has significant practical value, which 
helps reduce the burden of RT-PCR and speed up diagnosis efficiency 
[34]. 

From 2012, deep learning methods, such as convolutional neural 
network (CNN), have greatly promoted the development of computer 
vision (CV) [5] field. Recently, deep learning has become an emerging 
field that can play an important role in the detection of COVID-19 [6–8]. 
Some deep learning methods used X-rays or CT images to complete 
COVID-19 recognition. Their researches have demonstrated great 
progress in COVID-19 recognition. 

However, current researches usually focus on designing deeper or 
wider neural networks for COVID-19 recognition [9–11]. Owing to 
deeper or wider network, the corresponding training procedure of 
neural network will be faced with several problems, such as gradient 
vanishing or gradient exploding, which may affect the final performance 
and practicality of recognition model. Moreover, owing to annotation 
costs or other ethical reasons, high-quality image samples are usually 
scarce [12,13]. This will increase the risk of overfitting. Lastly, the im-
plicit contrastive relationship between different samples has not been 
fully explored, which can strengthen the discriminative ability of the 
extracted features. To address the above issues, we propose a novel 
model, called deep contrastive mutual learning (DCML), for automatic 
COVID-19 recognition. First, we use a multi-way data augmentation 
method to enrich the original training dataset. Second, we employ the 
well-known mutual learning idea to train a relatively lightweight 
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recognition model, which can fully mine the pathological knowledge 
between the heterogeneous networks and reduce the dependence on 
computing resources. Third, we incorporate the popular contrastive 
learning strategy into the mutual learning model. We intend to learn 
more discriminative features for effective and robust COVID-19 recog-
nition. Finally, we propose a novel adaptive model fusion method to 
train a more powerful COVID-19 classifier. Conceptually and empiri-
cally, the main contributions of this paper can be summarized as follows:  

1) We propose a novel DCML model which seamlessly combines many 
mainstream technologies, including data augmentation, mutual 
learning, and contrastive learning, to complete effective and robust 
COVID-19 recognition. DCML tries to imitate practical diagnosis 
scenarios as much as possible to focus on decision-making. And it is 
also a good prototype combining contrastive learning and mutual 
learning.  

2) We propose a new adaptive feature fusion method, which focuses on 
adaptively fusing the image features generated from the sub- 
networks in the DCML framework.  

3) Extensive experiments were conducted on three benchmark datasets. 
The corresponding results demonstrate the superior classification of 
our model over other state-of-the-art baseline methods. The code of 
our method is available at https://github.com/ME-liang/DCML. 

The remainder of this paper is organized as follows: Section 2 pre-
sents related works and our research motivations. The DCML model is 
described in Section 3. Experiments on two well-known datasets and the 
corresponding results are illustrated in Section 4. Finally, Section 5 
provides the conclusions and future scope of the work. 

2. Related works 

2.1. COVID-19 recognition 

A world-class infectious disease has outbroken in 2020, it was later 
found that the source of infection was a novel coronavirus called COVID- 
19. Owing to the low efficiency of manual examination of the medical 
images including CT or X-ray images, more and more researchers in the 
fields of CV or machine learning tried to develop a computer-aided 
intelligent system, hoping that these medical images can be used for 
automatic intelligent detection of COVID-19 and improving the corre-
sponding recognition efficiency. 

Recently, deep learning technologies, including CNN [14–18] and 
Transformer [19], have achieved great success in most CV tasks, which 
also plays an important role in the detection of COVID-19. For example, 
Jaiswal et al. [20] fine-tuned the DenseNet 201 model for COVID-19 
recognition. Sen et al. [21] used a bi-stage deep feature selection 
approach for the COVID-19 detection problem. Butt et al. [22] aimed to 
establish a screening model for distinguishing COVID-19 pneumonia 
from that Influenza-A viral pneumonia and healthy cases using a 
ResNet18 with a location-attention mechanism. Some following-up 
methods based on transfer learning have been proposed, and most of 
them used those existing networks, such as VGG [23], ResNet [24–26], 
and DenseNet [27]. Apostolopoulos et al. [28] relied on the MobileNet 
[29] with better interpretability for helping radiologists to understand 
how the predictions were produced. Angelov et al. [30] used the Goo-
gLeNet architecture (a non-pretrained model) for extracting features. 
Then they used the extracted features to train a multi-layer perception 
classifier for the recognition of COVID-19 CT images. Panwar et al. [31] 
used the pre-trained VGG-19 model with five fully-connected layers to 
complete COVID-19 recognition. Panwar et al. [31] also employed a 
Grad-CAM [32] -based color visualization approach to better interpret 
the corresponding diagnosis results. 

Recently, several new network architectures for COVID-19 recogni-
tion emerged, such as the COVID-Net [33], a representative work which 
achieved a promising accuracy for image-level diagnosis on the chest X- 

ray (CXR). Based on the COVID-Net, Javaheri et al. [34] later proposed 
the CovidCTNet to differentiate positive COVID-19 infections from 
community-acquired pneumonia and other lung diseases. Soltanian 
et al. [35] proposed a lightweight model for cough recognition. S. Ghosh 
et al. [36] proposed a modified residual network-based enhancement 
(ENResNet) scheme for the visual clarification of COVID-19 pneumonia 
impairment from CXR images and classification of COVID-19 under deep 
learning framework. P. Gaur et al. [37] proposed a new method for 
preprocessing and classifying COVID-19 positive and negative from CT 
scan images. This method which is being proposed uses the concept of 
empirical wavelet transformation for preprocessing, selecting the best 
components of the red, green, and blue channels of the image are trained 
on the proposed network. Series Adapter [38] and Parallel-Adapter [39] 
use series domain adapter for joint learning from multiple image data-
sets. MS-Net [40] constructs a multi-site recognition model. They can 
also be used for COVID-19 recognition. Zhao et al. [41] proposed the 
latest modified version of COVID-Net for the recognition of COVID-19 
CT images. It absorbed a contrastive learning objective into its model 
and explicitly regularized the class-sensitive and domain-invariant 
latent semantic feature space. Moreover, a group of state-of-the-art 
models, including Fast ConvNets [42], neural architecture search net 
(NasNet) [43], gray-level co-occurrence matrix (GLCM) [44], and Effi-
cientNet [45] have been used to complete COVID-19 recognition on CXR 
images. 

Recently, Huang et al. [46] proposed a new Evidential COVID-Net for 
COVID-19 recognition, which is composed of CNN-based feature 
extraction and belief function-based classification module. An alterna-
tive redesigned framework based on Capsule Network [47] aims to 
handle small-scale datasets more effectively, which is of valuable sig-
nificance given the emergency of COVID-19 initial outbreak. Unlike the 
above researches, Gozes et al. [48] presented a system that can utilize 
both 2D and 3D deep learning models, relying on modifying and 
adapting out-of-the-box artificial intelligence models and combining 
them with domain-wise clinical understanding. Similarly, Li et al. [49] 
also proposed a 3D deep learning architecture for COVID-19 recogni-
tion. Moreover, some researchers focused on the feature fusion method. 
Tang et al. [50] tackled automated severity assessment (i.e., differenti-
ating non-severe and severe) for COVID-19 recognition using CT images 
through the exploration of those identified severity-related features. 
Rahimzadeh et al. [51] developed a neural network that concatenate the 
corresponding features extracted from Xception and ResNet50V2 net-
works, which can boost the final recognition performance. 

All the above-mentioned works have achieved great progress on the 
task of COVID-19 recognition. However, on the one hand, the corre-
sponding COVID-19 images are very scarce, which may lead to over-
fitting. On the other hand, the above networks are very complex and 
hard to reproduce. Notably, they have not explored the potential ability 
of heterogeneous networks. 

2.2. Deep mutual learning 

Deep neural networks have achieved remarkable results in the fields 
of CV, speech recognition, and natural language processing. To complete 
more complex tasks, the corresponding network must use a deeper or 
wider structure. Although these neural networks have achieved satis-
factory performance on specific tasks, lots of computing requirements 
make them difficult to be deployed on those resource-constrained en-
vironments, which may limit their practicalities. To address this issue, 
Hinton [52] proposed the famous model distillation method. It regards a 
pre-trained large network as a teacher that provides additional knowl-
edge to a small network (student). The student network imitates the 
category probability estimated by the teacher network. And the student 
network can even obtain better performance. The basic principle behind 
model distillation [52] is using the additional supervision from the 
teacher model to train the student model, which surpasses the tradi-
tional supervised learning objective. Since then, most offline distillation 
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methods have followed this principle. In [52–55], the classification 
probability distribution of the corresponding teacher model was used as 
the additional supervision. However, the above traditional model 
distillation methods need a pre-trained large network. And they only 
employ a one-way knowledge transfer, which cannot take full advantage 
of the teacher and student networks. 

To address this problem, Zhang [56] proposed a deep mutual 
learning (DML) strategy in which a group of student networks learns and 
guides each other throughout the whole training process. Instead of the 
statically one-way knowledge conversion between the teacher and stu-
dent networks, DML uses multiple networks to train at the same time. 
Each network not only accepts the supervision from the ground-truth 
but also refers to the learning experience from the peer network. All 
these can further improve the generalization ability of the whole 
framework. Finally, the two networks share learning experiences (dark 
knowledge) to achieve mutual learning and common great progress. 
More importantly, online knowledge distillation (KD) between hetero-
geneous networks can be realized easily. Anil et al. [57] and Gao et al. 
[58] further extended the DML idea to accelerate the training procedure 
of a large-scale distributed neural network. Although the above re-
searches have promoted the progress of KD, none of them absorbed the 
contrastive learning idea to the distillation procedure. Moreover, to the 
best of our knowledge, few works have used the DML idea to complete 
COVID-19 recognition. 

2.3. Research motivations 

Most of the above-mentioned methods usually used a deeper or 
wider network structure of a single model to improve the final recog-
nition performance. Objectively speaking, this is an effective method for 
improving COVID-19 recognition. However, as we know, owing to 
complex network structure, the corresponding training procedure of 
neural network will be faced with several problems, such as gradient 
vanishing or gradient exploding, which may affect the final performance 
and practicality of recognition model. Meanwhile, owing to the lack of 
sufficient training samples [12,13], the final recognition model is prone 
to overfitting, which may also reduce its practicality to a certain degree. 
Lastly, the implicit contrastive relationship between different samples 
has not been explored, which helps strengthen the discriminative ability 
of the extracted features. 

Naturally, our research motivations are three-folds. First, we used a 
multi-way data augmentation method, which can automatically search 
the most suitable augmentation strategy for the COVID-19 image data-
sets, and obtain high-quality augmented image samples. This lays a firm 
data foundation for the subsequent training. Second, we employed the 
well-known DML framework to train a relatively lightweight recognition 
model, which can make full use of the pathological knowledge between 
heterogeneous networks and reduce the dependence on computing re-
sources. More importantly, we incorporated the popular contrastive 
learning strategy into our DML-based recognition model. Hence, we 
obtained the DCML model. It is also a good prototype combining 
contrastive learning and mutual learning. We aim to learn more 
discriminative features through contrastive learning for more effective 
COVID-19 recognition. Finally, based on DCML, we proposed a novel 
adaptive model fusion method to generate more discriminative features 
and train a more powerful COVID-19 image classifier. 

3. The proposed DCML model 

The core idea of the DCML model is to imitate practical diagnosis 
scenarios as much as possible to focus on decision-making. Our model 
consists of four parts. First, the proposed DCML model uses the 
AutoAugment-based method to obtain more high-quality image sam-
ples. Secondly, our model employs the DML framework to break the 
isolation between different networks and establishes a strong foundation 
for the fusion of these complementary networks. This can imitate the 

mutual communication and learn from multiple experienced patholo-
gists (or radiologists) to a certain extent. Notably, unlike the traditional 
DML model, DCML absorbs the contrastive learning idea into the 
knowledge transfer procedure, which enhances the model’s ability to 
distinguish different classes. Finally, we propose the adaptive model 
fusion strategy to further utilize the implicit complementary correla-
tions among heterogeneous networks and train a more powerful image 
classifier with better generalization capabilities, which can mimic the 
centralized decision-making process of these pathologists (or radiolo-
gists) as much as possible. The corresponding technological pipeline of 
our method is illustrated in Fig. 1. 

3.1. Model framework 

Fig. 1 shows the technological pipeline of the DCML model. 
At the first stage, we employed the Fast AutoAugment (FAA) [59] 

method to enrich the original training dataset. Compared with other 
traditional data augmentation methods, FAA can automatically search 
effective data augmentation strategies for the target datasets. In this 
way, high-quality image samples can be obtained. Additionally, unlike 
other AutoAugment-based method [60], FAA can avoid the GPU- 
consuming of repeatedly training the network by adjusting different 
data augmentation parameters, thereby achieving a speed increase of 
100 ~ 1000 times. 

At the second stage, we used any two networks (Net I and Net II) to 
build the DCML model, which ensures that the proposed DCML model is 
a general and versatile framework. Each of the two networks form a 
parallel queue of the DCML model. Additionally, we modified the DML 
framework by adding a contrastive loss to the original mutual learning 
procedure, which can strengthen each network’s ability to distinguish 
different classes. In this knowledge transfer procedure, the two networks 
can mine out sufficient pathological knowledge for independent training 
and form complementary advantages for the whole framework. 

At the last stage, we proposed a new adaptive model fusion strategy. 
It further strengthens the implicit complementarity by fusing the cor-
responding heterogeneous layers from the two networks. To fulfill this 
goal, each network is frozen. The two networks are only used to extract 
the corresponding deep-level features of CT images, including “Feature 
Map I” and “Feature Map II”. And the corresponding feature maps from 
heterogeneous layers are adaptively fused to create more discriminative 
features for training the final COVID-19 image classifier. 

3.2. Model formulation 

Stage 1: FAA Strategy. 
Fig. 2 shows the procedure of FAA. 
Data augmentation is a useful strategy that can simultaneously in-

crease the amount and diversity of the training data through some 
random techniques. As we know, popular augmentation methods 
include shifting, flipping, mirroring, and other spatial operations. 
However, fixed data augmentation methods are not suitable for all 
datasets. Contrarily, AutoAugment-based methods [59,60] can adap-
tively search effective data augmentation strategies for a target dataset. 
It first creates a search space for data augmentation strategies and then 
directly evaluates the quality of a specific strategy on the target dataset. 
A strategy in the search space contains many sub-strategies. Each sub- 
strategy is randomly selected for each image sample in each mini- 
batch. Each sub-strategy consists of two traditional operations such as 
translation, rotation or shearing, and the probability of applying these 
operations. As analyzed above, owing to good performance and rapid 
speed, we employed FAA [59] to implement data augmentation. The 
FAA method is shown as Algorithm 1. 

In Algorithm 1, θ is the relevant model parameter of FAA. Dtrain is the 
training dataset. The dataset is divided into K parts. T represents the 
number of Bayesian optimizations on the same sub-dataset. B is the 
number of iterations of the Bayesian optimizer. Each Bayesian optimi-
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zation selects the best N samples as a candidate strategy and divide Dtrain 
into DM and DA, which are used to learn model parameters θ and explore 
enhancement strategy T respectively. T* represents augmentation 

strategy.  
Algorithm 1: Fast AutoAugment 

Input: (θ,Dtrain ,K,T,B,N) 

(continued on next page) 

Fig. 1. The technological pipeline of the DCML model.  

Fig. 2. The technological procedure of FAA.  
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(continued ) 

Algorithm 1: Fast AutoAugment 

Split Dtrain into K-fold data D(k)
train = {(D(k)

M ,D(k)
A )}

For k ∈ {1,⋯,K} do 
TK

* ←∅, (DM ,DA)←(D(k)
M ,D(k)

A )

Train θ and DM 

For t ∈ {0,⋯,T − 1} do 
β←BayesOptim(T,L(θ|T(DA) ),B)
Tt←Select top − N policies in β 
T(k)

* ←T(k)
* ∪ Tt 

Return T* = ∪kT(k)
*  

Through the FAA algorithm, we can find the best augmentation strategy 
suitable for the COVID-19 datasets and obtain high-quality image sam-
ples, which lays a firm data foundation for the subsequent model 
training. 

Stage 2: DCML. 
In the DCML model, we first use the mutual distillation characteristic 

of the DML framework to explore the complementary relationship of 
different networks. The DML framework can enable multiple networks 
(we used two heterogeneous networks in DCML) to realize online 
mutual knowledge transfer during the training process. And this two- 
way knowledge transfer strategy lays a powerful foundation for the 
subsequent adaptive model fusion. 

In addition to mining the complementary knowledge under the 
mutual learning mode, another goal is to promote intra-class cohesion 
and inter-class separation of infected semantic embedding (i.e., COVID- 
19) and cross-modal non-infected cases. Hence, we adopt the popular 
contrastive learning idea into our model and merge a contrastive loss 
with the Kullback-Leibler (KL) loss. The contrastive loss can make full 
use of the label information than the traditional cross-entropy loss. After 
adding the contrastive loss, the clusters of samples belonging to the same 
class are pulled closer in the embedding space whereas the clusters of 
samples from different classes are pushed far away than before. This 
characteristic helps improve the final recognition accuracy. Here we 
formulate the DCML model in a general way. 

N samples from M categories are described as X = {xi}
N
i=1, while the 

set of the corresponding labels is expressed as Y =
{
yi
}N

i=1 with 
yi ∈ {1,2,⋯,M}. In each iterative optimization process, the same mini- 
batch is input into the two networks, respectively, and the same calcu-
lation process is performed on each network. 

The probability of class m for sample xi given by the neural network 
Net I is computed as: 

Pm
1 (xi) =

exp
(
zm

1

)

∑M
m=1exp(zm

1 )
(1)  

where the logit zm is the output of the softmax layer. 
For a multi-classification task, we first need a supervised loss. And 

the cross-entropy error between the predicted values and the correct 
labels is defined as the supervised loss of the neural network Net I: 

Lc1 = −
∑N

i=1

∑M

m=1
I(yi,m)log

(
pm

1 (xi)
)

(2)  

where I is an indicator function. If the label is equal to the predicted 
value, I is set to 1. Otherwise, it is set to 0. 

I(yi,m) =

{
1yi = m
0yi ∕= m (3) 

Similarly, we can obtain the supervised loss, called Lc2, of the neural 
network Net II, which is shown as follow: 

Lc2 = −
∑N

i=1

∑M

m=1
I(yi,m)log

(
pm

2 (xi)
)

(4) 

Besides the supervised loss introduced above, we also need a loss to 
complete mutual learning in our DCML framework. As shown in Fig. 1, 
the peer network Net II is introduced to improve the prediction accuracy 
and generalization ability of the network Net I. The network Net II uses 
its posterior probability p2 to provide its training experience (or dark 
knowledge) to the network Net I. Meanwhile, the network Net I uses its 
posterior probability p1 to offer its training experience to the network 
Net II. Hence, this builds a two-way knowledge transfer mode. To ensure 
that p1 and p2 can play a positive role in the whole training procedure, 
we employ the KL divergence as shown in Equation (5) to quantify the 
matching degree of the predictions of the two networks. 

Dkl(p2||p1) =
∑N

i=1

∑M

m=1
pm

2 (xi)log
pm

2 (xi)

pm
1 (xi)

(5) 

Similarly, we can obtain the mutual learning loss, called Dkl(p1||p2), 
which is shown as follow: 

Dkl(p1||p2) =
∑N

i=1

∑M

m=1
pm

1 (xi)log
pm

1 (xi)

pm
2 (xi)

(6) 

As described above, the contrastive loss focuses on learning a kind of 
mapping relationship, which contributes to making the following 
contrastive learning: the samples belonging to the same class are pulled 
closer while the samples from different categories are pushed far away 
than before. Based on this idea, we employ the contrastive loss [61] 
shown as follows to complete contrastive learning: 

Lcon(w, (y,X1,X2) ) =
1

2N
∑N

n=1
yD2

w +(1 − y)max(c − Dw, 0)2 (7)  

Where Dw represents the direct Euclidean distance between X1 and X2. w 
is the network weight. y is the label of whether the two samples match, 
y = 1 means that the two samples are similar or matched. On the con-
trary, y = 0 means not matching, c represent the set threshold, and N is 
the number of samples. 

Summarily, based on the above-mentioned mutual learning loss, 
contrastive loss, and supervised loss, we define the final loss, namely L1 
and L2, of the two networks Net I and Net II, respectively: 

L1 = Lc1 +DKL(p2||p1)+Lcon (8)  

L2 = Lc2 +DKL(p1||p2)+Lcon (9) 

Therefore, in the proposed DCML model, any network no longer 
learns in isolation. The two networks can learn from each other and 
encourage each other to mine sufficient pathological knowledge for 
better depicting COVID-19 images. Meanwhile, the contrastive loss can 
promote intra-class cohesion and inter-class separation of all the sam-
ples. Moreover, the corresponding feature layer of each network also 
builds a firm foundation for the subsequent adaptive model fusion. The 
pathological knowledge and diagnosis experience from different “pa-
thologists or radiologists” (Net I or Net II) can complement each other, 
which is a necessary basis for centralized decision-making. 

Stage 3: Adaptive Model Fusion. 
As shown in Fig. 1, we fuse two heterogeneous features after 

implementing DCML, which can mimic the centralized decision-making 
process of these pathologists (or radiologists) as much as possible. To 
fuse two heterogeneous features, we should match their sizes. First, the 
pooling-sampling operations are used to transform the length and width 
of each feature map, and the 1 × 1 convolution is employed in turn to 
transform the number of channels of each feature map. Particularly, we 
used an adaptive average pooling strategy. In this adaptive average 
pooling procedure, it is necessary to set the size of the output tensor 
according to the one desired without considering the size of the input 
feature maps. The fused features are input into the final softmax layer to 
train a classifier. Therefore, the length and width of each feature map are 
set to 1. Moreover, the 1 × 1 convolution changes the number of the 
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corresponding channels, which enhances the abstract expression ability 
of the local module. Hence, the proposed model fusion method can fuse 
any two feature maps from heterogeneous networks, adaptively. This 
can cleverly avoid the traditional operators and does not need to set 
different pooling and convolution parameters for different feature maps. 
From another perspective, this helps strengthen the practicality of the 
proposed COVID-19 recognition model. Our adaptive fusion procedure 
is shown in Fig. 3. 

As mentioned above, the adaptive average pooling and 1 × 1 
convolution can match any two feature maps with arbitrary sizes. Then, 
we used the concatenation mode to complete the final model fusion. 
Given k feature maps, namely G1, G2, G3 ... Gk, the principle of the 
concatenation mode is shown as follows: 

Zconcat = G1 ∪ G2 ∪ G3 ∪ ⋯ ∪ Gi ∪ ⋯Gk (10) 

Here, Zconcat is a collection of all the feature maps. This means that 
Zconcat makes the new feature more diverse, which is beneficial to the 
final COVID-19 image classification. 

After the fused feature maps have been obtained, the result of the 
adaptive model fusion method is implemented through the dense con-
nect function shown as follows: 

Yconcat = f (WkZconcat +Bk) (11)  

where Wk and Bk refer to the corresponding weight and bias, respec-
tively. A fusion classifier is built in turn based on Yconcat. And it is fine- 
tuned to achieve the best classification performance on the test data-
set. In this equation, for the concatenation operation, the shapes of Wk 
and Bk will change as the fusion changes. This requires the same length 
and width of any feature map. The concatenation mode makes the 
number of channels of the fused feature map equal to the sum of the 
number of channels of each single feature map. Therefore, when we use 
the concatenation mode to fuse the extracted feature maps, the corre-
sponding length and width of each feature map should be converted to 
the same size. As described above, the adaptive average pooling and 1 ×
1 convolution guarantee that the model fusion method can adaptively 
match any two feature maps with arbitrary sizes. Hence, we can obtain a 
more powerful fusion classifier for COVID-19 image recognition. 

In summary, the proposed data augmentation method lays a firm 
data foundation for model training. The DCML framework establishes 
the complementary correlation among different networks, which en-
ables our recognition model to fully mine the complementary dark 
knowledge and implement effective contrastive learning. Finally, the 
adaptive model fusion method is proposed to create the fusion classifier 
for COVID-19 image recognition. 

4. Dataset preparation 

4.1. Datasets 

According to Refs. [62–65], we adopted three public COVID-19 CT 

image datasets, including COVID-CT [62], SARS-CoV-2 [63], and 
COVID-19_Radiography_Dataset [64,65], to evaluate our model. The 
corresponding URL link for the COVID-19 CT image is shown as follows: 
https://github.com/UCSD-AI4H/COVID-CT. The corresponding URL 
link for the SARS-Cov-2 image is shown as follows: https://www.kaggle. 
com/plameneduardo/sarscov2-ctscan-dataset. The corresponding URL 
link for the COVID-19_Radiography_Dataset image is shown as follows: 
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-data 
base?select=COVID-19_Radiography_Dataset. The SARS-CoV-2 dataset 
consists of 2482 CT images from 120 patients, in which 1252 images are 
positive with COVID-19 and other 1230 images are non-COVID but with 
other types of lung disease manifestations. The spatial sizes of these 
images range from 119 × 104 to 416 × 512. The COVID-CT dataset 
includes 349 CT images from 216 patients containing clinical findings of 
COVID-19 and 397 CT images from 171 patients without COVID-19. The 
resolutions of these images range from 102 × 137 to 1853 × 1485. 
COVID-19_Radiography_Dataset is a popular database of CXR images for 
COVID-19 positive cases along with normal and infection images. In its 
first version, 219 COVID-19 and 1341 normal CXR images were release. 
In its first update, the corresponding COVID-19 samples were increased 
to 1200 CXR images. In its current 2nd update, the authors increased the 
database to 3616 COVID-19 positive cases along with 10,192 normal 
images on January 06th, 2021. The resolution of each image in the new 
dataset is uniform 299 × 299. We used the 2nd update of COVID- 
19_Radiography_Dataset in our experiments. Compared with CT 
image, CXR image has the following three evident advantages: 1) lower 
acquisition cost; 2) lower radiation dosage; 3) faster imaging speed. 
Hence, CXR images are widely used as lung disease screening, such as 
COVID-19 recognition. 

Summarily, the three datasets have some apparent differences in 
imaging mode, acquisition time, and sample source. These help firmly 
and comprehensively validate the effectiveness and robustness of the 
proposed DCML model. In our experiments, all images are resized to 
224 × 224 in an axial plane. Fig. 4 shows some representative images 
from the three datasets. 

4.2. Data augmentation and image preprocessing 

In this study, the well-known data augmentation technology named 
FAA was first used to enrich the three public datasets. This can not only 
improve the final classification performance but also alleviate the 
overfitting problem and enhance the robustness of the proposed recog-
nition model. For fair performance comparison, we only enrich the 
training dataset. Suggested data augmentation techniques include 
rotation, horizontal flip, mirror flip, and random cropping. Therefore, 
the training set is doubled after data augmentation. In addition to data 
augmentation, we also performed normalized preprocessing on CT or 
CXR images. Each image was normalized into zero mean and unit 
variance for intensity values along channel dimension. The statistical 
data of the three datasets are exhibited in Table 1. As shown in Table 1, 
COVID-19_Radiography_Dataset has more image samples compared to 

Fig. 3. The adaptive model fusion process.  
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the COVID-CT and SARS-Cov-2 datasets. Notably, the sample imbalance 
phenomenon is more evident on this dataset. Hence, each dataset has its 
own characteristic, which puts forward higher requirements for the 
proposed recognition model. 

5. Experimental results and analysis 

5.1. Evaluation metrics and baselines 

5.1.1. Evaluation metrics 
To evaluate the proposed COVID-19 recognition model comprehen-

sively and objectively, several evaluation metrics, including accuracy, 
the area under the receiver operating characteristic (ROC) curve (AUC), 
precision, recall (sensitivity), and F1, are employed in this study. 

Accuracy is a popular metric for image classification. For our pre-
diction results, it represents the ratio of correct predictions to the total 
number of samples in the prediction results, which is shown as follow: 

Accuracy =
Ncorrcet

Ntotal
(12)  

where Ntotal is the total number of the COVID-19 images, and Ncorrect is 
the number of the images that have been correctly classified by the 
model. 

Precision is another mainstream metric for image classification. It is 
the ratio of images that are correctly classified as positive (COVID) and 

all images that are classified as positive. It indicates how many of the 
image samples predicted to be positive are true positive samples. Hence, 
the Precision metric is shown as follows: 

Precision =
TP

TP + FP
(13)  

where TP means true positive and FP means false positive. 
Recall (Sensitivity) is another important metric for image classifi-

cation. It is the ratio of correct predictions (positive) to the total number 
of samples in the prediction results. The Sensitivity metric is shown as 
follows: 

Sensitivity =
TP

TP + FN
(14)  

where FN is false negative. 
F1 is used to evaluate the overall classification performance of a 

model. It is the harmonic mean of the Precision and Sensitivity values, 
which is shown as follows: 

F1 =
2 × Sensitivity × Precision

Sensitivity + Precision
(15) 

AUC represents the area under the ROC curve. It is another important 
metric that is usually used to evaluate the overall classification perfor-
mance of a classification model. A large AUC indicates satisfactory 
performance, which means that the corresponding ROC curve is very 
close to the (0, 1) point and far from the 45◦ diagonal of the coordinate 
axis. 

5.1.2. Implementation details 
We used the PyTorch backend on our server with three NVIDIA 

GeForce GTX 2080Ti GPUs, and our memory is 94 GB. Each dataset is 
split randomly into 70% for training and 30% for testing. We used Adam 
with weight decay and set the initial learning rate to 0.001. The mo-
mentum value is 0.9 the weight decay for regularization is 1e-4, and the 
decay for learning rate is 0.1. We set the batch size to 40 and trained our 
model for 50 epochs. According to our experimental results, we chose 
SeResNet50 (Net I) and SeResNetxt101 (Net II) as the two basic 

Fig. 4. Datasets exhibition.  

Table 1 
The statistical data of the three public COVID image datasets. Unit: image.  

Dataset Train Test 

Pos Neg Pos Neg 

COVID-CT Original 251 292 98 105 
After FAA 502 584 98 105 

SARS-Cov-2 Original 939 923 313 307 
After FAA 1878 1846 313 307 

COVID-19_Radiography_Dataset Original 2712 7644 904 2548 
After FAA 5424 15,288 904 2548  
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networks to create the DCML model. 

5.1.3. Baselines 
We compare the proposed DCML model with the following three 

types of baselines:  

1) The fine-tuned deep learning networks include ResNet50, 
ResNet101, DenseNet201, VGG-16, VGG-19, SqueezeNet, Google-
Net, AlexNet, InceptionResNetV2, and InceptionV3. 

2) Two sub-nets we used in DCML: SeResNet50 (SeR50), and SeR-
esNetxt101 (SeR101).  

3) Mainstream COVID-19 image recognition models include Evidential 
Covid-Net [46], Angelov et al.’s model [30], Panwar et al.’s model 
[31], Sen et al.’s model [21], Jaiswal et al.’s model [20], COVID-Net 
[33], Series Adapter [38], Parallel Adapter [39], MS-Net [40], Zhao 
et al.’s model [41], Fast-CovNet [42], NasNet [43], GLCM [44], and 
EfficientNet [45]. 

5.2. Quantitative results 

First, we compare the DCML model with all the baselines introduced 
above, and the corresponding experimental results are shown in Table 2. 
As shown in Table 2, the proposed DCML model performs well on both 
datasets. We made a deep-level analysis from the following three 
perspectives. 

Compared with the fine-tuned deep learning networks, the corre-
sponding performance of the DCML model was greatly improved on both 
datasets. For example, on the COVID-CT dataset, compared with the 
most competitive VGG-19 model, the corresponding improvements of 
accuracy, F1-score, Sensitivity, Precision, and AUC are 8.18%, 8.79%, 
9.11%, 7.00%, and 8.11%, respectively. On the SARS-Cov-2 dataset, 
compared with the most competitive ResNet101 model, the corre-
sponding improvements are 2.46%, 2.30%, 0.40%, 4.31%, and 2.33%, 
respectively. On COVID-19_Radiography_Dataset, compared with the 
most competitive VGG-19 model, the corresponding improvements of 
accuracy, F1-score, Sensitivity, Precision, and AUC are 8.70%, 10.25%, 
3.70%, 15.37%, and 11.65%, respectively. As we know, deep learning 

Table 2 
Performance comparisons with baselines. The best value of each column is shown as 0.8818. “w” means with FAA while “w/o” means without FAA.  

Dataset Model Accuracy↑ F1↑ Sensitivity↑ Precision↑ AUC↑ 

COVID-CT ResNet50  0.7600  0.7300 0.6700 0.8000 0.7600 
ResNet101  0.7900  0.7800 0.8000 0.7600 0.7900 
DenseNet201  0.7900  0.7700 0.7300 0.8100 0.7900 
VGG-19  0.8000  0.7900 0.7900 0.8100 0.8000 
SqueezeNet  0.7300  0.7000 0.6500 0.8000 0.7300 
SeR50  0.7488  0.7302 0.7041 0.7582 0.7588 
SeR101  0.7537  0.7573 0.7959 0.7222 0.7301 
Evidential Covid-Net  0.7310  0.7020 / / 0.8700 
COVID-Net  0.6312  0.6109 0.5773 0.6403 0.7109 
Series Adapter  0.7001  0.6708 0.7491 0.6304 0.7392 
Parallel Adapter  0.7493  0.7346 0.7181 0.7984 0.8029 
MS-Net  0.7623  0.7654 0.7407 0.7929 0.8219 
Zhao et al.  0.7869  0.7883 0.7971 0.7802 0.8532 
SeR50 (DML)  0.8079  0.7983 0.8102 0.8087 0.8083 
SeR101 (DML)  0.8621  0.8516 0.8029 0.9190 0.8559 
DCML (w/o FAA)  0.8768  0.8737 0.8807 0.8829 0.8807 
DCML (w FAA)  0.8818  0.8779 0.8811 0.8800 0.8811 

SARS-Cov-2 ResNet101  0.9496  0.9503 0.9715 0.9300 0.9498 
GoogleNet  0.9173  0.9182 0.9350 0.9020 0.9179 
VGG-16  0.9496  0.9497 0.9543 0.9402 0.9496 
AlexNet  0.9375  0.9361 0.9228 0.9498 0.9368 
SeR50  0.8824  0.8828 0.8786 0.8871 0.8821 
SeR101  0.9098  0.9088 0.8914 0.9269 0.9311 
Angelov et al.  0.8860  0.8915 0.8860 0.8970 / 
Panwar et al.  0.9404  0.9450 0.9400 0.9500 / 
Sen et al.  0.9532  0.9530 0.9530 0.9530 / 
Jaiswal et al.  0.9625  0.9629 0.9629 0.9629 / 
COVID-Net  0.7712  0.7603 0.7097 0.8004 0.8408 
Series Adapter  0.8573  0.8619 0.8191 0.9098 0.9293 
Parallel Adapter  0.8213  0.8239 0.8002 0.8351 0.8999 
MS-Net  0.8798  0.8873 0.8491 0.9378 0.9437 
Zhao et al.  0.9083  0.9087 0.8589 0.9575 0.9624 
SeR50 (DML)  0.9274  0.9251 0.9423 0.9103 0.9229 
SeR101 (DML)  0.9452  0.9400 0.9350 0.9494 0.9419 
DCML (w/o FAA)  0.9565  0.9553 0.9596 0.9561 0.9596 
DCML (w FAA)  0.9742  0.9733 0.9755 0.9731 0.9731 

COVID-19_Radiography_Dataset VGG19  0.9000  0.8800 0.9400 0.8300 0.8700 
ResNet101  0.8751  0.9220 0.8701 0.8923 0.8910 
ResNet50  0.8866  0.8744 0.8996 0.8612 0.9566 
InceptionResNetV2  0.9485  0.9617 0.9401 0.9447 0.9201 
Fast-CovNet  0.8211  0.8006 0.9805 0.6765 0.7664 
Inceptionv3  0.7668  0.8163 0.7009 0.9771 0.8021 
NasNet  0.9583  0.9594 0.9337 0.9866 0.9858 
GLCM  0.9222  0.9030 0.8895 0.7911 0.8156 
EfficientNet  0.8084  0.7707 0.7244 0.8602 0.8200 
SeR50  0.8674  0.8719 0.9271 0.8065 0.8696 
SeR101  0.8786  0.8878 0.9392 0.8148 0.8873 
SeR50 (DML)  0.9545  0.9442 0.9532 0.8834 0.9412 
SeR101 (DML)  0.9539  0.9576 0.9591 0.9470 0.9667 
DCML (w/o FAA)  0.9826  0.9762 0.9770 0.9778 0.9771 
DCML (w FAA)  0.9870  0.9825 0.9770 0.9837 0.9865  
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networks are very complex (i.e., ResNet101 and DenseNet201) and 
require sufficient high-quality training samples, which makes them 
prone to overfitting. Especially for the medical image recognition tasks, 
owing to the lack of sufficient image samples, the overfitting problem 
becomes more serious or evident than before. Contrarily, the proposed 
DCML model can better deal with this problem. On the one hand, it can 
obtain high-quality image samples through data augmentation, which 
helps alleviate the problem of data scarcity to a certain degree. On the 
other hand, the corresponding network trained by the proposed DCML 
framework is relatively lightweight with fewer parameters and lower 
complexity. Hence, our recognition model is not prone to overfitting. 
Importantly, it has a powerful generalization ability. Compared with the 
sub-nets we used in DCML, the proposed DCML model also performs 
better on both datasets. For example, on the COVID-CT dataset, 
compared with the SeR101, the corresponding improvements of accu-
racy, F1-score, Recall, Precision, and AUC are 12.81%, 12.06%, 8.52%, 
15.78%, and 15.1%, respectively. In the DCML model, we make the two 
sub-nets learn from each other, which enhances the heterogeneous in-
formation transfer between the networks. In addition, the contrastive 
loss between different samples is always added into the process of 
mutual learning, which strengthens the classification ability of the 
model, and finally, the two heterogeneous networks are adaptively 
merged. All these contribute to the improvement of the final perfor-
mance of the DCML model. 

Compared with those mainstream models for COVID-19 classifica-
tion, our DCML model also performs better on both datasets. For 
example, on the COVID-CT dataset, compared with the most competitive 
baseline (Zhao et al.), the corresponding improvements of accuracy, F1- 
score, Recall, Precision, and AUC are 9.49%, 8.96%, 8.40%, 9.98%, and 
2.79%, respectively. Similar results can also be observed on the SARS- 
Cov-2 and COVID-19_Radiography_Dataset datasets. DCML can process 
both CT and CXR images well. And it also solves the data imbalance 
problem well. Hence, the proposed DCML model is effective and robust 
for COVID-19 image recognition. Contrarily, Zhao et al. only used the 
traditional data augmentation method, which cannot effectively alle-
viate the data scarcity problem. However, the DCML model employs the 
state-of-the-art FAA method to enrich the original training dataset. This 
builds a firm data foundation for the subsequent model training. More 
importantly, unlike Zhao et al. and Jaiswal et al., the DCML model 
employs several convincing losses, including supervised loss, mutual 
learning loss, and contrastive loss, to complete COVID-19 image classi-
fication. All these losses form a kind of joint force to promote the cor-
responding performance improvement of the DCML model. Notably, 
compared with these baselines, our model is lightweight, which can be 
deployed on the most common devices. 

Summarily, the proposed DCML model is superior to all the base-
lines, and it also has the following important characteristics: simplicity, 
lightweight, easier to implement, and high efficiency. These help to 
enhance the practical value of the proposed model. Certainly, owing to 
few training samples, challenges remain on the current COVID-CT 
datasets. In the future, we intend to introduce the attention mecha-
nism to better capture the key lesions of COVID CT images. 

5.3. Cross-Validation 

Cross-validation is an important method for evaluating recognition 

models objectively. The most commonly-used cross-validation is k-fold 
method. The specific k-fold cross-validation procedure is: we randomly 
divide the training set into k parts, and take one of them as the validation 
set which is used to evaluate the proposed model. The remaining k-1 
copies are the training set. We repeat this step k times, and a different 
subset of each time is chosen for validation. Hence, k scores are ob-
tained. We use five-fold (k = 5) cross-validation on COVID- 
19_Radiography_Dataset to evaluate the DCML model. Five metrics, 
including Accuracy, F1, Sensitivity, Precision, and AUC, are used here. 
The corresponding experimental results are shown in Table 3. 

According to Table 3, we find that the corresponding results of each 
fold are close (low standard deviations), and the corresponding average 
values are satisfactory too. This experimental phenomenon proves that 
our DCML model has good generalization and stability. 

5.4. Real-Time efficiency 

In this section, we evaluate the real-time efficiency of the DCML 
model and make comparisons with several mainstream baselines on the 
COVID-CT, COVID-19_Radiography_Dataset, and SARS-Cov-2 datasets. 
For a fair comparison, we calculated the test time of each model. The 
corresponding experimental results are shown in Table 4. The DCML 
model has the best real-time efficiency. This also reflects the lightweight 
characteristics of our model, demonstrating its high practicality. Hence, 
our model is efficient as well as effective for COVID-19 recognition. 

5.5. Running procedure of DCML 

In this section, we illustrate the running procedure of the DCML 
model on the COVID-CT, COVID-19_Radiography_Dataset, and SARS- 
Cov-2 datasets. This can help us better understand the implicit 
running mechanism of our model. All the results are shown in Fig. 5. 
Both the results of the DML and DCML models are illustrated and 
compared objectively in Fig. 5. 

As shown in Fig. 5 (a) ~ (c), with the increase of training epoch, the 
corresponding training loss generally decreases and shows a downward 
trend. This validates that our training procedure is effective. The DCML 
model tries to converge to an optimal value. Notably, compared with the 

Table 3 
Five-fold cross-validation. Avg means average value. Std means Standard Deviation.   

1st fold 2nd fold 3rd fold 4th fold 5th fold Avg Std 

Accuracy  0.9849  0.9693  0.9880  0.9841  0.9913  0.9835  0.0084 
F1  0.9794  0.9386  0.9842  0.9785  0.9879  0.9737  0.0200 
Sensitivity  0.9822  0.9346  0.9876  0.9764  0.9893  0.9740  0.0226 
Precision  0.9833  0.9509  0.9879  0.9838  0.9891  0.9790  0.0159 
AUC  0.9819  0.9588  0.9873  0.9757  0.9893  0.9786  0.0123  

Table 4 
Real-time efficiency. The best value on each dataset is shown as 5.21.  

Dataset Model Real-Time Efficiency (e-4)/s ↓ 

COVID-CT SeR50  6.86 
SeR101  5.22 
SeR50 (DML)  5.52 
SeR101 (DML)  5.22 
DCML  5.21 

SARS-Cov-2 SeR50  2.55 
SeR101  3.53 
SeR50 (DML)  2.03 
SeR101 (DML)  1.98 
DCML  1.93 

COVID-19_Radiography_Dataset SeR50  6.37 
SeR101  6.29 
SeR50 (DML)  5.79 
SeR101 (DML)  5.50 
DCML  4.98  
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traditional DML model, our model not only converges quickly but also 
converges to a relatively better value on each dataset. Our model is 
effective for COVID-19 image recognition. Moreover, owing to more 
high-quality training data generated by FAA, smoother curves of 
training and test can be observed on the COVID-19_Radiography_Dataset 
dataset. In addition, the testing loss is relatively stable and very close to 
the corresponding training loss, especially for COVID- 
19_Radiography_Dataset. This indicates that on the one hand, our 
model is not overfitting owing to the application of the FAA data 
augmentation method and sufficient knowledge mined among two 
heterogeneous networks. On the other hand, owing to the combination 
of three convincing losses, robust but effective features are extracted to 
better characterize CT or CXR images. Moreover, large loss fluctuations 
are observed on the more challenging COVID-CT dataset because this 
dataset contains relatively few image samples. This also demonstrates 
recognition challenge remains on this dataset (you can also refer to 
Table 2). 

As shown in Fig. 5 (d) ~ (f), with the epoch growing, the corre-
sponding training and test accuracies show an upward trend. It is worth 
noting that our model converges quickly than a single model. We guess 
our DCML model takes full advantage of every single network. This 
further validates the effectiveness of the proposed DCML model from 
another perspective. Our model gets sufficient training and is not 

overfitting. More importantly, On the COVID-CT dataset, we obtained 
the best test accuracy at the 35th epoch. However, The DML model 
needs more training steps to get the best optimal value (the 44th epoch). 
On the SARS-Cov-2 dataset, we obtained the best test accuracy at the 5th 
epoch (DML needs 44 epochs). And the performance gap between the 
test and training curves is more evident on the COVID-CT dataset. On the 
COVID-19_Radiography_Dataset dataset, we got the best test accuracy at 
the 4th epoch (DML requires 45 epochs). Hence, as analyzed above, the 
corresponding training of the COVID-CT dataset is still a large challenge. 
In summary, the DCML model gets sufficient training. And it is robust 
and effective for COVID-19 image recognition. 

5.6. Comparisons with baselines using FAA 

In order to evaluate the effect of the data augmentation method on 
baselines, we chose four models, including ResNet18, COVIDNet-Small 
[33], COVIDNet-Large [33], and WildCat [66], to complete recogni-
tion experiments on the COVID-19_Radiography_Dataset dataset. All the 
accuracies are listed in Table 5. 

It can be seen from Table 5 that each baseline has been improved by 
using FAA. This also validates that FAA is actually an effective data 
augmentation method. However, the DCML model outperforms other 
baselines with or without FAA. 

Fig. 5. Real-time running curves.  
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5.7. Comparison with DML 

In this section, we compare the DCML model (Net I is SeR50 and Net 
II is SeR101) with the traditional DML model (each network including 
Net I and Net II was trained under the DML framework) using more 
metrics on the COVID-CT, COVID-19_Radiography_Dataset, and SARS- 
Cov-2 dataset. Three key evaluation metrics, including Accuracy, F1, 
and AUC, are chosen to complete the overall performance comparisons 
more comprehensively. All the results are illustrated in Fig. 6. 

As shown in Fig. 6, the DCML model outperforms the traditional DML 
model in any evaluation metric. Although the DML model employs 
lightweight networks to complete training, three key factors were not 
considered in this model. Unlike the traditional DML model, we absor-
bed both adaptive model fusion strategy and a contrastive loss into 
DCML, which plays a very important role in COVID-19 recognition 
(Please refer to the ablation analysis section for the details of their 
contributions). The first factor is the lack of high-quality images. 
Contrarily, our DCML model uses the FAA augmentation method to 
alleviate this issue. The second factor is the ignorance of the implicit 
relationship between positive and negative samples. In contrast, the 
DCML model introduces the well-known contrastive learning idea, 
which can distinguish positive and negative samples from the 

perspective of contrastive learning. This can decrease the distance of the 
samples from the same category and increase the distance of the samples 
from different categories, making the corresponding classification 
margin more robust and effective than before. The last factor is the lack 
of adaptive model fusion. The two single networks in the DCML 
framework contain sufficient but complementary dark knowledge for 
effective COVID-19 recognition. We proposed the adaptive model fusion 
strategy to fully mine these complementary correlations among het-
erogeneous layers, which mimics the centralized decision-making pro-
cess of these pathologists (or radiologists) as much as possible. The 
adaptive model fusion method further uses the complementary corre-
lations among the heterogeneous layers to train an effective and robust 
COVID-19 image classifier. More importantly, this can further boost the 
final classification performance. 

Summarily, the DCML model derives from the DML framework. 
However, owing to absorbing several new characteristics, DCML beats 
DML on each COVID-19 image dataset. This validates that each modi-
fication of the DML model is effective and robust. 

5.8. Ablation analysis 

The DCML model consists of the single network (Net I is SeR50 and 
Net II is SeR101), basic DML framework, FAA method, proposed adap-
tive model fusion strategy, and the proposed contrastive loss. To eval-
uate the real contribution of each component of the DCML model more 
objectively, a detailed ablation analysis experiment should be per-
formed carefully. We used three key metrics, including Accuracy, F1, 
and AUC, to complete our ablation analysis experiments on the COVID- 
CT, COVID-19_Radiography_Dataset, and SARS-Cov-2 datasets. Here, 
“Evaluate DML (Net I)” intends to evaluate the actual contribution of the 
DML framework from the perspective of Net I (SeR50). “Evaluate DML 
(Net II)” intends to evaluate the actual contribution of the DML frame-
work from the perspective of Net II (SeR101). “Evaluate MF” tries to 
evaluate the real contribution of the proposed adaptive model fusion 
module. “Evaluate CL” intends to evaluate the actual contribution of the 
proposed contrastive loss. “Evaluate FAA” tries to evaluate the actual 
contribution of the FAA data augmentation method. All the ablation 

Table 5 
Comparisons with baselines. The best value of each column is 
shown as 0.9870. Here, “w” means with FAA whereas “w/o” 
means without FAA.  

Model Accuracy 

ResNet18 (w/o FAA)  0.9000 
ResNet18 (w FAA)  0.9300 
COVIDNet-Small (w/o FAA)  0.9000 
COVIDNet-Small (w FAA)  0.9200 
COVIDNet-Large (w/o FAA)  0.9400 
COVIDNet-Large (w FAA)  0.9600 
WildCat (w/o FAA)  0.9032 
WildCat (w FAA)  0.9174 
DCML (w/o FAA)  0.9826 
DCML (w FAA)  0.9870  

Fig. 6. Comparisons with the conventional DML model.  
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analysis results are shown in Fig. 7. 
As shown in Fig. 7, adding the DML framework leads to the largest 

performance improvement on each dataset. It is the most basic module 
for the DCML model. Second, adding the proposed adaptive model 
fusion module leads to a significant performance improvement on each 
dataset. This module adaptively fuses two heterogeneous feature maps 
extracted from the two basic networks, which mimics the centralized 
decision-making process of these pathologists (or radiologists) as much 
as possible. Certainly, mutual learning and contrastive learning all build 
very firm foundation for the proposed model fusion strategy. Different 
modules excite each other. This is an interesting issue. Third, adding the 
FAA strategy brings a significant improvement to the SARS-Cov-2 
dataset. Contrarily, owing to too few original samples (please refer to 
Table 1), the corresponding performance improvement on the COVID- 
CT dataset is not evident. Hence, robust but effective feature learning 
(or feature fusion strategy) is more important for this dataset. Another 

sample refinement method [67] may address this issue well. Fourth, 
using the contrastive loss only brings evident performance improve-
ments on the COVID-19_Radiography_Dataset datasets. This indicates 
that the more image samples, the more contrastive learning strategy is 
needed. In the future, we plan to apply independent contrastive learning 
[68] to complete COVID-19 recognition. This loss can vary the semantic 
distance between different samples. 

As an important conclusion of the paper, the descend order of real 
contribution of the COVID-CT dataset is “DML > MF > CL > FAA” while 
the corresponding contribution order of the SARS-Cov-2 dataset is 
“DML > FAA > MF > CL”. The corresponding contribution order of 
COVID-19_Radiography_Dataset is “DML > MF > CL > FAA”. Hence, 
different COVID image datasets need diverse improvement strategies. In 
general, the basic DML framework and adaptive feature fusion module 
play a relatively important role in the DCML model. But other necessary 
modifications, such as data augmentation and contrastive learning, can 
also boost the final recognition performance. 

In a word, the DCML model makes full use of each component to 
train a powerful COVID-19 image classifier with better generalization 
ability. Certainly, some modules need to be further improved for more 
effective recognition. 

6. Conclusion 

In this article, we propose a novel but effective and efficient DCML 
model for COVID-19 image recognition. We first used the well-known 
FAA method to enrich the original datasets. High-quality image sam-
ples are obtained in turn, which lays a firm data foundation for the 
subsequent model training. Then, we absorbed the popular contrastive 
learning idea into the conventional DML framework. We want to break 
the isolation of heterogeneous neural networks and provide sufficient 
complementary correlations (or dark knowledge) for adaptive model 
fusion. Meanwhile, we intend to mine certain contrastive knowledge to 
learn more discriminative image features for effective and robust 
COVID-19 recognition. Finally, we proposed the adaptive model fusion 
module, which uses the complementary correlations between multiple 
heterogeneous networks to train a more powerful classifier. Experi-
mental results on three public datasets firmly demonstrate that DCML is 
a general and effective model which outperforms other state-of-the-art 
baseline methods. And it is also a robust model. Moreover, each mod-
ule of the DCML model contributes to improving the corresponding 
COVID-19 recognition performance. Different modules excite each other 
and all the modules form a kind of joint force to promote the final 
recognition performance. Certainly, different contribution ranks were 
obtained on different datasets. Moreover, DCML tries to imitate practical 
diagnosis scenarios as much as possible, which helps narrow the gap 
between theoretical research and clinical application. 

Although DCML has achieved satisfactory performance on three 
publicly available datasets, the limitations of the DCML model should be 
explained objectively. The scale of these three datasets is relatively 
small, so the trained recognition model may not generalize to biopsy 
images which have very large scale. Additionally, the COVID-19 dataset 
is still scarce, and different datasets are heterogeneous. Therefore, how 
to simultaneously reduce the impact of heterogeneity among them has 
become an important issue. 

In the future, we plan to combine the state-of-the-art image gener-
ation method to generate more realistic images of lungs infected by 
COVID-19. We hope this can further alleviate the issue of the lack of 
high-quality CT images. We also intend to use state-of-the-art image 
segmentation methods, such as UNet [69], to locate the key lesions in 
COVID-19 CT images, which can bring more interpretable results. 
Finally, a recent popular transformer model like ViT [70] is another 
feasible and interesting research route. 

Fig. 7. Ablation analysis on each dataset.  
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