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Abstract: The transition metal ion cadmium (Cd2+) is a significant environmental 

contaminant. With a biological half-life of ~20 years, Cd2+ accumulates in the kidney cortex, 

where it particularly damages proximal tubule (PT) cells and can result in renal fibrosis, 

failure, or cancer. Because death represents a powerful means by which cells avoid 

malignant transformation, it is crucial to clearly identify and understand the pathways that 

determine cell fate in chronic Cd2+ nephrotoxicity. When cells are subjected to stress,  

they make a decision to adapt and survive, or—depending on the magnitude and duration of 

stress—to die by several modes of death (programmed cell death), including autophagic cell 

death (ACD). Autophagy is part of a larger system of intracellular protein degradation and 

represents the channel by which organelles and long-lived proteins are delivered to the 

lysosome for degradation. Basal autophagy levels in all eukaryotic cells serve as a dynamic 

physiological recycling system, but they can also be induced by intra- or extracellular  

stress and pathological processes, such as endoplasmic reticulum (ER) stress. In a  

context-dependent manner, autophagy can either be protective and hence contribute to 

survival, or promote death by non-apoptotic or apoptotic pathways. So far, the role of autophagy 

in Cd2+-induced nephrotoxicity has remained unsettled due to contradictory results. In this 

review, we critically survey the current literature on autophagy in Cd2+-induced nephrotoxicity 

in light of our own ongoing studies. Data obtained in kidney cells illustrate a dual and complex 

function of autophagy in a stimulus- and time-dependent manner that possibly reflects distinct 
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outcomes in vitro and in vivo. A better understanding of the context-specific regulation of cell 

fate by autophagy may ultimately contribute to the development of preventive and novel 

therapeutic strategies for acute and chronic Cd2+ nephrotoxicity. 

Keywords: unfolded protein response; transition metal; cadmium; apoptosis; autophagosome; 

acute kidney injury; malignant transformation; tunicamycin; rapamycin; mTORC 

 

1. Introduction 

Chronic Cd2+ toxicity due to chronic low Cd2+ exposure (CLCE) has emerged as a previously 

underestimated significant health hazard for human populations because it results from general dietary 

sources and cigarette smoking [1–3]. CLCE is a health problem for ~10% of the general population and 

increases morbidity and mortality [1]. With a biological half-life of ~10–30 years, Cd2+ accumulates in 

organs, particularly the kidney cortex [4], where it preferentially damages the proximal tubule (PT) cells 

(reviewed in [5–8]), which can result in fibrosis, failure [9], or—with Cd2+ being a class 1 human 

carcinogen—renal cancer [10]. Aside from nephrotoxicity, CLCE causes osteoporosis, neurotoxicity, 

genotoxicity, teratogenicity, and endocrine and reproductive defects [8]. 

2. Cell Death versus Survival and Malignancy 

Organ failure and cancer are the two ends of a continuum of responses to Cd2+ toxicity. Cellular stress 

elicited by Cd2+ triggers detoxification as well as adaptive processes, which allow cell survival until 

normal function is restored. If the cellular response is insufficient, death pathways are initiated and the 

cell dies. However, if the level of stress is not sufficient to induce death but impacts on cells for a longer 

period of time (e.g., as in CLCE), cells may lose control over adaptive mechanisms, such as through 

alterations in signaling pathways induced by mutations, and malignant transformation can ensue [11]. 

Even if cells have been dysfunctional for a longer period of time and are therefore committed to die, 

survival may still persist through disruption of death signaling. This process facilitates malignant 

transformation (“evasion of apoptosis”) [12]. To avoid malignant transformation, cell death is 

imperative; therefore, it is crucial to clearly identify the death and survival pathways that determine cell 

fate in the setting of chronic Cd2+ nephrotoxicity. 

3. Cellular Modes of Death: The Current Dogma 

Current dogma states that cells die by several modes of death routines [13]: cells exposed to extreme 

physical or chemical stress die at once due to loss of their structural integrity, which is referred to as 

accidental cell death. In contrast, regulated cell death is initiated by genetically-encoded machinery and 

can therefore be manipulated by genetic or pharmacological tools. Within this type of cell death, 

programmed cell death (PCD) describes forms of cell death that occur as part of a developmental 

program or to preserve tissue and organ homeostasis during adulthood. Based on specific biochemical 

parameters and molecular events, PCD can be further classified into several major death modalities that 

include death receptor-dependent (extrinsic) apoptosis, caspase-dependent or -independent mitochondrial 
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(intrinsic) apoptosis, regulated necrosis (necroptosis), mitotic catastrophe, and autophagic cell death 

(ACD) (caveat: see sections on autophagy) [14,15]. 

When cells are subjected to stress, cell death subtypes are triggered and a key feature of the death 

signal is the separation into an “initiation” phase when the process can still be reversed and cells have 

not yet committed to die, and an “execution” phase when a “point-of-no return” has been reached and 

cells are irreversibly sentenced to commit suicide. In the reversible initiation phase, cells respond by 

attempting to eliminate the source of stress and to repair damaged cellular structures and functions in 

order to re-establish their normal function [13]. If this adaptive response fails its aim, such as when the 

stress signal is prolonged or too severe for continuous and dominating survival mechanisms, execution 

of death occurs as an attempt to limit further damage, namely not to prolong malfunction and its 

consequences for the whole organism (e.g., cancer development). In this scenario, survival signals may 

either simply cease and be replaced by death promoting signals or they may co-exist for a certain period 

of time [13]. However, these definitions and classifications are an oversimplification and do not reflect 

the complexity of stress-induced cell fate in all instances. 

4. Autophagy 

4.1. Basic Principles and Regulation 

Autophagy is a mechanism of “self-eating” (reviewed in [16,17]). By degrading intracellular components, 

damaged proteins, and organelles, the cell can increase its chances of survival during stress or nutrient 

starvation conditions; this works in a complementary fashion to ER-associated degradation (ERAD) [17]. 

Autophagy is part of a larger monitoring system for intracellular protein quality control and degradation 

that comprises the ubiquitin-proteasome pathway, a cytosolic protein degradation process for short-lived 

proteins, and the lysosomal system. Autophagy occurs at basal levels in all eukaryotic cells but can also 

be induced by intra- or extracellular cell stress signals [18]. Hence, it participates in many physiological 

processes within a cell and is considered to be an essential protein and metabolic homeostatic process.  

Cells display three types of autophagy [16,17]: microautophagy refers to the direct lysosome engulfment 

of a portion of cytoplasm by invagination, protrusion, or septation of the lysosome membrane. 

Chaperone-mediated autophagy denotes the process of direct transportation of unfolded proteins via the 

lysosomal chaperone protein hsc-70. These complexes then bind to LAMP-2A, a lysosomal membrane 

receptor, and are translocated across the lysosomal membrane. The third type of autophagy, macroautophagy, 

is by far the most important type. Macroautophagy refers to the de novo synthesis of a double membrane 

structure, the phagophore or isolation membrane, at the phagophore assembly site, which consists of  

the phagophore and the core molecular machinery (Autophagy-related genes, Atg) responsible for 

autophagosome formation. The phagophore expands and engulfs entire cytoplasmic components, 

including organelles, long-lived proteins, protein aggregates, and other cytosolic material. By fusing its 

two ends, the phagophore forms a double membrane compartment or vesicle, the autophagosome that 

“engulfs” cytosolic contents. The autophagosome matures by fusion with lysosomes to become an 

autophagolysosome, resulting in degradation of the engulfed content and inner membrane proteins by 

lysosomal acidic hydrolases (see Figure 1 for further details). The resulting amino acids are released into 

the cytosol and recycled. Autophagosome formation is controlled by a number of proteins and complexes 
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including the mammalian target of rapamycin complex 1 (mTORC1), the serine/threonine-protein kinase 

ULK1/2, Beclin 1, autophagy (Atg) proteins, class III phosphatidylinositol 3-kinases (PI3K), and 

microtubule-associated protein 1A/1B-light chain 3-I/II (LC3-I/II) [18,19]. 

 

Figure 1. Model of autophagic flux and common inhibitors of the macroautophagic 

pathway. Macroautophagy involves autophagosome formation, delivery of autophagic 

components to the lysosome, and degradation of the sequestered cargo by lysosomal 

hydrolases. The “core” autophagic machinery utilizes Atg proteins for phagophore formation 

and its elongation to mature autophagosomes. The ULK1/2 kinase complex is required for 

induction of autophagy and is negatively regulated by mTORC1. A class-III 

phosphatidylinositol 3-kinase complex is required for nucleation of the phagophore 

membrane. Beclin 1 (Atg6) and Atg14 are part of this complex. The elongation and 

expansion steps in autophagosome formation involve two conjugation systems that require 

ubiquitin-like proteins, Atg12 and Atg8/LC3-I. The Atg5-Atg12 conjugate subsequently 

associates non-covalently with Atg16 to form an Atg12-Atg5-Atg16 multimeric complex. 

The second conjugation step is the formation of LC3-II (Atg8-PE) by conjugation of LC3-I 

with phosphatidylethanolamine (PE). Once autophagosomes are formed, most of the  

Atg proteins dissociate, which allows fusion with lysosomes to form autolysosomes.  

The sequestered contents and the inner membrane of autolysosomes are degraded by 

lysosomal hydrolases. Rapamycin inhibits mTORC and thereby promotes autophagy 

induction. The PI3K inhibitors wortmannin and 3-MA prevent the formation of 

autophagosomes. Blockers of lysosomal hydrolases operate either by neutralizing the 

intralysosomal acidic pH (the weak bases NH4Cl and chloroquine), inhibiting the lysosomal 

vacuolar-type H+-ATPase (bafilomycin A1), or preventing activity of lysosomal proteases 

(pepstatin/E64). Additional details are found in the text. 
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How is autophagy regulated? Generally, this pathway can be stimulated by multiple forms of cellular 

stress, for instance nutrient or growth factor deprivation, hypoxia, reactive oxygen species (ROS), 

damage of various cellular components, or intracellular pathogens [18]. Specific, stimulus-dependent 

and more general, stimulus-independent signaling pathways are activated to coordinate different phases 

of autophagy. Furthermore, autophagy can be integrated with other cellular stress signaling networks 

and has also multiple links to cell growth, proliferation, senescence, and apoptosis. In particular, 

upstream, autophagy can be regulated by ROS [20,21] and Ca2+ release [22]. ROS are generated by 

mitochondria [23] or possibly by NADPH oxidases in cancer cells [24] and appear to induce autophagy. 

By increasing autophagy, oxidative damaged proteins—which are thought to be delivered into 

autophagosomes by the autophagy cargo protein, p62—are degraded. The regulation of autophagy by 

ROS occurs at both the transcriptional and non-transcriptional levels. Important redox reactive 

transcription factors are HIF1, p53, Nrf2, and Foxo3. By modifying the expression or activity of 

autophagy-related proteins, autophagy or disinhibition of autophagy is increased. For example, Bcl-2 

sequestration allows release of Beclin 1 to induce autophagosome formation [25,26]. Oxidative stress 

can also act directly on AMPK, leading to disinhibition of mTORC1 and increased autophagy [21]. 

[Ca2+]cyt can activate as well as inhibit autophagy [22,27]. Inhibition of autophagy by [Ca2+]cyt has been 

demonstrated through knockout or blockade of the IP3 receptor (IP3R), which increases autophagy. 

Because mitochondria require a constant source of Ca2+ for their metabolic needs that are provided by 

IP3R opening, loss of IP3R function results in decreased ATP production, AMPK activation and 

autophagy induction [27]. But Ca2+ may also activate autophagy. Some studies showed that autophagy 

induction is reduced with BAPTA-AM that chelates [Ca2+]cyt [28–31]. 

4.2. Endoplasmic Reticulum Stress-Autophagy Crosstalk and Cell Fate: A Matter of Time 

The endoplasmic reticulum (ER) stress pathway exemplifies the complex interactions of survival and 

death signals that determine the final outcome of cell stress. ER stress develops when ER function is 

perturbed by accumulation of misfolded proteins, depletion of Ca2+ stores, or oxidative stress in the ER 

lumen [32], and is sensed by three upstream signaling proteins: PERK/eIF2α, IRE1, and ATF6, 

collectively known as the unfolded protein response (UPR). They are found in the luminal ER membrane 

where, under ER stress, GRP78 chaperone binds to unfolded proteins, allowing the ER sensors to 

homodimerize and activate their downstream signaling cascades. Initially, the cells try to prevent 

accumulation of unfolded proteins by halting transcription through phosphorylation of PERK/eIF2α and 

to reduce the amount of unfolded proteins by initiating ERAD or autophagy to promote cell  

survival [33,34]. In the process of ERAD, which is regulated by XBP1 and ATF6, abnormally folded 

proteins are transported from the ER lumen to the cytoplasm, become ubiquitylated, and are degraded 

by the proteasome. However, chronic or excessive ER stress can lead to activation of apoptosis mediated 

by the induction of CHOP (a transcriptional repressor of anti-apoptotic Bcl-2 [35]), phosphorylation of 

JNK, or activation of caspase-12, which cleaves structural cytoskeletal proteins and activates DNase 

culminating in DNA condensation/fragmentation associated with apoptosis (reviewed in [33,36,37]. 

During Cd2+ damage of the kidney, ER stress occurs [38] and is initiated by alterations of ROS [39] 

or Ca2+ homeostasis [40], or both [41] through mechanisms that have been reviewed in detail  

elsewhere [7]. Other commonly used ER stress inducers are the inhibitor of N-linked protein 
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glycosylation tunicamycin or the blocker of sarco-/endoplasmic Ca2+ pumps thapsigargin. The pattern 

of genes affected by Cd2+ appears to be distinct from other transition metals [42]. Cd2+ increases GRP78 

(and possibly GRP94) in renal PT cells, indicating augmented unfolded proteins [41,43]. All three arms 

of the UPR, i.e., anti-apoptotic PERK as well as pro-apoptotic ATF6 and IRE1, are activated by Cd2+ in 

kidney PT cells [39,41,43]. In our recently published work [41], we showed increased expression of a 

novel ER stress-induced survival factor, bestrophin-3, which prevents upregulation of pro-apoptotic 

CHOP [44]. Cd2+ induction of CHOP is associated with ATF6 in some studies with renal PT  

cells [39,43], but with the PERK arm in another study [45]. To cause apoptosis, Cd2+ activation of the 

IRE1 pathway may also stimulate phosphorylation of JNK [43,46], activate caspase 12 [40], or crosstalk 

with mitochondria to trigger intrinsic apoptosis signaling [47]. In summary, the UPR induced by Cd2+ 

can be perceived as an initial mechanism to alleviate ER stress but, more often than not, CHOP is 

upregulated and causes apoptosis even though counteracting survival mechanisms are intact. 

Although UPR proteins may not necessarily be required for autophagy induction [30], numerous 

studies have provided evidence for autophagy activation as a direct consequence of ER stress (reviewed 

in [34]). Activation of the PERK/eIF2α–ATF4 pathway upregulates the expression of a large set of 

autophagy genes, such as Atgs, Beclin 1, or p62. While IRE1 signaling has been implicated in promoting 

autophagy via JNK-mediated signaling, it was also shown to elicit negative regulation of autophagy. 

Loss of autophagy genes induces the UPR, indicative of a negative feedback mechanism. Yet the 

definitive molecular bridges between the two processes remain to be elucidated. Functionally, autophagy 

promotes cell survival and increases energy supply. During ER stress conditions, autophagy is induced, 

possibly as a mechanism to eliminate aggregated proteins and damaged cellular components [33,34]. 

Hence, autophagy may decrease cellular stress levels by removal of ER membranes, which contain UPR 

sensors, or decrease the amplitude of stress by clearing aberrant proteins from the ER. In most cases, 

this autophagic induction is protective and may prevent ER-stress-associated cell death as part of an 

early adaptive and survival response [48]. However, in some instances, autophagy is invoked as a means 

of killing cells when ER stress is prolonged and substantial [49,50] (see also next paragraph).  

For instance, the study by Ding et al. [49] shows a differential role of autophagy in promoting survival 

of cancer cells or apoptosis of non-transformed cells, which may be related to the level at which ER 

stress can be compensated for. Overall, these observations indicate that autophagy can contribute to  

ER-stress-induced cell survival or death depending on the cellular context. 

4.3. Autophagy: Janus Face of Survival and Death? 

There is currently no consensus on the relationship between autophagy and cell death.  

The predominant views can be summarized as follows [51–53]: (1) Autophagy precedes apoptosis;  

(2) autophagy and apoptosis are mutually inhibitory: mild (early) stress initiates autophagy to limit 

apoptosis and strong (late) stress induces apoptosis that disrupts autophagy; and (3) ACD is rare and 

irrelevant for mammalian development or physiological cell death. Hence, most cases of ACD are not 

“death by autophagy”, but “death with autophagy” and rely on “phenomenological descriptions, 

nonspecific pharmacological inhibitors (e.g., 3-methyladenine and chloroquine) or incomplete 

Autophagy-related gene (Atg) depletion by siRNA” [51]. In fact, several effector proteins of autophagy 

acquire apoptosis-inducing properties following cleavage by calpains or caspase 3 [54–57], such as 
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Beclin 1, Atg4D and Atg5, which is compatible with the notion that apoptosis terminates and inhibits 

autophagy [51]. However, these authors at least concede that there may be specific instances where ACD 

occurs [51], e.g., a cell death form that was triggered by a cell-penetrating autophagy-inducing peptide, 

Tat-Beclin 1, derived from the autophagy protein Beclin 1 but relied on the plasma membrane  

Na+/K+-ATPase, was dubbed “autosis” [58].  

Others have made the effort to identify more scenarios where (possibly non-apoptotic)  

autophagy-dependent cell death may occur in order to adequately describe certain death phenomena 

(reviewed in [59–61]) and in particular to understand the cellular context dependence of autophagic 

function and/or the role of autophagy during pathological stress [62–66].  

Hence, autophagy can contribute to cell death under certain experimental conditions characterized by 

the absence of intact apoptosis pathways. Ullman et al. [50] demonstrated that autophagy has  

opposite effects on cell fate in response to ER stress (thapsigargin, tunicamycin, or brefeldin A) in  

apoptosis-competent cells in which autophagy increased survival mechanism, and in apoptosis-deficient 

cells that utilized autophagy as a means to promote non-apoptotic cell death via necrosis. Similarly, 

Shimizu and coworkers found that Jun N-terminal kinase (JNK) was activated in etoposide- and 

staurosporine-treated, but not serum-starved, Bax−/−/Bak−/− cells, and that ACD was suppressed by 

disruption of JNK activity [67,68]. Other examples of non-apoptotic ACD include caspase inhibition in 

mouse fibroblasts [69,70], expression of a Beclin 1 mutant that escapes Bcl-2 regulation in breast cancer 

cells that have inactive caspase 3 [71], and caspase 10 inhibition in myeloma [72].  

In apoptosis-competent cells, autophagy can also lead to autophagy-dependent but caspase-independent 

cell death, e.g., in cells expressing a short isoform of p19ARF [73], or in human ovarian epithelial cells 

expressing oncogenic H-RasV12, was associated with Bcl-2 family member Noxa displacement of  

Mcl-1 from Beclin 1, which led to autophagy-dependent cell death [74]. Still other studies have shown 

that the tumor suppressor DAPk (calmodulin-regulated serine/threonine kinase Death-Associated 

Protein kinase or Death-Associated Protein kinase 1 according to certain nomenclatures) mediates 

apoptosis induced by several external stresses, including ceramide [75,76]. DAPk is an activator of 

autophagy and apoptosis and has also been proposed to convert autophagy from a cell survival 

mechanism to a cell death initiating mechanism [77]. A current interpretation of the dual impact of this 

kinase on autophagy and apoptosis would be that cytoprotective autophagy is triggered by low level 

kinase-regulated stress, whereas more intense and protracted stress culminates in apoptosis [51].  

DAPk is highly expressed in the kidney, especially in proximal tubule (PT) cells [78], and deletion of 

the kinase domain of DAPk in mice attenuates tubular caspase-dependent cell apoptosis in renal  

ischemia-reperfusion injury [79]. Injection of tunicamycin, an ER stress inducer, into kidneys of mice 

causes kidney PT autophagy and caspase-dependent apoptosis in the same cells, and apoptosis is 

attenuated in DAPk−/− mice (autophagy was not studied in DAPK−/− mice, but was also reduced in 

DAPK−/− cells derived from these mice) [80]. In this context, a relevant and intriguing observation is the 

“ceramide autophagy paradox” [62,81]: stress induced by ceramides of specific chain length can  

lead to cytoprotective autophagy and survival or promote death by activating pro-apoptotic signaling 

and/or binding to membranes of damaged mitochondria, where they act as receptors for 

phosphatidylethanolamine (PE)-conjugated LC3-II and thereby target phagophores for lethal mitophagy 

induction [82]. Finally, a recent study also shows that DNA damaging agents trigger Atg5 upregulation 

concomitantly with autophagy induction, and Atg5, in addition to promoting autophagy, translocates to 
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the nucleus to elicit G2/M arrest and mitotic catastrophe [83], another form of cell death caused by DNA 

damage [84]. Collectively, these studies indicate that autophagy and apoptosis may not be mutually 

exclusive events, but rather can occur within the same cell in a linked fashion following stress induction. 

Hence, autophagy and its effectors very likely play a dual role in determining cell fate, depending on 

specific cell types and stress stimuli. 

4.4. Autophagic Cell Death and Cd2+ Toxicity 

Apart from the kidney, in most non-cancerous cellular and animal models, autophagy mediates or 

promotes cell death induced by Cd2+. In Cd2+-exposed sea urchin embryos, inhibition of autophagy 

produced a concurrent reduction of apoptosis, suggesting that the two phenomena are functionally 

related [85]. Apoptosis, assessed by TUNEL assay and cleaved caspase-3, was restored in Cd2+-treated 

embryos when autophagy was inhibited by the inhibitor of autophagosome formation, 3-methyladenine 

(3-MA). In normal human liver L02 cells, Cd2+ toxicity correlated with increased LC3-II formation, 

GFP-LC3 puncta, mitochondrial fragmentation as a result of increased dynamin 1-like (DNM1L) 

expression and translocation to mitochondria, increased mitochondrial co-localization with lysosomes 

as well as mitochondrial loss and bioenergetic deficit. ATG5 siRNA suppressed mitochondrial loss and 

cytotoxicity, indicating that augmented mitophagy in Cd2+-exposed cells increases cell death [86]. 

Furthermore, a DNM1L inhibitor blocked mitophagy and ameliorated Cd2+-induced hepatotoxicity  

in vivo, suggesting that Cd2+-induced mitophagy contributes to hepatotoxicity. In addition, in  

non-transformed human lung bronchial epithelial BEAS-2B cells, Cd2+ exposure induced apoptosis that 

was associated with increased formation of ROS, LC3-II and the frequency of GFP-LC3 puncta whereas 

these changes were not observed in Cd2+ apoptosis-resistant cells, implying that transformed cells are 

autophagy deficient [87]. 

4.5. Autophagy in Acute Kidney Injury and Cd2+ Nephrotoxicity: A Reflection of the General 

Controversy in the Field 

The role of autophagy in kidney damage reflects the general controversy in the field of cell death 

signaling [88–91]. The dispute is further exacerbated because of the current relevance of acute kidney 

injury (AKI) for intensive care and transplantation medicine in an ageing population [92] and the hope 

for the rapid discovery of efficient therapies. Hence, conflicting results can be found in AKI induced by 

stress stimuli (reviewed in [89]). In tunicamycin-treated mice, ER stress induces apoptosis and 

autophagy concomitantly in the same damaged tubular cells and DAPk−/− mice are resistant to ER  

stress-induced kidney injury as tubular cell autophagy is suppressed [80]. In contrast, using the gold 

standard for identifying the function of autophagy in cell stress, namely the generation of tubule-specific 

autophagy (Atg5−/−) knockout animals, evidence for a protective role for autophagy in ischemia-reperfusion 

AKI has been obtained. During renal ischemia-reperfusion, tubular cell autophagy is inhibited in Atg5 

conditional knockout mice and, importantly, more severe kidney injury is induced by renal  

ischemia-reperfusion in these mice compared with wild-type animals [93,94].  

For cultured cell lines and experimental animals exposed to Cd2+, only a handful of reports have been 

published so far, with partly conflicting data. Shih et al. showed in cultured mesangial cells that Cd2+  

(6 µM for 28 h) triggers autophagy and caspase-dependent apoptosis [95]. 3-MA reduced autophagy 
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without affecting apoptosis and the pan-caspase inhibitor Z-VAD-fmk attenuated apoptosis without 

affecting autophagy, indicating activation of independent signaling pathways; in contrast, both inhibitors 

increased cell viability. This suggested that both ACD and caspase-dependent mechanisms contribute to 

cell death and coincide in mesangial cells exposed to Cd2+. Chargui et al. [96] treated rats with low 

(“subtoxic”) Cd2+ concentrations (0.3 mg/kg Cd2+ i.p. for up to 5 days) or exposed cultured PT cells to 

5 µM Cd2+ for 5 h. Cd2+ in vivo increased PT autophagy and increased reactive proliferation with no 

evidence of glomerular and tubular dysfunction or caspase-dependent apoptosis despite massive 

ultrastructural signs of cellular degeneration. In cultured immortalized mouse PT cells, Cd2+ increased 

ER stress, autophagy, and cell death, which were prevented by 3-MA, but not by the V-ATPase blocker 

bafilomycin A1, which blocks acidification of late endosomes and lysosomes. Hence, the data suggested 

that ER stress and autophagy are interlinked events for disposal of aggregated ubiquitinated proteins in 

Cd2+-exposed PT cells but they may also contribute to induction of a caspase-independent form of cell 

death (ACD?) in vivo and in vitro. Furthermore, mice treated with Cd2+ (0.2–0.8 mg/kg Cd2+ i.p. for  

3 days) showed disruption of kidney mitochondrial membrane potential (Δψm), increased LC3-II/LC3-I ratio, 

mitophagosome formation, and decreased mitochondrial mass, suggesting Cd2+-induced mitophagy [97]. 

Additional experiments led to the conclusion that Cd2+ elicits ROS-mediated mitophagy through a 

PTEN-induced putative kinase 1 (PINK1)/Parkin pathway in kidneys of mice, thus promoting Cd2+ 

nephrotoxicity. Finally, Matsuoka et al. [98] demonstrated that Cd2+ (20 µM for 4 h) activates an Akt-, 

mTORC1-, and anti-apoptotic UPR- (ATF4) dependent survival pathway in human HK-2 PT cells that 

is blocked by the mTORC1 inhibitor rapamycin (also named sirolimus) (ca. 200 nM for 1 h),  

thus suggesting that rapamycin (and autophagy induction) promotes Cd2+-induced death of PT cells.  

In contrast, Kato et al. [46] exposed NRK-52E rat PT cells to 10 µM Cd2+ for 72 h or administrated 

mice twice with Cd2+ (10 mg/kg, i.p.) at 12 h intervals and removed the kidney 3 days later. Cd2+ 

increased cell death and caspase-dependent apoptosis through a ROS, mTORC1, pro-apoptotic UPR 

(IRE1)- and JNK-dependent pathway both in vivo and in cultured cells. Cell death induced by Cd2+  

in vivo and in vitro was abolished by co-exposure with rapamycin (100 nM), an immunosuppressant 

with low renal toxicity, which inhibits mTORC1 and strongly induces autophagy by blocking the 

ULK1/2 complex [99], suggesting that autophagy induction is protective. 

4.6. Is Autophagy Protective Against Cd2+-Induced Nephrotoxicity? A Critical Appraisal 

With one notable exception [46], most data obtained in kidney cells suggest that, in contrast to 

ischemia/reperfusion injury, Cd2+ induces ER stress to promote caspase-dependent and/or -independent 

cell death, which may be mediated by ACD. This conclusion is supported by our recent data (see [100] 

and below), which could not reproduce the protective effects of rapamycin on Cd2+-induced death in 

NRK-52E cells [46]. 

Our laboratory has intensively investigated the mechanisms of Cd2+-induced cell death and survival 

of PT cells in culture (reviewed in [5–8]). We have established Ca2+ and ROS as triggers of ER 

stress/UPR-induced early cell death, mediated by Ca2+-dependent calpain activation. Cd2+ (25 µM) 

elicits Ca2+- and ROS-dependent ER stress and death, but also rapidly (3–6 h) triggers an adaptive UPR 

via ERK1/2-dependent bestrophin-3 upregulation, which enhances survival by inhibiting  

CHOP-dependent apoptotic cell death [41]. Cd2+ (5–50 µM) also causes early (3–6 h) de novo ceramide 
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formation, which increases [Ca2+]cyt, resulting in Ca2+-dependent calpain activation and apoptosis 

followed by late apoptosis (24 h) via calpain-dependent caspase activation [101,102]. Mitochondrial 

caspase- and AIF-dependent apoptosis are also mediated by direct effects of Cd2+ on mitochondria: Cd2+ 

(5–50 µM) induces mitochondrial damage by entering the mitochondrial matrix through the mitochondrial 

Ca2+ uniporter, subsequent disruption of Δψm, activation of mitochondrial aquaporin 8, osmotic swelling 

of the matrix, and mitochondrial rupture—which would entail induction of mitophagy—and results in 

the release of cytochrome c and AIF, caspase activation, and apoptosis [101,103]. 

 

 

Figure 2. Autophagosome formation induced by Cd2+, C6-ceramide, or thapsigargin in PT 

cells. WKPT-0293 Cl.2 cells were incubated for 1 h with Cd2+, C6-ceramide, or the  

ER-stress inducer thapsigargin prior to monodansylcadaverine (MDC; 10 µM) fluorescence 

staining (upper panels). During the experimental period cells were incubated in culture medium 

with 1% FBS, as described in [46]. An average of 3–6 experiments, 7–15 images each, was 

performed for statistical analysis (lower panel) by one way ANOVA Dunnett post-hoc test. 

Scale bar = 100 µm for the control and 50 µm for the experimental conditions. 

Already in 1999 we showed that Cd2+ (5–10 µM for up to 20 h) induces ROS formation and apoptosis, 

which is associated with proteolytic degradation of Na+/K+-ATPase via proteasomal and 

endosomal/lysosomal pathways [104]. This proteolytic lysosomal degradation likely reflects autophagy. 

Interestingly, GSK3-β, which controls both proteasomal protein degradation [105] and autophagy [106], 

is activated by Cd2+ in renal cells [107]. In preliminary experiments, we have tested the effect of Cd2+ 

on autophagy and cell fate in p53-deficient WKPT-0293 Cl.2 and p53-proficient NRK-52E rat PT cells 

and investigated the effect of 3-MA and rapamycin on these end-points. Both cell lines display similar 

results with the exception that NRK-52E cells are more sensitive to Cd2+ exposure (EC50 for  

WKPT-0293 Cl.2 cell death ~18 µM and for NRK-52E cells ~4 µM at 24 h). In WKPT-0293 Cl.2 cells, 
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a marker for autophagolysosomes, monodansylcadaverine (MDC; 10 µM), accumulates as early as 1 h 

after application of Cd2+ (25 µM), short chain C6-ceramide (25 µM), or the ER-stress inducer 

thapsigargin (1.5 µM) (Figure 2), which is in line with observations in vivo and in vitro that autophagy 

is an early event induced by Cd2+ and other ER stress inducers in renal PT cells [80,96]. The data also support 

the concept that Cd2+-induced ceramide formation and ceramide-dependent calpain activation [108] 

modulates autophagy (and possibly mitophagy) to promote cell death [62,81,82]. Autophagosome 

formation in WKPT-0293 Cl.2 cells induced by 10 µM Cd2+ for 1 h is abolished by 5 mM 3-MA, which 

also reduces the decrease of cell viability caused by Cd2+ (Figure 3). This indicates that autophagy 

contributes to cell death in renal PT cells exposed to Cd2+. 

 

Figure 3. Effect of autophagy inhibition by 3-MA on Cd2+-induced autophagosome 

formation and cell viability in renal PT cells. WKPT-0293 Cl.2 cells were incubated for  

1 h with 10 µM (A) or for 24 h with 25 µM Cd2+ (B) ± the autophagy inhibitor  

3-methyladenine (3-MA; 5 mM), prior to monodansylcadaverine (MDC; 50 µM) 

fluorescence staining or cell death assay. An average of 10 images from one experiment is 

shown in (A). For measurements of cell viability by MTT assay, 3-MA was pre-incubated 

for 30 min prior to washout and incubation ± Cd2+ for 24 h. Means ± S.D. of three different 

experiments are shown in (B). During the experimental period, cells were incubated in 

medium containing 1% FBS, similarly as described in [46]. 

In contrast to the studies by Kato et al. [46] that were performed in NRK-52E renal cell cultures and 

in experimental animals, we could not confirm that the mTOR blocker rapamycin protects renal PT cells 

(WKPT-0293 Cl.2 and NRK-52E) against Cd2+-induced cell death (Figure 4). By measuring DNA 

fragmentation as an end-point of apoptosis, we could not detect any protective effect of rapamycin on 

Cd2+-induced DNA fragmentation (Figure 4A). It is interesting to note that rapamycin per se, when used 

at the same low concentration (100 nM) as in the aforementioned study, decreases apparent cell viability, 

as measured by MTT assay. However, the MTT assay does not discriminate between cell viability and 

cell proliferation, and because mTORC1 is also known to increase growth and proliferation [109],  

we investigated this aspect further and could confirm that cell number, and hence proliferation,  

is drastically reduced by rapamycin (Figure 4B). 
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Figure 4. Effect of rapamycin on apoptosis and cell proliferation in Cd2+-exposed renal PT 

cells. NRK-52E cells were exposed to 100 nM rapamycin for 24 h in the absence or presence 

of 5 µM Cd2+ and apoptosis was assayed by measuring intracellular DNA fragmentation (A). 

Cell number of subconfluent cells was determined in culture dishes ± rapamycin at time 0 

and after 24 h by trypsinization and cell counting with a hemocytometer (B). During the 

experimental phase, cells were cultured in medium containing 1% FBS, similarly as 

described in [46]. Means ± SE of 3–8 different experiments are shown. 

To account for their observations, Kato et al. [46] accordingly proposed a model in which inhibition 

of mTORC1 by rapamycin prevents activation of pro-apoptotic UPR signaling. However, renal PT cells 

also express mTORC2, which has been shown to activate Akt/PKB signaling and to inhibit downstream 

pro-apoptotic UPR signaling, thus inducing protection against cisplatin nephrotoxicity in experimental 

animals and NRK-52E cells [110]. Furthermore, it has been known for some time that although short 

exposure with rapamycin selectively inhibits mTORC1, prolonged exposure (≥24 h) also inhibits 

mTORC2 assembly and Akt/PKB [111]. Considering that Kato et al. [46] exposed NRK-52E cells for 

72 h to prevent Cd2+ toxicity, their results are surprising and difficult to reconcile with our data  

(Figure 4A and [100]). They are also not supported by clinical studies in kidney transplant patients 

demonstrating that rapamycin therapy exerts increased toxicity on tubular epithelial cells and/or retards 

healing, leading to an increased incidence of delayed graft function [112]. 

Microtubule-associated protein light chain 3 (LC3) is now widely used to monitor autophagy [113]. 

One approach is to detect LC3 conversion (LC3-I to LC3-II) by immunoblot analysis because the amount 

of LC3-II is clearly correlated with the number of autophagosomes. Another marker is p62, a receptor 

for cargo (e.g., ubiquitinated protein aggregates) destined for autophagic degradation, that is proteolysed 

as well during autophagic activity [113]. Both Cd2+ (10 µM; 1 h) and rapamycin (100 nM; 24 h) cause 

an increase in LC3-II level in renal WKPT-0293 Cl.2 PT cells (Figure 5A), and rapamycin increases p62 

degradation in NRK-52E cells (Figure 5B). Rapamycin clearly increases autophagy in renal PT cells 

(Figure 5), but because rapamycin does not reduce Cd2+-induced apoptosis of renal PT cells (Figure 3), 

a protective role of autophagy in Cd2+-induced renal cell death, as proposed by others [46], is unlikely. 

Interestingly, p62 expression with Cd2+ is biphasic in PT cells with a decrease of p62 at 0.5–1.5 h and 

its accumulation at 6–8 h (data not shown), suggesting a time-dependent dual effect of Cd2+ on autophagy 
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induction and/or lysosomal activity. Hence, whereas Cd2+ may elicit early ROS and/or Ca2+ signals to 

activate protective ER stress and autophagic flux, prolonged Cd2+ exposure could disrupt autophagy and 

provoke ACD, possibly by inducing lysosome permeability and/or damage [114]. 

 

Figure 5. Effect of Cd2+ and rapamycin on autophagy markers LC3-I/II and p62 in renal PT 

cells. (A) WKPT-0293 Cl.2 cells were exposed to 10 µM Cd2+ for 1 h or to 100 nM 

rapamycin for 24 h and LC3 immunoblots were performed; (B) NRK-52E cells were cultured 

in medium containing 1% or 10% FBS, exposed to different concentrations of rapamycin for 

24 h, and autophagy markers LC3 and p62 were determined by immunoblotting. Loading was 

monitored with β-actin. Data are representative of 2–4 experiments. 

The two in vivo studies that have investigated the impact of Cd2+ on renal integrity and autophagy are 

more difficult to evaluate. Chargui et al. [96] exposed rats to low Cd2+ concentrations (0.3 mg/kg Cd2+ 

i.p. for up to 5 days) and characterized morphological and biochemical signs of damage, death, and 

autophagy that appeared to occur concomitantly in renal PT cells within 1 day of Cd2+ exposure. Renal 

morphology showed signs of recovery after 5 days’ Cd2+ exposure while autophagy was still prevalent. 

Interestingly, no increased apoptosis (caspase-3 positive cells) was detected at any time. whereas cellular 

proliferation (as measured by Ki67 immunohistochemistry) was significantly increased throughout the 

treatment period. Kato et al. [46] treated mice twice with Cd2+ (10 mg/kg, i.p.) at 12 h intervals and 

removed the kidney three days later. The role of the autophagy inducer rapamycin on renal damage was 

investigated by injecting rapamycin (1.5 mg/kg i.p.) on day 1, 2, 3, and 4. Cd2+ treatment induced 

massive damage of the renal cortex, which was largely prevented by co-application of rapamycin. 

However, Kato et al. [46] did not look for markers of autophagy but rather focused on the PERK-eIF2α 

pathway of the UPR. Interestingly, whereas Chargui et al. [96] found no increase of caspase 3-positive 

cells in the rat kidney cortex with Cd2+ treatment (despite dramatic renal cellular damage), mice exposed 

to Cd2+ in the study by Kato et al. [46] developed massive apoptosis (as determined by TUNEL-positive 

cells). This indicates that Kato et al. [46] induced AKI, whereas the weak Cd2+ stress in the study of 

Chargui et al. [96] induced a non-apoptotic mode of PT cell damage. Nevertheless, whereas the in vivo 

data by Kato et al. [46] suggest that rapamycin (and possibly autophagy induction) is protective against 

strong renal Cd2+ stress, no such conclusion on the role of autophagy in Cd2+ nephrotoxicity can be 

drawn from the in vivo data of Chargui et al. [96] since both non-apoptotic PT damage and autophagy 

concurred during weak Cd2+ stress.  
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5. Conclusions and Future Perspectives 

Based on the current state of knowledge and the literature, it appears mandatory to investigate the 

relationship between autophagy and death or survival in Cd2+-induced stress of renal PT cells in  

further detail. Considering the discrepancies in vitro (e.g., as in [100] versus [46]) and—more  

importantly—in vivo ([96] versus [46]), additional in vitro and in vivo studies with more compelling 

evidence are clearly required to prove or disprove the hypothesis that Cd2+ induces ACD in the kidney. 

Although evidence suggests that ER stress, autophagy, and cell death coexist in Cd2+-treated PT cells 

in vivo and in vitro [41,96], the exact relationship between these different pathways, i.e., the intracellular 

signals responsible for initiation (ROS? Ca2+? Or both?), and the sequence of activation of these cellular 

processes are unknown und need to be investigated in more detail. 

In addition, because of the inconsistencies as well as possible limitations and fallacies associated with 

the use of renal PT cell lines of different origins, ideally autophagy should be investigated in vivo, for 

instance in tubular cells using GFP-LC3 reporter mice [115]. Cytosolic LC3-I is lipidated into LC3-II 

and recruited into autophagosomes, which can be identified as GFP-positive punctae in kidney sections 

of the GFP-LC3 mouse [115]. Hence, autophagy should be monitored in GFP-LC3 reporter mice during 

acute and chronic Cd2+ nephrotoxicity, according to protocols described elsewhere [116,117]. The 

protocols would be need to be optimized to monitor kinetics of autophagy induction and damage during 

Cd2+ stress in the PT of mice. With this information in mind, the role of autophagy on cell death or 

survival should then be investigated at time points where autophagy is prominent and/or damage is 

manifest in GFP-LC3 mice. The gold standard for determining the role of autophagy in Cd2+-induced 

nephrotoxicity is the generation of an autophagy knockout mouse. The autophagy-related protein ATG5 

is crucial for autophagosome formation by conjugating with ATG12 to generate an E3 ubiquitin  

ligase-like enzyme required for autophagy [51]. To that end, tubular-specific Atg5-knockout mouse 

models (e.g., [94]) will be ideally suited to determine conclusively whether Cd2+ stress and toxicity 

triggers autophagy to elicit adaptive survival or cell death of renal PT cells. 

Sphingolipids/ceramides are an important determinant of autophagy induction and execution and the 

role of sphingolipids/ceramides in relation to autophagy and Cd2+ nephrotoxicity is an issue that would 

need to be addressed in the future since Cd2+ causes alterations in the sphingolipid pool. Acid 

sphingomyelinase (ASMase) is associated with lysosomes in lysosomal (L-) ASMase, where it 

modulates autophagy [118,119]. L-ASMase is considered one of the major candidates for the production 

of ceramide in response to stress, including environmental insults [120]. Furthermore, stress induced by 

ceramides has been shown to cause cytoprotective autophagy or ACD depending on the ceramide chain 

length and/or activity of sphingolipid metabolizing enzymes (the so-called “ceramide autophagy 

paradox” [62,81]). Cd2+ interferes with both ceramide formation and L-ASMase in renal PT cells ([102] 

and unpublished data), which possibly underlies lysosomal dysfunction and block of lysosomal 

degradation. Consequently, it will be important to determine autophagy and cell fate in cultured PT cells 

exposed to Cd2+ where ASMase has been downregulated, or in Cd2+-exposed ASMase(−/−) mice [121]. 

Hopefully, a detailed understanding of the mechanisms of activation and regulation of autophagy and 

its role in cell fate decisions may ultimately contribute to the development of novel strategies for 

prevention and therapy of acute and chronic Cd2+ nephrotoxicity. 
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