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ABSTRACT The genes and genomes of insect pests are shaped by the wide array of selective forces =~ KEYWORDS
encountered in their environments. While the molecular adaptations that evolve are beginning to be  cytosine
understood at the genomic and transcriptomic level, they have been less well characterized at an epigenetic methylation
level. Here, we present a genome-wide map of DNA methylation at single-nucleotide resolution for the  epigenetics
cotton bollworm moth, Helicoverpa armigera, a globally invasive pest of agriculture. We show that methylation  phenotypic
is almost identical in the larvae and adults of H. armigera and that, through whole-genome bisulfite sequencing plasticity

(WGBS), at the most ~0.9% of CpG sites in this species are methylated. We find that DNA methylation occurs
primarily in exons, is positively correlated with gene expression, and that methylated genes are enriched for
cellular “housekeeping” roles. H. armigera has an exceptional capacity for long-range migration. To explore
the role of methylation in influencing the migratory phenotype of H. armigera, we performed targeted bisulfite
sequencing on selected loci from 16 genes that were differentially expressed between adult moths exhibiting
distinct flight performance in behavioral assays. While most CpG sites in these genes were not methylated
between flight phenotypes, we identified hypermethylation in a demethylase (KDM4) that targets lysine-
specific histone modifications, which are strongly associated with transcription and methylation. The H. armi-
gera methylome provides new insights into the role of DNA methylation in a noctuid moth and is a valuable
resource for further research into the epigenetic control of adaptive traits in this important pest.

flight activity
gene expression

DNA methylation is an ancient epigenetic modification that pervades a
wide range of organisms. Despite the conserved biochemistry of meth-
ylation, its function and magnitude are highly variable across taxa
with, for example, methylation levels three-orders of magnitude lower
in the genomes of insects compared to those from the animal or plant
kingdoms (Zemach et al. 2010). Furthermore, the catalog of DNA
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methyltransferases (DNMTs) found in animals—the enzymes needed
to maintain (DNMT1) or catalyze de novo methylation (DNMT3)—
differ between insect species and are completely absent in some cases
le.g., Drosophila melanogaster (Raddatz et al. 2013)]. Nevertheless, the
presence of a functional DNA methylation system across the class
Insecta with conserved patterns of methylation (Sarda et al. 2012;
Hunt et al. 2013a; Bewick et al. 2016) suggests an important, although
poorly understood, role for this epigenetic mark on the biology of
insects.

Advances in whole-genome sequencing coupled with bisulfite DNA
treatment have led to single-nucleotide resolution maps of methylation
in a range of invertebrates (Lyko et al. 2010; Xiang et al. 2010; Wurm
et al. 2011; Wang et al. 2013, 2014). These studies have shown that
insect methylation is primarily confined to CpG dinucleotides (cytosine
followed by guanine), occurs primarily in gene bodies (exons + introns),
and that hypermethylated genes are generally associated with cellular
housekeeping roles, whereas hypomethylated genes are more tissue spe-
cific (Sarda et al. 2012). Experimental measurements of methylation
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mirror those inferred indirectly from the computation of the observed to
expected CpG ratio (CpG O/E) which measures the depletion of CpG
dinucleotides (Bird 1980). The CpG O/E is lower in methylated genes
due to the mutagenic conversion of methylated cytosine to thymine
(deamination) over time, leaving a historical imprint of methylation.
A bimodal distribution of CpG O/E has been shown in several insects,
indicating the presence of two classes of “lowly” and “highly” meth-
ylated genes, and has been used as evidence for active genome-wide
methylation.

There is a clear positive correlation between robust intragenic
methylation and constitutive gene expression in insects (Xiang et al.
2010; Hunt et al. 2013b; Libbrecht et al. 2016). This relationship is
strengthened in the context of nucleosome dynamics with spatial con-
cordance between methylation and an additional epigenetic marker,
histone post-translational modifications, which are thought to act in
concert to regulate transcriptional activity (Hunt ef al. 2013a; Glastad
et al. 2015). Intragenic DNA methylation is therefore thought to reg-
ulate active transcription in insects, but whether this is restricted to
conserved genetic pathways or can be extended to influence a pheno-
typic response is still relatively unknown.

Phenotypic plasticity in morphological and behavioral traits repre-
sents a promising role for DN'A methylation in insects, yet, evidence for
this remains equivocal. In eusocial insects, such as honeybees and ants,
evidence that methylation drives caste differentiation (e.g., development
into a worker or queen bee) has been provided through whole-genome
sequencing and DNMT silencing (Kucharski et al. 2008; Lyko et al.
2010), but this has recently been challenged (Wang et al 2013;
Libbrecht et al. 2016; Standage et al. 2016). Other promising examples
of behaviors that may be impacted by methylation are those exhibited
in response to shifting or deteriorating environments, such as dispersal
or migration. A comparative methylome analysis of the brain tissue
from the solitarious and density-dependent gregarious forms of the
migratory locust (Locusta migratoria) showed that differentially meth-
ylated genes were associated mainly with synaptic plasticity (Wang
et al. 2014). Furthermore, genes differentially expressed between the
gregarious and solitarious phases were shown to have signs of CpG
depletion (Robinson et al. 2011), and genes encoding methylation ma-
chinery (DNMT1, DNMT2, and methyl CpG binding domain protein
2/3) are differentially transcribed in certain tissues of the two phases
(Robinson et al. 2016). Finally, beyond insects, differentially methylated
regions have been identified between migratory and nonmigratory life
stages of other organisms, such as the rainbow trout Oncorhynchus
mykiss (Baerwald et al. 2016), suggesting that the development of mi-
gratory forms in response to environmental cues may be linked to
variation in methylation patterns.

The Old World bollworm (Helicoverpa armigera), is a globally dis-
tributed agricultural pest noctuid moth that causes considerable eco-
nomic damage worldwide (Kriticos et al. 2015). More recently,
H. armigera has invaded the “New World,” with evidence of multiple
incursions occurring in South America, and subsequent spread over
the continent and into Central America (Tay et al. 2017). The inva-
siveness of H. armigera is accentuated by adaptive life-history strategies,
such as extensive polyphagy (Cunningham and Zalucki 2014), resis-
tance to insecticides and Bt toxins (Downes et al. 2016), and facultative
long-range migratory movements (Farrow and Daly 1987). The recent
release of the H. armigera genome has shown that gene loss and tran-
scriptional plasticity have facilitated polyphagy in this species (Celorio-
Mancera et al. 2012; Pearce et al. 2017), and similar processes may
underlie other traits, including long-distance migration (Jones et al.
2015). However, the role of epigenetic processes in regulating the life
history of important Lepidoptera is virtually unknown. Common to the
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Lepidoptera, H. armigera possesses DNMT1 but lacks the de novo
methylase DNMT?3, although it is becoming clear that the association
between the presence of specific DNMTs and methylation is not bi-
nary, and indeed, DNMT1 may compensate for the lack of DNMT3 in
some cases (Bewick et al. 2016). A map of methylation levels in this
species would complement insights from the recently published
genome (Pearce et al. 2017).

Here, we present a detailed analysis of the methylome of H. armigera
through WGBS and analyze the patterns of methylation in the context
of published insect methylomes to date. Previously, we have shown that
the flight propensity of H. armigera is associated with the differential
expression of a suite of candidate genes associated with lipid metabo-
lism, flight muscle function, and hormonal control (Jones et al. 2015).
Therefore, we extended our analyses using targeted bisulfite sequenc-
ing to investigate potential methylation differences in a subset of these
genes between insects demonstrating distinct flight performances in
behavioral assays.

MATERIALS AND METHODS

Mass spectrometry total DNA methylation analysis
Selected reaction monitoring mass spectrometry (SRM MS) was used to
quantify global levels of 5-hydroxymethyl-2’-deoxycytidine (5HmdC)
and 5-methyl-2’-deoxycytidine (5mdC). The assay measures 5SHmdC
and 5mdC concentrations as a percentage of 2’-deoxyguanosine (dG).
The calibrated ranges for the analytes were 0-1.25% for 5SHmdC and
0-12.5% for 5mdC using a fixed 40 pmol amount of dG as an internal
standard. MS was performed on genomic DNA (gDNA) extracted from
either the heads and thoraxes of four adult moths (two males and two
females) or four larvae (L3 life stage). gDNA was extracted using the
EZNA Insect DNA Kit (Omega Biotek) and treated with RNaseA
(Thermo Life Sciences). Three biological replicates (pools of four in-
sects) per life stage were analyzed.

WGBS

For the methylome analysis, gDNA was extracted from the heads and
thoraxes of four male and four female H. armigera, and pooled for
sequencing. Insects were collected as adults from Bt cotton fields in
Qiuxian (Hebei province, China, 36.81°N, 115.16°E) and reared for one
generation in the insectaries at Rothamsted Research. Adults were
snap-frozen in liquid nitrogen and gDNA extracted using the DNeasy
Blood and Tissue Kit (QIAGEN). Methyl-MaxiSeq (Zymo Research)
libraries were prepared from 100 ng of bisulfite-treated gDNA (EZ
DNA Methylation-Lightning Kit). Bisulfite-converted DNA was am-
plified with a primer that contained part of an adaptor sequence plus
four random nucleotides, followed by two additional amplifications to
add on the remaining adaptor sequence and to barcode the fragments.
PCR products were purified using the DNA Clean & Concentrator-5
(Zymo Research). Sequencing was run on the Illumina HiSequation
2500 platform. Sequence reads were aligned to the H. armigera genome
using the bisulfite sequencing aligner software Bismark (Krueger and
Andrews 2011).

CpG methylation and gene methylation analysis

The methylation status of each cytosine was determined using a bi-
nomial distribution to compare methylated and nonmethylated reads at
each site possessing a minimum of two reads (Lyko et al. 2010). Meth-
ylated sites were determined at P < 0.05 after adjustment for multiple
testing (Benjamini and Hochberg 1995). Methylation ratios (mCpG/
CpG) were determined per gene and genomic function (exon, intron,
and 2 kb upstream). Methylated genes or genomic functions were
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defined as those possessing a methylation ratio of > 10%. CpG de-
pletion (CpG O/E) was calculated according to Bird (1980). Hartigan’s
diptest was used to determine the modality of the distribution of
methylation levels and CpG O/E using the diptest package in R soft-
ware (Hartigan and Hartigan 1985). An enrichment analysis (Fisher’s
exact test) of GO terms for highly methylated genes (> 50% methylation
ratio) and genes containing zero methylated sites was performed against
the reference gene set in Blast2GO at an FDR < 0.05 (Gotz et al. 2008).

The relationship between methylation and gene expression was
explored using the RNA-seq data set from Jones et al. (2015). Genome-
wide expression data were acquired from a population collected in
Anyang (Henan province, 36.10°N, 114.20°E). Anyang is ~100 km
from Qiuxian and insects were collected at a similar time of year
(August 2013); therefore, it is expected that population differences be-
tween the two groups of insects were minimal. The relationship between
methylation and expression was explored using the methylation ratio
and TMM-normalized FPKM values (fragments per kilobase of exon
per million fragments mapped).

Flight mills and targeted bisulfite sequencing

To validate the genome-wide bisulfite data, and to determine the
strength of any association between DN A methylation and flight activity,
targeted bisulfite sequencing was performed on adult moths flown on
tethered flight mills. Female moths originating from northern Greece
were flown on the tethered flight mills following the procedures outlined
in Jones et al (2015). Insects were flown overnight and flight data
collected between the hours of 1900 and 0915 (dark period 2000-
0600). Individuals were snap-frozen in liquid nitrogen 1-2 hr following
the flight period for DNA extraction. Following an analysis of the flight
behavior, a total of 16 individuals (all female) representing two distinct
groups of short- and long-distance fliers (eight in each phenotype) were
chosen for DNA extraction and targeted bisulfite sequencing.

A selection of loci spanning 16 candidate genes, capturing a range of
methylation (exon methylation ratio 0.025-1), were chosen for the
detection of CpG sites. Primers were designed with parameters that
preferentially targeted regions between 100 and 300 bp and avoided
annealing to CpGs. Details of selected gene regions and primer design
are available in Supplemental Material, Table S1. gDNA from 16 indi-
vidual moths was extracted from the head and thorax using the EZNA
Insect DNA Kit (Omega Biotek) as described above. Samples were
bisulfite converted using the EZ DNA Methylation-Lightning kit
(Zymo Research) and purified (ZR-96 DNA Clean & Concentrator,
Zymo Research). Bisulfite-treated DNA (5 ng) was amplified, and the
amplicons pooled for barcoding and sequencing using a MiSeq V2
300 bp Reagent Kit (Illumina).

Low-quality reads and adapter sequences were trimmed, and the
sequencing reads realigned to the H. armigera genome using Bismark
(Krueger and Andrews 2011). Nucleotides in primers were trimmed in
the methylation calling and the methylation level quantified as the number
of reads reporting a cytosine divided by the total number of reads at that
site. Only CpG sites detected in at least one sample with at least 10 reads
were considered for analysis. The fractional methylation ratio was calcu-
lated as the number of methylated cytosines (mCpG) over number of
cytosines per site (mCpG/CpG). Mean differences between the two groups
of individual moths displaying contrasting performances on the flight
mills (N = 8) were estimated using a Student’s ¢-test.

Data availability

The raw bisulfite sequencing data used to analyze the methylome is
available at ArrayExpress (accession number E-MTAB-4779). Table S1
provides information on the primers used to amplify selected loci for
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targeted bisulfite sequencing. Table S2 describes the enriched GO terms
in highly methylated genes and Table S3 lists enriched GO terms in
genes with no detectable methylation. Table S4 shows the top 25 differ-
entially expressed genes associated with flight activity per methylation
level. Table S5 details the selected loci for targeted bisulfite sequencing.
Table S6 provides all the raw CpG data per individual site and single
gene, and the total exonic and intronic methylation ratio per gene.
File S1 contains Figures S1-S4.

RESULTS AND DISCUSSION

MS detection of global CpG methylation levels in

H. armigera

The total levels of 5mdC and H5mdC were measured using MS in
adults and larvae. Despite missing DNMT?3, methylation is observed in
H. armigera and the percentage of 5mdC was almost identical in the
two life stages (adults, 0.165% * 0.009 and L3 stage larvae, 0.164% =+
0.009), whereas H5mdC was undetectable in H. armigera. This suggests
that DNA methylation is stable across life stages of H. armigera and, in
contrast to recent findings in the honeybee (Wojciechowski et al. 2014),
there is no evidence for additional epigenetic regulation via hydroxy-
methylation in this species.

WGBS of DNA methylation in H. armigera

Sequencing of bisulfite-converted gDNA from the heads and thoraxes of
eight adult moths of H. armigera (four females and four males) yielded
529 million reads, of which 28% mapped to the genome. The overall
bisulfite conversion rate was high (> 99%). Methylation in insects is
almost exclusively at CpG dinucleotides rather than CHG or CHH sites
(H = A, C, or T) (Lyko and Maleszka 2011), so we focused on meth-
ylation at CpG sites only. Of the estimated 19.7 million CpG sites in the
H. armigera genome, 73.5% were identified by sequencing (N = 14.5
million) with an average coverage of 28x.

The number of mCpGs detected (probability of methylated cytosine
according to a binomial distribution, P < 0.05, minimum two reads per
site) was 169,911, which represents 0.86% of all CpGs in the genome
and 1.17% of those identified from bisulfite sequencing. Using a stricter
threshold of 10 reads per site, 0.43% of all cytosines detected and 0.34%
of all cytosines in the genome were methylated. The distribution of
mCpGs are presented for both thresholds in Figure S1 in File SI.
Comparisons with other genome-wide bisulfite data require some cau-
tion due to differences in mCpG detection methodology; however, the
absolute number of mCpGs detected in this study is similar to that
predicted in Bombyx mori (169,911 vs. 172,117) (Xiang et al. 2010).
However, based on the estimated number of genomic CpGs, the relative
level of methylation is much greater in H. armigera (0.86% vs. 0.11%).
Of the estimated 17,086 genes from the recently annotated H. armigera
genome (Pearce et al. 2017), ~69.6% have at least one mCpG site.

Comparison of the level of CpG methylation in exons, introns, and
the 2 kb region upstream of the gene transcription start site (TSS)
(putative promoter region) (Figure S2 in File S1) revealed that exonic
CpGs are more highly methylated (3.06%) than introns (0.57%) or the
2 kb upstream (1.78%), in line with previous findings that DNA meth-
ylation is primarily confined to exons in insects (Lyko et al. 2010; Xiang
et al. 2010; Wang et al. 2013; Beeler et al. 2014; Bewick et al. 2016). The
mean exon methylation ratio (calculated as the proportion of methyl-
ated cytosines determined by the binomial distribution) is also much
higher than in introns and 2 kb upstream regions (exon mean, 0.053;
intron mean, 0.017; and 2 kb upstream regions, 0.023). The distribution
of the exon methylation ratio follows a bimodal distribution with two
overlapping clusters of lowly and highly methylated genes, similar to
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Figure 1 The distribution of the methylation ratios per genomic function. Distribution of methylation in (A) exons, (B) introns, and (C) 2 kb from the

transcriptional start site.

the patterns of methylation reported for B. mori and Apis mellifera
(Sarda et al. 2012) (Figure 1A). Intronic methylation ratios are, uni-
modal in line with patterns in other insects (Figure 1B). There is a
small bimodal pattern in regions 2 kb upstream of the TSS, but this
is probably insignificant given that methylation levels before the
TSS are generally low in other Lepidopterans (Xiang et al. 2010)
and could be due to inaccuracies in the annotation of intragenic
regions of the genome (Figure 1C). The bimodal pattern of gene
body methylation is a common feature between distantly related
invertebrates with functional methylation systems (Sarda et al
2012). These results also confirm that functional DNA methylation
occurs in Lepidoptera despite the loss of DNMT3 from this order
~177.99-116.45 MYA, and that either DNMT1 may compensate
for this loss or de novo methylation occurs through some other
non-DNMT-like protein (Bewick et al. 2016).

There is negative correlation between exon methylation and the CpG
O/E ratio (Figure 2A), reflecting the propensity for methylated cyto-
sines to be converted to thymines over time (Bird 1980). In contrast to
the bimodal distribution of exonic methylation in H. armigera de-
scribed above and the CpG OJE ratio in other insects (Lyko et al.
2010; Walsh et al. 2010; Falckenhayn et al. 2013; Wang et al. 2014),
we observe a single CpG O/E peak (Figure 2B; mean CpG O/E per gene
0.991). This is consistent with available CpG O/E distributions from
other Lepidoptera (B. mori and Danaus plexippus) and the red flour
beetle (Tribolium castaneum) (Xiang et al. 2010; Zhan et al. 2011). The
common unimodel CpG O/E distribution in these species could be due
to reduced CpG depletion over evolutionary time, potentially a result of
the loss of the de novo methylation enzyme DNMT3 (Bewick et al.
2016). Nevertheless, when we classified genes as methylated or non-
methylated according to the level of exon methylation ratio (* 10%),
there is a clear segregation into low CpG O/E (methylated) and high
CpG O/E (nonmethylated) (Figure 2C), with significant differences

between the mean CpG O/E of methylated (0.738) and nonmethylated
genes (1042) (F2944)14055 = 1.305, pP< 00001)

DNA methylation and gene expression in H. armigera
The relationship between DNA methylation and gene expression was
investigated using an RN A-seq data set from adult H. armigera collected
from a nearby population in China (Jones et al. 2015). There was a
largely positive, although nonlinear, relationship between intragenic
methylation and expression (Spearman’s rank, p = 0.397, P <
0.0001) (Figure 3A). The median expression of methylated genes was
significantly greater than that of those nonmethylated (* 10%)
(Wilcoxon Signed-Rank test, P < 0.0001) (Figure 3B). It was also notable
that of the 1462 genes not expressed (FPKM = 0), 81.0% had zero
exonic methylation, a large increase from the percentage of genes that
have no detectable exonic methylation throughout the genome (43.1%).
These results demonstrate that DNA methylation is tightly associ-
ated with stably expressed genes in H. armigera and that the function of
methylation is likely to mirror that in other highly diverged insect
orders (e.g, Hymenoptera and Orthoptera) (Lyko et al. 2010; Flores
et al. 2012; Hunt et al. 2013b; Wang et al. 2013). Given the observation
that methylation is spatially correlated with histone modifications
(Glastad et al. 2015), future studies exploring the regulation of gene
expression in H. armigera (and other Lepidoptera) via DNA methyl-
ation should be investigated in the context of chromatin organization
and the wider epigenetic landscape.

Functional enrichment of methylated genes in

H. armigera

A functional enrichment analysis of those genes exhibiting high exon
methylation ratios (> 50%) showed that these genes are related to basic
housekeeping roles such as ribosome structure, translation, and gene
expression (Table S2). Conversely, genes lacking any mCpGs were
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Figure 3 The relationship between
methylation and gene expression in H.
armigera. (A) Distribution of RNA se-
quencing (RNA-seq) TMM (Trimmed
mean of M-values)-fragments per kilo-
base of exon per million fragments
mapped (TMM-FPKM logqq) expres-
sion stratified by exon methylation bins
(10%). (B) Density plots for expression
data for individual genes per methyl-
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enriched for specialized functions such as cell signaling (G-protein
coupled receptors), detoxification, olfaction, and the insect cuticle (Ta-
ble S3). This finding provides additional weight to the hypothesis that
an important function of methylation in a diverse array of insects,
including Lepidoptera, is the regulation of general cellular processes
in ubiquitous, evolutionary conserved, and stably expressed genes
(Elango et al. 2009; Hunt et al. 2010; Xiang et al. 2010; Wurm et al.
2011; Sarda et al. 2012).

Validation of methylation in selected loci via targeted
bisulfite sequencing

To validate the whole-genome methylation data, primers were designed
to targeted selected loci in 16 genes (see below for details). Excellent
coverage was obtained with 305,680-507,593 reads per sample, an
average CpG coverage ranging from 208X to 949x and a bisulfite con-
version rate of > 99%. Following quality control, a total of 322 CpG
sites were detected above the required threshold (> 10 reads per site) in
either exonic or 5'-UTR regions (94 sites were detected in all 16 sam-
ples). A comparison of methylation levels from the whole genome vs.
the average targeted bisulfite sequencing across all samples showed a
strong positive relationship (R? = 0.78 and P < 0.0001; Figure 4). The
fact that the two methylation detection methods were strongly corre-
lated, despite that fact they were performed on different adult H. armi-
gera samples, suggests that the methylation status of most individual
CpG sites is relatively stable across different individuals of this species.

Methylation of selected genes associated with
flight behavior
A whole-genome transcriptional analysis previously showed that the
flight activity of H. armigera is associated with the differential expres-
sion of a suite of genes encompassing a range of biological functions,
including fatty acid/ketone metabolism, flight muscle structure, and
ATP synthesis/respiration (Jones et al. 2015). The mean exon methylation
of these candidate genes (n = 191) is 0.040 (range 0-0.684) with an CpG
O/E of 0.95; indicating similar, albeit slightly lower, levels compared to
genome-wide methylation. A list of the 25 candidates with exon methyl-
ation ratios > 10% is provided in Table S4, with the highest levels present
in the motor protein dynein light chain roadblock-type 2 (HaOG207620),
NADH dehydrogenase (HaOG208245), the lysine-specific demethylase
KDM4 (HaOG212852), and an ortholog of the Drosophila hypoxia-
related gene tnz CG4365 (HaOG210853). Selected loci from 16 candi-
dates were chosen to validate the whole-genome analysis (Table S5).
To examine whether these genes also show signs of differential
methylation in the context of flight behavior, a flight mill experiment
was performed on H. armigera collected from northern Greece. Female
moths showed continuous variation in flight performance with a mean
total distance flown during a single night of 13,619 m. Flight mill data
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0 10 ated (red) or nonmethylated (blue) status,

based on = 10% exonic methylation.

collected from multiple noctuid moth species (H. armigera, Spodoptera
frugiperda, and S. exempta) indicate that insects that fly for longer
distances, in general, engage in fewer flights (A. Pearson and C. M.
Jones, unpublished data). Using this approach, we discriminated be-
tween long- (N = 8, mean distance = 21,586 m, and mean number of
flights = 7.5) and short-distance fliers (N = 8, mean distance = 5246 m,
and mean number of flights = 44.25) for comparison of methylation
levels in the targeted gene set (Figure S3 in File S1).

For the majority of loci, we observed few differences in the meth-
ylation levels between short- and long-distance fliers, with high con-
cordance between the flight groups (R? = 0.84 and P < 0.0001) (Figure
S4 in File S1). For example, in the ketone metabolism gene succinyl-
CoA:3-ketoacid coenzyme A transferase 1 (OXCT), the fractional
methylation ratios per CpG site are almost identical across four exons
(Figure 5A). This suggests that the transcriptional activity of many
genes associated with flight performance in H. armigera is not influ-
enced by DNA methylation (although in this preliminary study we have
only looked at a comparatively small subset of previously identified
candidate genes). However, there were two examples of genes (com-
prising a total of eight CpG sites) where methylation levels were sig-
nificantly different between the flight phenotypes (Table 1).

1.00 = L] ]

R2=0.78

0.75 =

0.50 =

Methylation ratio (genome)

0.25 =

0.00 =

0.00 0.25 0.50 0.75 1.00
Methylation ratio (targeted)

Figure 4 Correlation between methylation in selected loci analyzed
by whole-genome and targeted sequencing.
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The top three hypermethylated sites in the long-distance fliers—with
fractional methylation ratios 0.231-0.323 greater compared to short-
distance fliers—were all present in KDM4 (Table 1). In accordance with
relatively high exonic methylation (~50%) and a low CpG O/E value
(0.58), a large percentage of CpG sites in KDM4 were methylated
(Figure 5B). KDM4 encodes a demethylase that removes di- and tri-
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methyl groups from lysines 9 and 36 in histone H3 (H3K9 and H3K36)
(Klose et al. 2006), and therefore plays a role in reversing histone meth-
ylation, which itself is associated with transcriptional activity. The
colocalization of DNA methylation and histone post-translational
modifications (e.g., H3K9me3 and H3K36me3) are strongly associated
with stably expressed genes (Hunt et al. 2013b; Glastad et al. 2015). For
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Table 1 Hyper- and hypomethylated sites in selected loci when comparing short- and long-distance flight phenotypes

Fractional Methylation (WCG/CGay1)

Gene Name Description Exon No. Scaffold No. Position Meth. Diff.# P-Value Long-Distance  Short-Distance
HaOG212852 KDM4 1 480 8283  0.323 0.0007 0.648 0.325
HaOG212852 KDM4 1 480 7239 0320 0.0312 0.639 0.319
HaOG212852 KDM4 1 480 8858  0.231 0.0474 0.408 0.177
HaOG206723 Phosphoribosylformylglycinamidine 3 211 76644 0.190 0.0298 0.750 0.560
synthase-like

HaOG202339 Mobile element jockey-like 2 109 667671 0.005 0.0192 0.005 0.000

HaOG216422 Phosphorylated CTD-interacting 1 86 1009788 —0.024 0.0247 0.000 0.024
factor 1-like

HaOG206745 Succinyl-CoA:3-ketoacid coenzyme 4 211 282391 —0.035 0.0467 0.902 0.937
A transferase 1

HaO0G202350 Phosphoribosyl pyrophosphate 1 1" 223889 —0.044 0.0476 0.833 0.876
synthetase

yo., number; Meth. Diff., methylation difference; CTD, C-terminal domain; CoA, coenzyme A.
Methylation differences between phenotypes determined by average methylation ratio across individual samples.

example, Glastad et al. (2015) show that > 90% of methylated genes
also feature H3K4me3 or H3K36me3. The consequences of hyperme-
thylation in the KDM4 gene itself in the context of an energetic activity
such as flight, which requires a strong transcriptional response, is un-
known. It has been shown that the loss of KDM4 in Drosophila impedes
the transcriptional activation of ecdysone signaling (Tsurumi et al.
2013), a pathway with increasingly recognized importance in adult
insect behavior (Schwedes and Carney 2012).

A functional enrichment analysis has previously shown that genes
associated with the inosine monophosphate biosynthesis pathway and
purine/ATP metabolism are enriched in overexpressed genes associated
with increased flight activity (Jones et al. 2015). However, genes with
these GO terms are not highly methylated (mean exonic methylation =
0.035) except for PFAS, an enzyme that encodes phosphoribosylfor-
mylglycinamidine synthase. This gene contained the only other
strongly differentially methylated site between the flight phenotypes
(Figure 5C and Table 1). This enzyme catalyzes part of the pathway
involved in ionosine purine biosynthesis and ATP turnover, but
whether the expression of this pathway induced by the demands of
a highly energetic activity such as migratory flight requires mediation via
a hypermethylated site requires further investigation.

While DNA methylation in the exonic regions of insect genomes is
associated with transcription, this methylation largely occurs in genes
with basic regulatory functions and generally not in those genes that are
differentially expressed between phenotypes (Hunt et al 2013a;
Libbrecht et al. 2016; Sarda et al. 2012). Indeed, the function of DNA
methylation in the context of expression in insects is still largely un-
known and is likely to require further study using all components of the
epigenome (Glastad et al. 2016). In this context, it is unlikely that
differential methylation will contribute largely to the contrasting flight
capacities exhibited by H. armigera in this study. Nevertheless, the
differentially methylated sites described above do represent viable tar-
gets to determine the functional significance of methylation on expres-
sion and/or flight behavior. At single-base resolution, the induction of
methylation in vivo via the CRISPR/Cas9-based system (McDonald
et al. 2016) represents a promising future application to determine
the role of differentially methylated sites in insects. At the genome-wide
scale, chemical disruption of methylation via a demethylating agent has
been shown to lead to subtle changes in sex allocation in the parasitic
wasp Nasonia vitripennis (Cook et al. 2015). Migration is a complex
syndrome consisting of a combination of several morphological, be-
havioral, and physiological traits (Liedvogel et al. 2011; Chapman et al.
2015). Therefore, it seems plausible that the disruption of DNA meth-
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ylation in migratory insects containing a functional methylation sys-
tem, including H. armigera, could also result in subtle but significant
changes in one of the many biochemical pathways that contribute to
this behavior. The knockdown of methyltransferases via CRISPR or
RNA interference [e.g., Flores ef al. (2012)] also represents a potential
experimental tool.

Conclusions

The description of the single-base-resolution methylome of H. armigera
presented here provides an insight into genome-wide DNA methyl-
ation in a noctuid moth. Our findings reveal that, as reported for other
insects, methylation is sparse in this species, with close to ~1% of
CpG sites identified as methylated, in sharp contrast to the 60-90%
methylation levels observed in mammals. Methylation in H. armi-
gera is predominantly exonic and significantly enriched in genes
involved in basal cellular housekeeping roles. The degree of genic
methylation in this species is positively correlated with gene expres-
sion, although the relationship is not linear, with methylated genes
exhibiting higher median expression levels than nonmethylated
genes, consistent with the results of other insect species. Recent stud-
ies have provided some initial evidence of a relationship between
methylation and life history divergence associated with long-distance
migration (Wang et al. 2014; Baerwald et al. 2016). Our preliminary
exploration of the role of this epigenetic mark in the regulation of the
expression of candidate genes associated with this trait in H. armi-
gera suggests the that transcription of only a minor subset of genes
may be influenced by methylation. However, these genes represent
promising candidates for further characterization in the context of
methylation and other epigenetic marks, such as histone modifica-
tions. Finally, we envisage that the H. armigera methylome will be a
valuable resource for further research into the epigenetic control of
adaptive traits in this important insect pest [e.g., resistance to Bt
toxins and insecticides (Downes et al. 2016)], especially now that
the full genome is available (Pearce et al. 2017).
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