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ABSTRACT

Genome-wide pooled shRNA screens enable global
identification of the genes essential for cancer cell
survival and proliferation and provide a ‘“functional
genetic’ map of human cancer to complement
genomic studies. Using a lentiviral shRNA library
targeting approximately 16 000 human genes and a
newly developed scoring approach, we identified
essential gene profiles in more than 70 breast, pan-
creatic and ovarian cancer cell lines. We developed
a web-accessible database system for capturing
information from each step in our standardized
screening pipeline and a gene-centric search tool
for exploring shRNA activities within a given cell
line or across multiple cell lines. The database con-
sists of a laboratory information and management
system for tracking each step of a pooled shRNA
screen as well as a web interface for querying and
visualization of shRNA and gene-level performance
across multiple cancer cell lines. COLT-Cancer
Version 1.0 is currently accessible at http://colt
.ccbr.utoronto.ca/cancer.

BACKGROUND

Over the past decade, gene silencing through RNA inter-
ference (RNAI) technology has emerged as a powerful tool
for deciphering the mechanistic details of biological pro-
cesses in higher eukaryotes. RNAIi was first exploited for
systematic functional studies in Caenorhabditis elegans
and Drosophila melanogaster (1,2), and is now also widely
used for selective suppression of gene expression in mam-
malian cells (3,4). More recently, viral-based pooled
shRNA screening methods have been developed and
applied in functional genetic screens to identify genes
that are essential for cancer cell proliferation with the
goal of identifying therapeutic targets (5-7).

We have developed a standard operating procedure for
carrying out large-scale pooled shRNA screens and are
systematically looking for essential genes using cancer
cell lines from various tumor types including breast,
ovarian and pancreatic (Marcotte et al., submitted for
publication). We are using a pooled subset of the human
TRC collection that includes 78 432 shRINAs targeting ap-
proximately 16 000 human genes (5,8) to develop essential
gene profiles across a large number of cancer cell lines
(R. Marcotte, submitted for publication).

To streamline the process from data generation to
public user access of our cancer cell line screening
results, we developed a web-accessible database system
for processing, analyzing and retrieving data from the
pooled screens. The COLT-Cancer database system is
comprised of: (i) a laboratory information and manage-
ment system (LIMS) for automation of basic microarray
functions such as chip signal extraction, background cor-
rection, normalization and quality metric generation;
(i) an automated routine for generating hairpin-level
and gene-level essentiality scores; and (iii) a web interface
at http://colt.ccbr.utoronto.ca/cancer that enables re-
searchers to query, visualize and compare essential genes
across multiple cancer cell lines.

Many RNAI screens in mammalian cells have been con-
ducted in academic and industry labs and have yielded
novel insight into genes that are essential for cancer cell
proliferation. Some of the resulting data is available to the
research community through a number of collation
efforts, including RNAiIDB (9), GenomeRNAIi (10) and
FLIGHT database (11). These databases support integra-
tive visualization and analysis of RNAi data with other
data such as gene annotations, shRNA sequence annota-
tions and corresponding knockout efficiency and genomic
information. In addition, several RNAi-based tools/data-
bases also focus on providing searchable shRNA and
siRNA constructs, such as RNAi Codex (12), E-RNAIi
(13), the RNAi Consortium (TRC) library database
(http://www.broadinstitute.org/rnai/public/) and  the
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Cancer Genome Anatomy Project (CGAP) shRNA
clone library (http://cgap.nci.nih.gov/RNAi/RNAi2).
The COLT-Cancer was designed with a unique focus to
facilitate functional comparison of essential gene profiles
across a compendium of cancer cell lines and integrate this
information with structural genomic data from large
cancer genome sequencing efforts to uncover vulnerabili-
ties that can be used to develop better prognostics and
therapeutics (Marcotte et al., submitted for publication).

DATABASE CONSTRUCTION AND CONTENT
System architecture

COLT-Cancer is deployed on a back-end DB2 relational
database management system. The DB2 database serves
as central storage for data and images generated continu-
ously from our automated computational pipeline for pro-
cessing and analyzing RNAi pooled screens. As such, it
was designed with the objective of achieving query and
storage efficiency for large quantities of microarray
images, signal intensity measurements, annotations of
genes and shRNA reagents, genomic information, and
other metadata and contains more than 200 relational
tables (database schema available at COLT-Cancer
online documentation). The COLT system is hosted on 2
IBM servers; one that functions as a database server and
the other as a web server to facilitate querying, data down-
loading and data visualization through the COLT-Cancer
websites. The web interfaces of COLT-Cancer were de-
veloped using a combination of HTML, CGI Perl, DB2/
Perl application programming interface, cascading style
sheets and Javascript for easy navigation. Graphical
plots are generated on-the-fly using R plotting functions.

Microarray LIMS system

At the back-end of COLT is a LIMS to support basic
tasks central to our standard operating procedures such
as signal extraction, background correction, normaliza-
tion and quality metric generation (Figure la). The data
extraction and processing pipeline is fully automated, and
is triggered upon receipt of a .CEL file. Raw microarray
data is extracted and background corrected using
Affymetrix Power Tools (APT) v1.12.0 (http://www.
affymetrix.com). There are 33894 features on the Gene
Modulation Array Platform (GMAP) wused for
background correction (8). Replicate GMAP arrays are
normalized using Cyclic Loess based on the ‘MA-plot’
of pairs of arrays and performed via the ‘affy’ R
package (14). In general, the GCbg-correction increases
differentiation between feature signals from the pooled
and background probes, while normalization reduces
variance between replicates (Figure 1b). To allow access
to raw and normalized shRNA, spike-in and control
features on all microarrays for quality control checks
and analyses beyond the database functions, a web inter-
face was developed to provide authenticated access to
internal and external end-users. For published experi-
ments, these are accessible through the ‘COLT LIMS’
link on COLT-Cancer.

Quantifying drop-out rates of shRINA and target genes

To score screening data, shRNA-level shARP (shRNA
Activity Ranking Profile) and gene-level GARP (Gene
Activity Rank Profile) scores were computed across time
points in each experiment. Details of the scoring methods
are described elsewhere (Marcotte et al., submitted for pub-
lication; and in online documentation of website). Simply,
the average of the two lowest shARP scores for a given
gene is used to calculate the GARP score for that gene. The
lower the GARP score for a given cell line, the more es-
sential is the gene in that particular cell line. P-values
are calculated from permutation testing of 1000 random
scores, as a measure of the statistical ‘confidence’ of the
GARP score. The GARP, GARP P-values, and shARP
scores are available for download on COLT-Cancer.

Integration with external data sources

To add contextual information to shRNA screen scoring
results, COLT-Cancer provides specific types of annota-
tions for each gene. These annotations include: cancer-
associated genes, known activity as a House-keeping
(HK) protein, predicted or known localization to the cell
surface, associations with NCI curated pathways and copy
number abberation (CNA) data from a number of breast
and pancreatic tumor samples.

HK genes are vital for maintaining the biological ‘well-
being’ of cells under various conditions, and are therefore
ubiquitously expressed across tissues and cell types and
are evolutionally more conserved (15,16). Previous
studies have shown that HK genes are highly associated
with essentiality, and with somatic cancer and other
diseases (17,18), thus they can be used to benchmark the
essentiality of the gene from our experiments against rele-
vance to HK functions and oncogenesis. The known HK
genes in COLT-Cancer were obtained from Tu ef al. (18).

Not all genes required for survival in cancer cells are
directly associated with oncogenesis. On the other hand,
comprehensive knowledge of gene essentiality may unravel
novel drivers of cell survival. To help dissect known cancer-
associated essential genes from essential genes of unknown
significance, we integrated gene—cancer associations from the
Cancer Gene Consensus (CGC, http://www.sanger.ac.uk/
genetics/CGP; 19). The CGC currently catalogs 291 genes
that show somatic and/or germline mutations in cancer.
Additionally, we integrated curated cancer-associated path-
ways from the Pathway Interaction Database (PID) (20).

Proteins located on the cell surface are of interest for
identifying putative antibody-based tumor targets. Two
‘surfaceome’ data sets—a comprehensive set of 3702
genes predicted from their transmembrane domain and
gene ontology annotations using bioinformatic approaches
(21), and a larger curated set of surfaceome genes (R.J.
Williams and J. Dennis, personal communication). These
data sets are downloaded on regular basis, and reformatted
into the data model, in order to speed up web queries.

CNAs are known to be characteristics of certain
cancers, and may potentially serve as a benchmark for
identifying novel oncogenes from the top-ranked essential
genes in COLT-Cancer. All cell line copy number data
were provided by the Cancer Genome Project group at
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Figure 1. (a) Microarray data extraction and processing pipeline. (b) Distribution of a sample experiment from COLT-Cancer. GCbg-correction
increases differentiation between feature signals from the pooled and background probes, while normalization reduces variance between replicates.

the Wellcome Trust Sanger Institute and can be obtained
from http://www.sanger.ac.uk/genetics/CGP/CellLines,.
The Cancer Genome Atlas (TCGA, 22) was used for
ovarian primary tumor copy number data. The
University Hospital Ulleval (Ull) cohort breast samples
were used for breast (23). For pancreatic tumor data, we
used the data published by Harada et al. (24). These
samples were processed using the Aroma.CN package
(25,26), including Single Nucleotide Polymorphism-
Robust Multi-Array Analysis (SNP-RMA, 27) normaliza-
tion. In all cases, data was segmented using Circular

Binary Segmentation (CBS, 28) and a Log-R ratio thresh-
old of 0.33 was used to call copy number gain.

DATABASE UTILITY
Browse cell lines and genes

COLT-Cancer currently hosts 72 published human cancer
cell lines. Complete lists of the cell lines and genes are
alphabetically ordered by their common names and avail-
able to users through the ‘List cell-lines’ and ‘List all


http://www.sanger.ac.uk/genetics/CGP/CellLines/

D960 Nucleic Acids Research, 2012, Vol. 40, Database issue

genes’ functions. They can also be independently searched
using various options including name, reference sequence,
gene IDs and gene descriptions. Cell line information also
include short-tandem repeat profiles and are linked to
ATCC Cell Biology Collection.

Gene-centric queries across cell lines

Users can search for genes-of-interest across selected
tumor types or subtypes. A gene-centric search result
returns the GARP scores and P-values of the best
matching gene across selected screens, along with exter-
nally integrated annotations of the gene (HK, CGC,
surfaceome, among others). End-users can choose to
download the scores or evaluate similarities amongst
genes or cell lines through hierarchical clustering of
either GARP scores or P-values (Figure 2).

Cross cell-line comparisons

Web-based functions are provided to facilitate functional
comparisons across studies, which are critical for under-
standing the common and discriminating machineries in

Color Key

different cancer cell lines. For instance, the ‘Cross cell-line
search’ option on COLT-Cancer allows users to query,
visualize and compare genes that are commonly essential
across multiple tumor types or within the same tumor type
in a summarized matrix view (Figure 3).

Essentiality and CNA plot

These query plots provide an integrated representation of
essentiality and CNA data for contiguous genes within a
genomic region, across three tumor types including
breast, ovarian and pancreatic. They allow users to
examine the degree of essentiality for a given gene
within a specified genomic region, and how the degree of
essentiality is distributed across breast, ovarian and pan-
creatic cancer cell lines. Bars above the axis represent the
fraction of all screens in which a given gene had an
essentiality score in the top 5%, by GARP. Bars below
the axis represent the fraction of samples, derived from
literature-curated data, in which the gene is amplified in
either cell lines or patient tumors.
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Figure 2. An example of a hierarchically clustered heatmap generated in COLT-Cancer from the GARP P-values of 4 genes across all cancer cell

lines.
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Figure 3. An example use case in COLT-Cancer to visualize common essential genes across breast (red), ovarian (yellow) and pancreatic (orange)

cell lines.

COLT LIMS

Signal features, along with descriptions of the gene tar-
geted by the shRNA sequence can be downloaded into
tab-delimited files. On-the-fly visualization, basic statis-
tical analysis, and quality metrics are integrated, allowing
end-users to assess the quality of the screens. For example,
the ‘Distribution plot’ presents a histogram-like view of all
shRNA signals from selected chips in an experiment,
allowing the user to assess replicate reproducibility, and
provides a visual approximation of the number hairpins
dropping out of the screen. The ‘Correlation plot’ displays
the Spearman correlation between all pairs of selected
chips (Figure 4), providing another assessment of screen
quality and replicate reproducibility.

Download

COLT-Cancer supports downloading of user-specified
subsets or the full set of essentiality GARP scores and
corresponding P-values in tab-delimited files. Microarray
images can be downloaded as lower resolution JPEG files.

Future developments

COLT-Cancer was developed with the intent to be an
active resource for quantitative gene essentiality

measurements of human cancer cells. There are mechan-
isms for future regular updates of experimental results
through the COLT LIMS pipeline. Future additions to
the system aim at further automating the updating
processes to enable more frequent updates of external
data sources.

Although COLT-Cancer currently contains only locally
generated pooled shRNA screening data, further work
will involve integrating data types from other sources.
Future versions of COLT-Cancer also aim to provide
new visualization tools such as integrating our results
into a genome viewer to enrich COLT-Cancer as a
central resource for cancer research, assisting experimen-
talists in the generation of testable hypotheses.

CONCLUSIONS

We present a web database referred to as COLT-Cancer,
which provides users an integrative platform to browse,
query and analyze high-quality pooled shRNA screening
data from a deep repository of functional genetic screens
across different tumor types and genetic backgrounds. The
COLT-Cancer website is a valuable resource to identify
genetic vulnerabilities for cancer cell proliferation that
may serve as useful prognostic or therapeutic targets.
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Figure 4. (a) A plot generated on-the-fly from COLT-LIMS shows the distribution/histogram of the signals from each chip in a screen. (b) Spearman
correlations between pairs of microarrays in a sample screen.
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