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Unlocking HDR-mediated 
nucleotide editing by identifying 
high-efficiency target sites using 
machine learning
Aidan R. O’Brien1,2, Laurence O. W. Wilson1, Gaetan Burgio   2 & Denis C. Bauer1

Editing individual nucleotides is a crucial component for validating genomic disease association. It 
is currently hampered by CRISPR-Cas-mediated “base editing” being limited to certain nucleotide 
changes, and only achievable within a small window around CRISPR-Cas target sites. The more versatile 
alternative, HDR (homology directed repair), has a 3-fold lower efficiency with known optimization 
factors being largely immutable in experiments. Here, we investigated the variable efficiency-governing 
factors on a novel mouse dataset using machine learning. We found the sequence composition of the 
single-stranded oligodeoxynucleotide (ssODN), i.e. the repair template, to be a governing factor. 
Furthermore, different regions of the ssODN have variable influence, which reflects the underlying 
mechanism of the repair process. Our model improves HDR efficiency by 83% compared to traditionally 
chosen targets. Using our findings, we developed CUNE (Computational Universal Nucleotide Editor), 
which enables users to identify and design the optimal targeting strategy using traditional base editing 
or – for-the-first-time – HDR-mediated nucleotide changes.

Precision medicine1 has greatly benefited from advancements in genomic technologies, which enable the iden-
tification of potentially disease-causing genetic variants for cancer, neurological or immunological disorders2–4. 
While genome-wide association studies (GWAS) identify common markers or implicate haplotypes for complex 
traits, high throughput sequencing enables pinpointing of the exact base-changes that may drive these traits5. 
However, the function of many of these detected variants are unknown, and with current functional assays 
being costly and time-consuming, precision medicine is bottlenecked by this step. The CRISPR-Cas (Clustered 
Regularly Interspaced Short Palindromic Repeats) system, a recently developed versatile gene-editing technol-
ogy, allows researchers to modify the DNA or RNA of living cells more easily, and hence promises to accelerate 
knowledge-gain from functional studies.

One of the most efficient methods for modifying single nucleotides using the CRISPR-Cas system is “base 
editing”. Base editing requires a catalytically inactive Cas9 or a Cas9 nickase mutant. When fused to a cyti-
dine (C) deaminase or adenosine (A) deaminase enzyme, this can convert C⋅G to T⋅A, or A⋅T to G⋅C, respec-
tively6,7. Different groups have recently demonstrated CRISPR base editing to achieve efficiencies of 44% to 100% 
(median = 82%) in mice, rabbits, rats and human embryos8–11. The efficiency depends on factors including the 
surrounding sequence composition, and the position of the point mutation relative to the protospacer adjacent 
motif (PAM) at the target site. However, base editing is only efficient within a tight parameter space, e.g. only ~5 
bases at each CRISPR-Cas binding site can be targeted with high efficiency12. While work is underway to extend 
the “editing window”13, this can result in additional problems. For example, larger editing windows can result in 
more proximal off-targets. That is, alongside the intended base being changed, all (or some) nearby bases of the 
same letter within the editing window are changed. The occurrence of proximal off-targets and the restricted 
range of changes (C → T, G → A, A → G, T → C) limits the application of base editing substantially.

A more-versatile approach to inducing point mutations is via the homology directed repair (HDR) path-
way. The HDR pathway is one of two main DNA repair pathways present in organisms from prokaryotes to 
eukaryotes. Generally, HDR accurately repairs Cas9-induced double strand breaks (DSBs) using a homologous 
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DNA template14,15, however, including a mutation in a synthetic DNA template enables HDR to introduce precise 
changes into the target.

However, compared to base-editing, inducing changes with HDR can be inefficient. Firstly, HDR is in direct 
competition with the error-prone non-homologous end joining (NHEJ) pathway15,16. But unlike NHEJ, which 
is active throughout the cell cycle, HDR is restricted to the late G2 and S phase of the cell cycle17. HDR also 
competes with the microhomology-mediated end joining (MMEJ) pathway, which is active in the S (and early 
M) phase18. Furthermore, HDR can be negatively influenced by somatic or sporadic mutation in genes such as 
RAD51, BRCA1 or BRCA219,20. This can lead to challenges not only when working on an organism/cell-line with 
a pre-existing mutation in these genes, but also when targeting these genes with CRISPR-Cas.

Despite these flaws, HDR is currently the most versatile editing solution as it allows researchers to make nearly 
any change, from single-nucleotide changes, to insertions of thousands of bases21. Therefore, the ability to opti-
mize target site choice, in regards to HDR efficiency, can enable researchers to more easily induce a wide range of 
changes. But although computational tools exist for predicting the efficiency of CRISPR-Cas22–25, they collectively 
ignore the potential repair outcome. This makes them unsuitable for identifying optimal targets when the desired 
outcome is a specific change. The absence of tools is likely because factors influencing the repair pathway choice 
and hence the potential for successfully introducing a point mutation remain unknown.

Here, we identified factors that influence Cas9-mediated HDR efficiency using machine learning on  
a novel fit-for-purpose dataset. From these insights, we built a computational tool that allows researchers to  
introduce a wider range of mutations than base editing, by harnessing the versatility of HDR. CUNE, 
Computational Universal Nucleotide Editor, is available as part of our genome editing toolkit, the GT-Scan Suite, at  
https://gt-scan.csiro.au/cune.

Results
A dataset of genome-wide HDR efficiencies.  We curated data from a series of experiments aiming to 
change a specific nucleotide in mice using Cas9-mediated HDR. To achieve this, we used the CRISPR-Cas9 sys-
tem to induce a DNA double-strand break (DSB) at a chosen position near the desired point mutation. We used a 
single-stranded oligodeoxynucleotide sequence (ssODN) template (a point mutation flanked by homology arms, 
homologous to the PAM strand of the target region) to define the mutation.

The dataset, containing 30 samples (unique HDR targets), is curated from 126 experiments targeting a total 
of 744 mice (Table 1). On average, each sample includes 25 mice. The 30 samples cover 26 genes and 12 chromo-
somes. Each sample has several independent variables (guide sequence, ssODN sequence and distance of point 
mutation from PAM) and dependent variables (HDR efficiency, NHEJ efficiency).

We calculated the efficiency values for each of the 30 samples from the 25 mice that comprise each sample. We 
classified mice carrying the desired mutation as having been repaired via HDR, and mice carrying insertions or 
deletions (indels) as having been repaired by the error-prone NHEJ. We base these classifications on the knowl-
edge that NHEJ generates indels at DSBs, whereas HDR repairs DSBs according to a template (in this case the 
ssODN)26. The efficiency value for each sample is the number of mice with HDR repairs divided by the number 
of mice. So for a particular sample, if 5 out of 25 mice were repaired with HDR, the HDR efficiency would be 0.2.

The distribution of efficiencies is shown in Fig. 1, clearly demonstrating the 3-fold lower efficiency for HDR 
(median = 0.199) compared to NHEJ (median = 0.606) when choosing targets traditionally. These values are 
comparable to previous work27–29. We label samples with an HDR efficiency greater than the HDR median (0.199) 
as high-efficiency, and those less than, as low-efficiency.

Guide nucleotide composition informs Cas9-mediated HDR insertion rate.  Using our dataset, 
we trained models to predict CRISPR-Cas9-mediated HDR efficiency for new target sites. We took inspiration 
from computational methods for predicting generic CRISPR-Cas9 activity, which make predominant use of 
the nucleotide composition of the gRNA30. While HDR requires control over the repair-pathway, it may still 

General

Mice 744

Samples (unique ssODN/gRNA combinations) 30

Mice per sample (average) 24.8

Genes 26

Chromosomes 12

ssODN

Length (average) 167.07

3′ arm length (average) 81.50

5′ arm length (average) 84.57

GC content (average) 52.75%

Efficiency
HDR (median) 0.199

NHEJ (median) 0.606

Table 1.  Our dataset includes results from HDR experiments in 744 embryos. This includes 30 ssODN/gRNA 
combinations (with approximately 25 embryos each). The median HDR and NHEJ efficiency for each ssODN/
gRNA combination is 0.199 and 0.606, respectively. The ssODNs have an average length of 167 (with the arm 
length between 81 and 85 on average).
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be predominantly driven by Cas9 activity. We therefore investigated whether the nucleotide composition of the 
guide is sufficient for predicting knock-in efficiency through HDR.

We used the Random Forest machine learning algorithm to model the data, and the following results are the 
average across five cross-validated folds. We trained our first model using the guide nucleotide and dinucleo-
tide composition (G1), and subsequent models on other sequence-based features such as repeats or the type of 
nucleotides present (G2-G4). The nucleotide composition is the count of each nucleotide (i.e. Ts, Gs, etc.) in the 
sequence, and the dinucleotide composition is the count of adjacent nucleotides (i.e. TTs, GTs, etc.). We recorded 
metrics including the out-of-bag (OOB) error, area under the receiver operating characteristic (ROC) curve, pre-
cision, recall and the number of samples classified correctly. Out of these four models, the simplest model (G1) 
of the (di)nucleotide compositions produced the lowest error (OOB = 0.25), whereas including the pyrimidine/
purine composition (G4) resulted in the poorest model (OOB = 0.33) (Table 2).

We also built a model on positional nucleotide information (G5). In contrast to G1, which models the 
position-independent nucleotide count (i.e. how many Cs are in the sequence), G5 models the presence of each 
nucleotide at each position (i.e. is there a C present at position 1, position 2, etc.). This position-dependent model 
performs the poorest of all five, with an OOB of 0.617. The poor performance is likely due to the large number 
of features (337), relative to the sample size of 30. An increase in this ratio generally correlates with the sparsity 
of the dataset, i.e. the number of zeros. This phenomenon is known as the “curse of dimensionality” and makes it 
increasingly difficult for machine learning algorithms to find signal in the data31.

Mutation-to-cut distance does not improve model accuracy.  With evidence that the distance between  
the cleavage-site and the mutation has an inverse relationship to HDR efficiency32,33, we retrained the above mod-
els with distance as an input feature. Supporting previous research, we observed an inverse relationship between 
distance and HDR efficiency (Fig. 2), albeit with a low coefficient of determination (R² = 0.0926). However, we 
did not observe an improvement in prediction accuracy of the trained model.

The dataset was designed to capture a wide range of factors, such as gene locus or genomic location influenc-
ing HDR efficiency34. Relative to those other factors, editing distance seems to be a weak modulator of efficiency 
as editing may inherently fail at inefficient loci, regardless of distance.

The 3′ homology arm informs HDR activity.  Although we demonstrated that the guide sequence influ-
ences Cas9-mediated HDR efficiency, it is likely not influencing HDR directly. The observed higher HDR activity 
is likely an indirect result of higher DSB frequency. We therefore investigated whether modeling more-direct 
properties of HDR can improve on our previous best model (G1).
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Figure 1.  Distributions of HDR and NHEJ efficiencies across the 30 samples. The median HDR efficiency 
(0.199) is 3-folds lower than the median NHEJ efficiency (0.606). The HDR efficiencies have a higher 
interquartile range (0.466) than NHEJ (0.334), indicating a larger spread in our HDR efficiencies compared to 
NHEJ. Despite the larger spread, Q3 of HDR is less than Q1 of NHEJ, indicating the relative inefficiency of HDR 
versus NHEJ.

Model Features OOB error ROC Precision Recall Correct

G1 20 0.250 0.84 0.833 0.733 23/30

G2 25 0.258 0.80 0.767 0.6 20/30

G3 29 0.275 0.78 0.787 0.733 22/30

G4 33 0.333 0.75 0.717 0.667 20/30

G5 337 0.617 0.38 0.347 0.4 11/30

Table 2.  Metrics from five models trained on different decompositions of the guide sequence. Lower is 
better for OOB error, whereas higher is better for the other values. G1: guide nucleotide composition, G2: 
G1 + generic repeats, G3: G2 + guide AT/CG composition. G4: G3 + guide pyrimidine/purine composition, G5: 
local guide nucleotides. Metrics are averaged over the five cross-validated folds.
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Due to the key role of the ssODN in inducing the desired point mutation, we hypothesized that a model 
trained on the ssODN would be able to accurately differentiate between high- and low-efficiency targets. Models 
trained on the ssODN capture a larger number of nucleotides than the gRNA models (~167 vs 23), see Fig. 3a. 
However, it appears that this extra information does not contribute to the prediction power, as the ssODN model 
(O1) performs poorly, with an OOB error of 0.6 (vs. 0.25).

Other groups have investigated the influence of the symmetry and length of ssODN arms on HDR activity, 
drawing the conclusion that asymmetric ssODNs can improve HDR efficiency35,36. The consensus is that a shorter 
3′ arm with a longer 5′ arm is the optimal design for efficient HDR, with one theory being that the shorter 3′ 
arm allows the ssODN to anneal to the DNA target without requiring further processing or strand invasion36. 
Expanding on this, we investigated whether the correlation between HDR efficiency and the ssODN nucleotide 
composition differs for each arm. We investigated the information content for each arm separately by modeling 
each arm separately. As presented in Table 3, the 3′ arm (homologous to the PAM/non-target strand) does inform 
HDR efficiency, with an OOB error of 0.275, while the 5′ arm performs poorly, with an OOB error of 0.792.

With a clear difference in predictive power between the two regions of the ssODN (O2 vs O3), we investigated 
this difference further by modeling different regions of each arm. Each region starts at the middle of the ssODN, 
next to the point mutation, and extends outward toward the end of the respective arm, one nucleotide at a time 
(Fig. 3a).

Figure 3b shows that models built on longer regions of the 3′ arm have a better predictive power (60 nucleo-
tides OOB = 0.272) than models built on shorter regions of the 3′ arm (5 nucleotides OOB = 0.608). We observed 
the opposite trend for the 5′ arm, where model performance worsens with length and the OOB error increases 
from 0.55 at 5 bases to 0.792 at 60 bases (Fig. 3b). This indicates that the performance improvement is not due to 
giving additional degrees of freedom to the machine learning model. Adding to the already-established influence 
of ssODN length35,36, we showed that the nucleotide composition of the 3′ arm influences HDR efficiency with 
symmetric ssODNs.

Combining the guide and ssODN models.  Combining information about the DSB frequency (guide) 
with information about HDR influencers (ssODN), we built a final model incorporating guide and 3′ ssODN 
information. We henceforth refer to this model as our mixed model, or M1, see Table 4. M1 successfully identifies 
the largest number of high-efficiency HDR targets across our cross-validation folds (25 vs 23 (G1) and 22 (O3)). 
It has the highest recall rate although we observed the same OOB error compared to G1 (0.25).

Validation.  Due to the traditionally low efficiency of HDR-mediated nucleotide edits compared to base edit-
ing, it has rarely been used in the literature so far, rendering us unable to find an independent dataset for vali-
dation. However, since we continued collecting experimental data that were not included in our test/training 
dataset, we used these data points for an independent holdout set for validation. We used model M1 to classify 
the targets in the holdout set and compared the predictions to the truth labels. We observed four out of six low 
efficiency targets and seven out of nine high-efficiency to be classified correctly (Table 5). This quantifies the 
accuracy of M1 as 0.733 on unseen data.

To quantify the theoretical improvement of choosing HDR targets using our prediction model, as opposed 
to naively picking targets, we isolated the high efficiency targets from our dataset. This mimics the process a 
researcher would adopt when using M1 to select optimal targets. We then calculated the average efficiency for 
these targets and compared this value to the average efficiency of all targets in our dataset, mimicking the process 
of naively picking sites. This comparison results in an 83% improvement in HDR efficiency for targets chosen 
using M1 versus targets chosen randomly (with an average efficiency of 0.528 compared to 0.288, respectively).

Web service for predicting HDR efficiency.  We hereby make our predictive model M1 available as a 
web service: Computational Universal Nucleotide Editor (CUNE). CUNE identifies the optimal way to insert a 
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Figure 2.  HDR efficiencies for samples (blue circles) plotted against the distance of the mutation from the cut 
site. Positive domain values are on the 5′ side of the cut on the PAM strand, and negative values on the 3′ side. 
The average HDR efficiency is highest at distances around 0 bases, and decreases as the distance increases.
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specific point mutation at a genomic locus. With the efficiency of base editing on average higher than HDR, the 
service identifies which, if any, base editing system is applicable, using pre-established rules6,12,37–39. CUNE also 
predicts the HDR efficiency for gRNAs and ssODNs around the specified locus.

OOB errors for the different ssODN components
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Figure 3.  (a) The upper bars represent a single ssODN. The blue (5′) and orange (3′) bars represent the regions 
of the ssODN that we include in each model. The length of this region is displayed on the colored bar. Each region 
begins at the center of the ssODN and extends outwards. It should be noted that we model regions in increments 
of 1 base, but only factors of 10 are displayed here for clarity. The lower bar represents the average alignment of the 
ssODN in regards to the CRISPR target. (b) The OOB error for Random Forest models built on the above regions 
of the ssODN. Regions start from the center and extend outward. Each point represents the error for a model built 
on one of these regions. The models improve (lower error) as more bases from the 3′ ssODN arm are included. In 
contrast, the models worsen as more bases from the 5′ ssODN arm are included. The maximum lengths (60nt for the 
5′ arm and 65nt for the 3′ arm), are dictated by the smallest respective arm in the dataset. The right plot (sharing the 
same range) displays the distribution of efficiencies across every ssODN model, comparing the 5′ arm to the 3′ arm.

Model Region OOB error ROC Precision Recall Correct

O1 Full 0.6 0.54 0.413 0.533 13/30

O2 3′ 0.275 0.91 0.803 0.733 22/30

O3 5′ 0.792 0.09 0.25 0.267 8/30

Table 3.  Metrics from three Random Forest models trained on the nucleotide composition of the ssODN. O1 is 
trained the full ssODN. O2 is trained on the 3′ arm, and O3 is trained on the 5′ arm (all homologous to the PAM 
strand).

Model Region OOB error ROC Precision Recall Correct

M1 3′ Oligo 
& Guide 0.250 0.91 0.883 0.8 25/30

Table 4.  Metrics from the mixed model. This Random Forest model includes the 5′ oligo arm (O3) and the 
guide (G1). CUNE implements M1 to predict HDR efficiency of CRISPR-Cas targets. These results are the 
average values from 5-fold cross validation.
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The base editing component of CUNE is equivalent to BE-Designer40, in that both tools identify guides that 
allow editing of a target using base editing. One difference is that CUNE allows the user to specify the target locus 
by genomic region, whereas BE-Designer requires the user to enter a target nucleotide sequence. Secondly, while 
BE-Designer covers a range of PAMs, CUNE specializes in the canonical SpCas9 PAM (NGG), as the most effi-
cient SpCas9 PAM41,42. Benchling is another service that provides support for identifying base editing targets43. 
Like BE-Designer, Benchling allows the user to search within a region. But rather than scoring targets based on 
whether the mutation lies within the editing window, Benchling returns an efficiency score. However, Benchling 
only supports the classical base editor from Komor et al. (2016) and not more-recent base editors like BE444.

In case base editing is not possible, our webpage provides the user with recommendations for high efficiency 
target sites for inserting point mutations with HDR. These recommendations are ranked by their predicted effi-
ciency, according to our Random Forest model.

Discussion
We set out to understand the factors that govern HDR-mediated point mutations. We aimed to create a computa-
tional tool that makes efficiency-improving recommendations for variables that are easy for the researcher to vary, 
such as ssODN design and guide. This is especially relevant, as the currently known factors that govern efficiency, 
such as cell type and locus34, are usually fixed parameters for an experiment.

We trained models on different features to investigate how such features influence the HDR efficiency. We 
chose to use the Random Forest algorithm as it enables us to quantify the contribution of each input feature (var-
iable importance), as well as allowing us to model feature interactions, which provides insights into mechanisms. 
Random Forests are also resilient to overfitting45, which was crucial for our training scenarios that contained 
more features than samples (e.g. G5).

We hypothesized that the ssODN nucleotide composition would be an influencing factor on HDR effi-
ciency, due to Watson-Crick base pairing between the ssODN and the DNA target being essential for inducing 
HDR-mediated point mutations. While the nucleotide content of the ssODN 5′ arm was unimportant (O3), the 
content of the 3′ arm proved to be a major contributor to prediction accuracy (O2).

The importance of the 3′ region is in agreement with the mechanism of HDR. For a cell to proceed with HDR, 
the 5′ strands at the DSB are degraded46. This process, known as 5′ → 3′ resection, results in 3′ overhangs at the 
DSB (Fig. 4). Therefore, the 3′ region of the ssODN, being complementary with one of the newly-formed 3′ 
overhangs, is the first region of the ssODN to interact with and bind to the target. We propose that if this occurs, 
HDR will continue regardless of the 5′ sequence, resulting in the poor predictive performance of our 5′ ssODN 
models (Fig. 3).

Liang et al. observed the optimal length for a 3′ arm to be 30–35 bases, which they base on the 5′ → 3′ resection 
at the DNA target typically creating overhangs of 30–40 bases36. They suggest that arms extending beyond this 
region are accommodated by further target resecting, 3′ ssODN trimming or strand invasion of the target, while 
shorter arms can anneal directly to the target. We hypothesized that the efficiency of this process is influenced 
by nucleotide composition, which we could investigate as our ssODN arms extend beyond the resected region 
(Fig. 4). In support of the optimal length, we observed our prediction accuracy to temporarily plateau at 20 bases, 
before continuing to improve at 45 bases, all the way to 60 bases (Fig. 3b orange). This indicates HDR-efficiency is 
especially sensitive to the nucleotide composition of the region beyond the resected DNA (Fig. 4).

We hypothesized that the distance from the mutation to the PAM would contribute to our model’s accuracy, 
but this proved not to be the case in our dataset. While we observed the expected inverse correlation between 
distance and HDR efficiency, reported in previous literature33,36,47, the contribution to the computational model 
was low. It is likely that this is because of the unbalanced nature of this feature in our dataset. For example, Liang 

Predicted: Low Predicted: High

Actual: Low 4 2

Actual: High 2 7

Table 5.  A confusion matrix displaying the classification results of model M1 on our holdout set. Out of the 15 
targets, M1 classified 11 correctly (7 true positives and 4 true negatives). The prediction accuracy is 0.733.

Figure 4.  An ssODN (blue/orange) annealed to 5′-3′ resected DNA (PAM strand). ssODNs with regions 
extending beyond the resected DNA may require further processing or strand-invasion of the DNA target. The 
sequence composition of this region (orange) has a strong impact on HDR-efficiency.
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et al. observed HDR rates of below 5% at distances over 8 bases away from the PAM sequence and rates of 10–30% 
at, and under, 8 bases away. If we take a distance of 8 bases as the high/low threshold, a balanced dataset would 
require 50% of the samples to be up to (and including) 8 bases away, with 50% of the samples being over 8 bases 
away. However, only 6 out of 30 (20%) of our samples are over 8 bases away (Fig. 2), limiting the impact of this fea-
ture in our model. This is a form of bias, as we selected gRNA targets based on the proximity of their PAM to the 
desired mutation. Secondly, especially at short distances, the correlation between the distance and HDR can be 
quite variable. If we inspect half of our samples, those with the mutation nearest the PAM, we see an average HDR 
efficiency of 0.33, compared to the overall HDR efficiency of 0.199. Although this is as expected, demonstrating a 
higher HDR efficiency for samples with the mutation nearer the PAM, these samples have an interquartile range 
of 0.478. This is nearly half the range of HDR efficiencies observed in the dataset (0 to 1), indicating the high var-
iability, and therefore poor predictive power, of distance.

Our work has resulted in the first computational method for designing efficient experiments for inducing 
point mutations using base editing and HDR (Supp. Fig. 1). We have provided this as a web service, which will 
design ssODNs to induce user-specified point mutations. In addition, our web service will also identify base edit-
ing targets using pre-existing rules.

Methods and Materials
Experiments.  Ethical statement.  All experiments were approved from the Animal Ethics Committee from 
the Australian National University according to code of practice of the National Health and Medical Research 
Council (NHMRC) in Australia (AEEC 2014/58 and A2017/44).

SgRNA single stranded oligonucleotide design and cloning.  Mouse reference genome sequences (GRCm38/mm10 
scaffold) were obtained from Ensembl (ensembl.org) or UCSC genome browser (genome.ucsc.edu). SgRNAs 
were designed to be close to the desired point mutation, with each sgRNA being evaluated for potential off-target 
effects using online tools such as CRISPOR24 or CCTop25. SgRNA were designed as a gBlock from IDT (Integrated 
DNA Technologies, Coralville, IA) encoding a U6 promoter, where the SgRNA scaffold (crRNA and tracrRNA) is 
the following sequence adapted from Mali et al.48:

5′-TGTACAAAAAAGCAGGCTTTAAAGGAACCAATTCAGTCGACTGGATCCGGTACCAAGGTCGGGCAGGA 
AGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTAG 
AATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTA 
GTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTC 
TTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAA 
ATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTCTA 
GACCCAGCTTTCTTGTACAAAGTTGGCATTA-3′.

The 450 bp gBlock was TA cloned into a pCR2.1-TOPO vector (Thermofisher Scientific, Waltham, MA, USA) 
according to the manufacturer’s instructions. SgRNAs were also chemically synthesized from IDT (Integrated 
DNA Technologies, Coralville, IA) as a crRNA and tracrRNA and assembled in a ribonucleoprotein complex with 
Cas9 enzyme according to the manufacturer’s instructions. 140 bp Ultramer long Oligonucleotides from IDT, at a 
concentration of 4 nmol, were designed to target the mutation of interest with 70 bp symmetric homology arms. 
Cas9 recombinant protein was purchased from PNA Bio (Newberry Park, CA, USA).

Mouse zygotes microinjection.  C57BL/6Ncrl and Swiss Webster CFW/crl mice were obtained from Charles River 
Laboratories. They were maintained under specific pathogen free conditions under a 12/12-hour light cycle with 
food and water provided ad libitum. Three to five week old C57BL6/Ncrl females were superovulated by 5 µL 
intraperitoneal injection of Pregnant Mare Serum Gonadotropin (Sigma Aldrich, St-Louis, MI, USA) followed 
48 hours later by 5 µL intraperitoneal injection of Human Chorionic Gonadotropin hormone (Sigma Aldrich, 
St-Louis, MI, USA). Superovulated females were mated with 20 week old stud C57BL/6 N males. For microinjec-
tion, 45 to 48 hours following the second hormone injection, zygotes were collected from the oviduct. Pronuclear 
injections were performed under a DMi8 (Leica, Wetzlar, Germany) inverted microscope apparatus associated 
with micromanipulators and an Eppendorf FemtoJet microinjection apparatus (Eppendorf, Hamburg, Germany). 
50 ng/µL of Cas9 protein was complexed with 3 µM of crRNA and tracrRNA or co-injected with 5 ng/µL of sgRNA 
plasmid and then mixed with 50 or 100 ng/µL of single stranded oligonucleotides and suspended in UltraPure 
RNase/DNase-free distilled water (Thermo Fisher Scientific, Waltham, MA, USA) prior to the microinjection. 
Microinjected zygotes were either surgically transferred into the ampulla of CFW/crl pseudo-pregnant females or 
cultured overnight at 37 °C in a 5% CO2 incubator and then surgically transferred at 2-cell stage of development.

Genotyping.  DNA extraction was performed on ear punches from mouse pups over 15 days old, using a crude 
DNA extraction. The ear punches were briefly lysed in Tris-EDTA/Tween lysis buffer (50mMTris HCl, pH 8.0, 
0.125 mM ethylenediaminetetraacetic acid (EDTA), 2% Tween 20) in addition to 1 μL of proteinase K (20 mg/ml 
in 10 mM Tris chlorate, 0.1 mM EDTA pH 8.0) and incubated at 56 °C for an hour. Subsequently, the DNA was 
denatured at 95 °C for 10 minutes. Primers were designed from 600–800 bp to amplify the regions encompassing 
the target sites. PCR was performed using Taq polymerase under standard PCR conditions. The PCR products 
were then purified with ExoSAP-IT (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufactur-
er’s instructions. Sanger sequencing was performed at the ANU Biomolecular Resource Facility. Specificity of the 
primers were tested for by using joint amplification of control mouse DNA and Sanger sequencing.
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Data collation.  For the results of each CRISPR experiment, we manually collated the data into a spreadsheet. 
This results in a file with a row for each experiment, where each column stores a variable. We capture the follow-
ing information:

•	 Guide sequence
•	 ssODN sequence
•	 Observed mutation (arbitrary or point)
•	 Distance of mutation from PAM

Preparing the dataset.  Here we calculated the efficiency of HDR in inducing a desired point mutation. 
Generally, there was one experiment (with multiple attempts) aiming to induce a particular mutation. However, 
some point mutations were the focus of more than one experiment. Therefore, to reduce the potential for “sam-
pling bias”, we merged duplicate experiments into one “sample”. This involved summing up the number of 
attempts, arbitrary mutations and point mutations, for every attempt at a particular mutation, regardless of which 
experiment an attempt was part of.

We calculated the HDR efficiency label for each sample by dividing the number of times we observed the 
desired point mutation for said sample, by the number of attempts to induce a point mutation. Subsequently, we 
discarded any samples where we observed no mutation (neither HDR nor NHEJ), as our primary focus is influ-
encers of HDR efficiency, not CRISPR-Cas cutting efficiency. This resulted in 30 samples. Each sample has a value 
from 0 to 1, where 1 indicates 100% HDR, and 0 indicates 0% HDR. For binary classification (high or low HDR), 
we set a threshold. To result in balanced classes (an equal number of high- and low-efficiency samples), we set the 
threshold to the median HDR efficiency value, 0.199 (Table 1).

We used Python 3.5 with various packages including scikit-learn, Pandas, NumPy and SciPy. Using Pandas, 
we can read the data directly from the Excel file into a DataFrame. Here we encode values as integers for compat-
ibility with the scikit-learn Random Forest library. We perform “one-hot encoding” on the discrete non-binary 
variables. That is, for each unique value in a column, we create new columns where the value is either 1 or 0. 
For example, the column that stores the first nucleotide from the PAM, “N_1”, is transformed to four columns, 
“N_1_A”, “N_1_T”, “N_1_C”, “N_1_G”, where each column represents a specific nucleotide at that position.

Statistical analysis.  The primary metric we use is the out-of-bag (OOB) error. This metric takes advantage 
of one of the properties of the Random Forest algorithm, bootstrap aggregating (bagging). With bagging, each 
tree is trained on only a subset of samples. Therefore, each tree can be tested on the unseen samples to that tree. 
This is repeated for every tree throughout the training process. Finally, the average of the errors for each tree 
results in the OOB.

For further robustness, we partition our dataset using cross-validation49 to evaluate our models. Using 5-fold 
cross validation, we split our dataset into five “folds”. We then train a model on four out of five folds, and test it 
on the fifth, repeated five times. This allows us to evaluate the prediction error with better generalization to novel 
data than a train/test set. We use “StratifiedKFold”50 to create the folds, as it preserves the distribution of positive 
and negative samples.

We visualized the performance of each fold using receiver operating characteristic (ROC) curves (Supp. Figs 
2–6). These plot the true positive rate against the false positive rate. The average area under the ROC curve for 
each model is presented in the corresponding tables.

Scoring the model.  The OOB error is the average of error values across each tree in the Random Forest. 
Because each tree is built using bootstrap aggregating (bagging), different sets of samples remain unseen to each 
tree. Therefore, the prediction error for each tree can be calculated on the unseen samples to that tree. The mean 
of these errors is the OOB error, where 0 represents perfect predictions and 1 represents random chance.

With a lack of HDR data in the literature, we validated the model on a more-recent data, completed after train-
ing our model. This data includes fifteen samples, being generated in the same way as our training samples (from 
experiments aiming to induce point mutations in mice). However, these new samples are the result of experi-
ments targeting different genomic loci to those from our original data. We curated these samples in the same way 
as our original data to generate a dataset of features (guide and oligo nucleotide compositions) and truth labels 
(high or low efficiency). We scored this data using our mixed model (M1) and compared the predictions to the 
truth labels.

Data Availability
Our source code is available in Supplementary Item 1 and at: https://github.com/BauerLab/GT-scan2-Notebooks. 
Due to contractual agreements we cannot make our CRISPR targets public, however, our feature matrix is avail-
able as Supplementary Dataset 1. Our model trained on this data is publicly available in our GitHub repository.
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