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Abstract

To get further insight into the factors involved in the maintenance of genome integrity we performed a screening of
Saccharomyces cerevisiae deletion strains inducing hyperrecombination. We have identified trf4, a gene encoding a non-
canonical polyA-polymerase involved in RNA surveillance, as a factor that prevents recombination between DNA repeats.
We show that trf4D confers a transcription-associated recombination phenotype that is mediated by the nascent mRNA. In
addition, trf4D also leads to an increase in the mutation frequency. Both genetic instability phenotypes can be suppressed
by overexpression of RNase H and are exacerbated by overexpression of the human cytidine deaminase AID. These results
suggest that in the absence of Trf4 R-loops accumulate co-transcriptionally increasing the recombination and mutation
frequencies. Altogether our data indicate that Trf4 is necessary for both mRNA surveillance and maintenance of genome
integrity, serving as a link between RNA and DNA metabolism in S. cerevisiae.
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Introduction

Maintenance of genome integrity is critical for cell homeostasis.

Cells posses multiple mechanisms such as specific DNA repair

pathways or cell cycle checkpoints to deal with DNA damage and

the resulting genetic instability commonly associated with cancer

and several genetic disorders [1]. Genomes are exposed to the

action of physical and chemical agents, and metabolic processes

that can cause lesions in the DNA. One such process is

transcription, which has been established as an inducer of genome

instability. Recombination and mutation frequencies are enhanced

by transcription, leading to transcription-associated recombination

(TAR) and transcription-associated mutation (TAM) [2,3]. Key to

understanding how transcription increases genomic instability is

the fact that single-stranded DNA (ssDNA) is chemically more

unstable than double-stranded DNA (dsDNA). Transcription itself

and changes in topology and chromatin conformation associated

with it may increase the probability of the occurrence of ssDNA.

Consistently, DNA-damaging agents show a synergistic effect with

transcription in the induction of recombination in yeast [4], and

mutation rates correlate with the strength of transcription and

superhelical stress [5]. In addition to a major ssDNA accessibility,

transcription associated genomic instability could also be the result

of the collision between the transcription and replication

machineries [6,7]. A possible intermediate of transcription-

associated genomic instability is an R-loop structure consisting of

a RNA:DNA hybrid that displaces the non-template ssDNA

strand. R-loops are transcription by-products rarely formed in the

cell but they accumulate in a number of transcription and mRNP

mutants with a genetic instability phenotype [8].

During transcription, the nascent pre-mRNA associates with

mRNA-binding proteins and undergoes a series of processing steps

resulting in an export competent mRNA ribonucleoprotein

complexes (mRNP) [9,10]. Emerging evidence suggest that when

mRNP biogenesis does not occur properly the RNA can hybridize

with the DNA template, forming R-loops that would hinder

transcription elongation and block replication. One of the best

studied examples is the THO complex, which functions at the

interface transcription-mRNA export. Mutations in THO lead to

a transcription-associated hyperrecombination phenotype partially

suppressed by overexpression of RNase H, an enzyme that

degrades the RNA strand of DNA:RNA hybrids [11]. Moreover,

in these mutants genome instability is exacerbated by the action of

the human cytidine deaminase AID that acts on the displaced

ssDNA of R-loops [12,13]. Similar R-loop-dependent co-tran-

scriptional genome instability is observed in mammalian and

chicken DT40 cells depleted of the ASF/SF2 splicing factor [14].

More recently, mutations in topoisomerase I, SenI/SENATAXIN

and Sin3 have also been reported to cause genome instability via a

common mechanism [15,16,17,18]. In addition, a number of

RNA processing factors have been shown to be relevant for the

maintenance of genome integrity by preventing R-loop accumu-

lation by different genetic and cellular approaches in yeast and

human cells [17,19,20].
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In Saccharomyces cerevisiae, screenings based on marker stability

provide a powerful approach for studying genes that preserve

genome structure [21,22]. These screenings exploit the use of

artificial chromosome (YAC) and endogenous loci to measure

genome instability events such as gross chromosomal rearrange-

ments (GCR) and chromosome loss. Artificially constructed

DNA repeats have also been validated as models to study

genomic instability involving homologous recombination

[23,24]. To get further insight into the factors implicated in

the maintenance of genome integrity we performed a screening

of S. cerevisiae deletion strains for hyperrecombinant mutations,

using different systems based on differentially transcribed DNA-

repeats. We identified mutations that increase recombination in

seven genes, four related with RNA metabolism, ranging from

transcription to translation. Notably, among these mutations we

found that deletion of TRF4, a polyA-polymerase of the

TRAMP complex (Trf4/5-Air1/2-Mtr4 polyadenylation) that

plays a role in RNA surveillance [25,26,27], confers a

transcription-associated hyperrecombination phenotype that is

mediated by the nascent mRNA. We provide genetic evidence

that R-loops are formed in trf4D cells, such structures being

responsible of the increase in recombination and mutation

frequencies. Our data indicate that Trf4 is necessary for the

maintenance of genome integrity, providing a link between

mRNA surveillance and DNA metabolism in S. cerevisiae.

Materials and Methods

Strains and Plasmids
Yeast strains used are listed in Table 1. Plasmids pRS314L,

pRS316L, pRS314LY, pRS316LY, pRS314SU, pRS316SU and

pRS316-LYDNS [28], pRS314L-lacZ, pRS314GL-lacZ [29],

pGL-ribm, pGL-Rib+, pGAL:RNH1 [11] p413GAL1, p416-

GAL1 [30] and p413GALAID [13] were used to determine

recombination frequencies. Plasmid pCM184-LAUR was used for

the analysis of mRNA expression levels as previously described

[31]. Plasmids pNOPPATA1L, pNOPPATA1L-TRF4-WT and

pNOPPATA1L-TRF4-DADA kindly provided by W. Keller, have

been previously described [32].

Recombination and Mutation Analysis
Recombination frequencies were determined as described [33].

For each strain, the recombination frequencies are given as the

average and standard deviation of the median recombination

value obtained from fluctuation tests performed in 3–4 different

transformants using 6 independent colonies per transformant.

Recombinants were selected as Leu+ colonies for the plasmid

containing LEU2 truncated repeat systems. Recombination

analyses for the chromosomal leu2-k::ADE2-URA3::leu2-k system

(Lk-AU) were performed in wild-type and congenic mutants using

6 to 12 independent colonies grown in synthetic complete medium

SC, and recombinants were selected in SC+FOA.

Mutation frequencies were determined in wild-type and mutant

strains using the Ptet::lacZ-URA3 (pCM184-LAUR) fusion con-

struct. Ura_ mutants were selected in SC+FOA. The human AID

gene, present in p413GALAID, was used for overexpression in 2%

galactose medium. Median mutation frequencies were obtained by

fluctuation tests performed in 3–4 different transformants using 6

independent colonies per transformant.

Miscellaneous
b-galactosidase assays and Northern analyses were performed

according to previously published procedures [31].

Results

New proteins involved in genome instability
To identify novel genes with a role in genome stability, we

performed a screening of S. cerevisiae deletion strains for

hyperrecombinant mutants. We analyzed a total of 610 viable

deletion strains constructed by the EUROFAN consortium. All

strains were transformed with pRS314 and pRS216 centromeric

plasmids carrying three different recombination systems, L, LY

and SU, as described previously [28]. These systems are based on

direct (L and LY) or inverted (SU) repeats of a 0.6 kb internal

fragment of the LEU2 ORF generated with two truncated copies

of the LEU2 gene (leu2D39 and leu2D59) spaced by different DNA

sequences. Deletions (L and LY systems) and inversions (SU) were

scored as Leu+ events and quantified by fluctuation tests. Among

the strains analyzed, we found seven deletion mutants that

conferred a hyperrecombinant phenotype (Figure 1). Four out of

these mutants correspond to genes involved in RNA related

processes: MED2, a subunit of the RNA polymerase II mediator

complex [34]; RPL13A, a component of the large (60S) ribosomal

subunit [35]; LSG1, a GTPase involved in 60S ribosomal subunit

biogenesis [36], and TRF4, a component of the TRAMP complex

involved in RNA surveillance [25,26,27]. The other three mutants

were in TOS3, a redundant kinase that activates the Snf1/AMPK

pathway that controls nutrient and environmental stress response

[37]; ART1, involved in regulating the endocytosis of plasma

membrane proteins [38], and APC9, involved in the regulation of

protein stability [39]. Next, we measured the frequency of direct-

repeat recombination in the chromosomal leu2-k::ADE2-URA3::-

leu2-k system. We constructed the different mutant strains carrying

this chromosomal system and recombination leading to ura-

deletions was scored. As shown in Figure 1, all mutants showed

similar recombination frequencies to those of the wild-type strain,

except trf4D. Thus we decided to focus our work on trf4D because

it showed a hyperrecombination phenotype in all direct-repeat

systems assayed, regardless of whether they were in plasmids or

chromosomes.

trf4D mutants confer transcription-dependent
hyperrecombination
We observed that the hyperrecombination phenotype of trf4D

for the direct-repeat systems analyzed seems to be transcription-

dependent (Figure 1). Recombination frequencies in trf4D strains

were 2.6 and 8.7 times the WT levels for the L and LY

systems, respectively. Both systems are based on the same direct

repeats (an internal fragment of the LEU2 gene) and differ in

the length of the intervening sequence (31bp for L, and 5.57kb

for LY) [28]. As in trf4D cells the recombination frequency is

higher when there is a long DNA fragment transcribed between

the two direct repeats, we wondered if deletion of TRF4 indeed

conferred a transcription-dependent genetic instability pheno-

type. To test this, we determined the effect of trf4D on

recombination in the L-lacZ and GL-lacZ systems carrying 0.6-

kb leu2 direct repeats flanking the lacZ ORF under conditions of

low (GAL1 promoter in 2% glucose), medium (LEU2 promoter)

and high levels of transcription (GAL1 promoter in 2%

galactose). As can be seen in Figure 2, the higher the strength

of transcription the stronger the increase in recombination.

Altogether, the data indicate a statistically significant increase in

recombination levels in trf4D cells respect to the wild-type that is

transcription-dependent.

trf4D Transcription-Associated Genome Instability
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The hyperrecombination phenotype of trf4D mutant is
mediated by the nascent mRNA
The length and high GC content of lacZ gene makes

transcription through this sequence poorly efficient in mutants

impaired in transcription elongation [40,41]. As lacZ transcrip-

tion impairment was linked in many cases to hyperrecombina-

tion phenotype in mutants of THO and other mRNP factors

[42,43], we explored whether lacZ transcription was also

affected in trf4D mutants. For this purpose, we analyzed gene

expression in the LAUR expression system [31] that contains a

4.15-kb lacZ-URA3 translational fusion under the control of the

Tet promoter. Defects in lacZ expression were determined as

poor growth in the absence of uracil and as lack of ß-

galactosidase activity. As shown in Figure 3A trf4D cells behave

as wild-type cells, suggesting that this mutant does not have a

negative effect on transcription of the lacZ-URA3 fusion.

Table 1. Table of Strains used in this work.

Strain Genotype Source/Reference

W303-1A MATa ade2-1 can1-100 his3-11 leu2-3,112 trp1-1 ura3-1 R. Rothstein

FY1679 MATa ura3-52 his3D200 leu2D1 trp1D63 Eurofan

FLRA006-01B(A) MATa ura3-52 his3D200 leu2D1 LYS2 trp1D63 lsg1D::KAN Eurofan

FLPZ022-08B(AL) MATa ura3-52 his3D200 leu2D1 LYS2 TRP1 rpl13A:: KAN Eurofan

FBS1008-02A(A) MATa ura3-52 his3D200; leu2D1 LYS2 TRP1 tos3D:: KAN Eurofan

FPPROO3-03D(AL) MATa ura3-52 his3D200 leu2D1 LYS2 trp1D63 apc9D:: KAN Eurofan

FSRM023-03C(A) MATa ura3-52 his3D200 leu2D1 LYS2 TRP1 art1D:: KAN Eurofan

WFBE030 MATa ade2-1 can1-100 his3-11 leu2-3,112 trp1-1 ura3-1 trf4D:: KAN This study

WNOS032 MATa ade2-1 can1-100 his3-11 leu2-3,112 trp1-1 ura3-1 med2D:: KAN This study

TRF4D-C5 MATa ade2-1 can1-100 his3-11 leu2-3,112 trp1-1 ura3-1 trf4D:: KAN This study

MGY6-1A MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k [64]

AFGL-7D MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k lsg1D:: KAN This study

WFDL-1D MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k rpl13AD:: KAN This study

AFGL-2D MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k tos3D:: KAN This study

WFLR-2B MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k apc9D:: KAN This study

AFOR-1A MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k art1D:: KAN This study

AWT4-1C MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k trf4D:: KAN This study

MGY1-2D MATa ade2 his3 trp1 ura3 leu2-k::ADE2-URA3::leu2-k med2D:: KAN This study

doi:10.1371/journal.pone.0065541.t001

Figure 1. Recombination analyses of med2, lsg1, trf4, rpl13A, tos3, art1 and apc9 mutants. A diagram of each recombination system (not
drawn to scale) is shown at the top. Repeats are shown as gray boxes. Arrows indicate relevant transcripts produced by the constructs. For the L, LY
and SU systems, recombination frequencies were determined in wild-type (FY1679) and mutant strains transformed with plasmids pRS314-L and
pRS314-LY carrying the leu2 direct-repeat systems, and pRS314-SU carrying an inverted repeats system. Recombinants were selected as Leu+. The
average median value and SD of 3–4 fluctuation tests are shown. Recombination frequencies ofmed2D (MGY1-2D), lsg1D (AFGL-7D), trf4D (AWT4-1C),
rpl13AD (WFDL-1D), tos3D (AFGL-2D), art1D (AFOR-1A), apc9D (WFLR-2B) and wild-type (MGY6-1A) congenic strains carrying the chromosomal leu2-
k::ADE2-URA3::leu2-k system are shown. For recombination analyses, independent colonies were obtained from SC and recombinants were selected in
SC+FOA.
doi:10.1371/journal.pone.0065541.g001

trf4D Transcription-Associated Genome Instability
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Moreover, northern analyses show that lacZ mRNA levels are

much higher in trf4D mutants than in wild-type cells (Figure 3B),

consistent with the previously described role of this protein in

mRNA degradation [27].

Our data indicate that although trf4 mutants show a

transcription-dependent hyperrecombination phenotype

(Figure 2), transcription seems not to be affected. Instead,

higher amounts of mRNAs are accumulated, probably as a

result of the defect in mRNA decay mediated by TRAMP. As

the hyperrecombination phenotypes of several mRNP mutants

depend on the nascent mRNA [11,44], we analyzed whether

this is the case for trf4 mutants. We measured recombination in

the GL-Rib+ and GL-ribm repeats systems [11], which contain

the sequence of the PHO5 gene followed by either an active

(Rib+) or inactive (ribm) hammerhead ribozyme respectively,

located between two 0.6-kb-long leu2 direct repeats (Figure 4A)

under the control of the inducible GAL1 promoter. Both the

Rib+ and ribm constructs synthesize a long mRNA, but upon

transcription the active hammerhead ribozyme cleaves the

transcript shortening the mRNA fragment still attached to the

polymerase [11]. Figure 4B shows that in trf4D strains

recombination levels in the GL-Rib+ construct was lower than

in GL-ribm, close to those of the wild type. The suppression of

the hyperecombination phenotype by the ribozyme suggests that

long nascent mRNAs contribute to the genetic instability in the

absence of Trf4, therefore implicating that hyperrecombination

was mediated by the RNA molecule.

Hyperrecombination in trf4D cells does not depend on
the catalytic polyadenylation domain of Trf4
As Trf4 is a cofactor of the TRAMP complex involved in

RNA surveillance, we determined whether hyperrecombination

was dependent on its polyadenylation activity. We measured the

recombination frequency in trf4D cells carrying the chromo-

somal leu2-k::ADE2-URA3::leu2-k system transformed with a

plasmid expressing either the wild-type TRF4 allele or the

polyadenylation-defective allele TRF4-DADA under the control

of the NOP1 promoter [32]. Trf4-DADA contains two aspartate

to alanine mutations in the catalytic site of the polyA-

polymerase that render the enzyme inactive [26]. Recombina-

tion levels were significantly reduced in trf4D cells by the

overexpression of the TRF4-DADA allele, reaching values close

to those of cells complemented with the wild-type TRF4 allele

(Figure 5). This suggests that hyperrecombination in trf4D cells

takes place through a mechanism that is independent of its

polyadenylation activity.

Genetic instability in trf4D is mediated by R-loops
Next we determined whether the mRNA dependency of the

hyperrecombination phenotype of trf4D cells was linked to the co-

transcriptional formation of R-loops. To address this possibility we

assayed the effect of RNase H overexpression in the trf4D mutant

carrying the direct-repeat recombination system LYDNS [28]. As

can be seen in Figure 6 the hyperrecombination phenotype of

trf4D was suppressed by the overexpression of RNase H.

Figure 2. Effect of the level of transcription on the trf4D
hyperrecombination phenotype. Isogenic strains W303-1A (WT)
and TRF4D-C5 (trf4D) were transformed with plasmids pSCH204 (L-lacZ
recombination system) or pRS314GL-lacZ (GL-lacZ) in which transcrip-
tion is under the control of LEU2 and GAL1-10 promoters, respectively.
Gray boxes represent LEU2 repeats that flank the lacZ sequence. Arrow
indicates the transcript produced. P. Promoter. Recombination fre-
quencies are plotted as a function of the transcription levels. Low
transcription refers to the GL-lacZ systems in strains cultured in 2%
glucose; medium refers to L-lacZ in 2% glucose, and high to GL-lacZ in
2% galactose. The average median value and SD of 3-4 fluctuation tests
are shown. Asterisks indicate statistically significant differences
between the strains indicated, according to Student’s t-tests (*,
R,0.05; ***, R,0.0005).
doi:10.1371/journal.pone.0065541.g002

Figure 3. Transcription analysis of the trf4D strain. (A) Analysis of
the ability of W303-1A and TRF4D-C5 (trf4D) strains carrying the
Ptet::lacZ-URA3 (LAUR) fusion construct (plasmid pCM184-LAUR) to form
colonies on SC-trp-ura medium and to form blue colonies on SC-Trp
complemented with X-Gal. (B) Northern analysis of the expression of
the Ptet::lacZ-URA3. RNA was isolated from two different mid-log phase
cultures from each strain, grown in SC-trp. We used the 3-kb BamHI lacZ
fragment and an internal 589-bp 25S rDNA fragment obtained by PCR,
as probes.
doi:10.1371/journal.pone.0065541.g003

trf4D Transcription-Associated Genome Instability
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As we have previously shown that as a consequence of R-loop

formation expression of AID is able to strongly induce both

mutation and recombination in yeast THO mutants [13], next we

analyzed whether this was also the case for trf4D cells. As can be

seen in Figure 6 AID expression increased recombination in trf4D
mutants 8.2 times above the WT levels, which was suppressed by

RNase H overexpression, consistent with the conclusion that R-

loops are formed in trf4D mutants. To confirm this, we assayed the

effect of AID expression on the mutation frequency in trf4D. We

analyzed the frequency of Ura- mutations in the LAUR expression

system. We observed that AID expression increased the frequency

of Ura- colonies 3-fold in wild-type cells, consistent with previously

reported data [13]. However this increase was of 13-fold in trf4D
cells (Figure 7). As expected if this specific enhancement of trf4D
was linked to R-loop formation, overexpression of RNase H

reduced the frequency of Ura- mutations to values close to those of

the wild-type (Figure 7). Altogether the data indicate that R-loops

accumulate in the absence of TRF4 and mediate the genomic

instability of trf4D cells.

Discussion

Here, we show the results of a screening for mutations that

increased homologous recombination between repeated DNA

fragments in yeast using genetic assays based on artificially

constructed DNA repeats. We identified different mRNP biogen-

esis and transcription related proteins, as well as other factors,

whose deletions lead to an increase in recombination in plasmid

borne assays. We focused our studies in TRF4, a factor involved in

RNA surveillance, because its absence causes a transcription-

associated hyperrecombination phenotype both in chromosome

and plasmid-borne systems. Using different genetic tools we show

that this phenotype is dependent on the presence of the nascent

mRNA and is mediated by R-loops. Our results therefore provide

a new link between RNA quality control and genetic instability

involving R-loops.

Our screening has permitted to identify a number of

transcription and RNA related factors as suppressors of genome

instability (Figure 1). These include MED2, one subunit of the

transcription Mediator complex; RPL13A, a ribosomal subunit;

LSG1, a GTPase involved in ribosomal biogenesis; and TRF4, a

poly(A) polymerase of the TRAMP complex. Our results provide

new evidence for the link between mRNA biogenesis and genome

instability. Mutants affecting various steps of transcription, from

initiation to termination, and RNA processing have been shown to

lead to an increase of cH2A foci, YAC instability or hyperre-

combination in yeast and human cells [14,17,19,20,31,43,44]. In

addition, our screening identified other non-RNA related factors

whose deletion could have an indirect impact on genome

instability: APC9, encoding a subunit of the Anaphase-Promoting

Complex/Cyclosome (APC/C), and TOS3, considered as the

functional orthologous of LKB1, a mammalian kinase associated

with Peutz-Jeghers cancer-susceptibility syndrome (Figure 1).

Several studies have explored the role of LKB1 as a major actor

of the AMPK/mTOR pathway connecting cellular metabolism,

cell growth and tumorigenesis [45].

We have focused our interest in deciphering the genetic basis of

genome instability in trf4D mutants. TRF4 is a non-canonical

polyA-polimerase that acts as a cofactor of the exosome complex

Figure 4. Nascent mRNA-dependency of the hyperrecombina-
tion phenotype of trf4D mutants. (A) Direct-repeat recombination
systems GL-Rib+ and GL-ribm containing the PHO5-Rib+ or PHO5- ribm

sequences flanked by two truncated copies of LEU2 in direct orientation
under the GAL1 promoter. These systems contain respectively an active
or inactive 52-bp ribozyme (Rib). The ribm system (inactive ribozyme)
yields a long transcript, whereas in the Rib+ system (active ribozyme)
self-cleavage of the PHO5-Rib transcript leads to a shorter mRNA
(represented by arrows). (B) Recombination frequencies in W303-1A
(WT) and TRF4D-C5 (trf4D) cells containing the recombination systems
GL-Rib+ and GL-ribm. Experiments were performed in 2% galactose to
allow expression of the direct repeats. The average median value and
SD of 3–4 fluctuation tests are shown. Asterisk indicates statistically
significant differences, according to Student’s t-tests (*, R,0.05).
doi:10.1371/journal.pone.0065541.g004

Figure 5. The hyperrecombination phenotype of trf4D mutants
is not dependent of its poly-adenylation catalytic domain.
Recombination frequencies in AWT4-1C cells carrying the chromosomal
leu2-k::ADE2-URA3::leu2-k system and transformed with the pNOPPA-
TA1L vector either empty (trf4D) or carrying the wild-type TRF4 (WT) or
the mutant TRF4-DADA alleles (TRF4-DADA). The average median value
and SD of 3–4 fluctuation tests are shown. Asterisks indicate statistically
significant differences, according to Student’s t-tests (*, P,0.05).
doi:10.1371/journal.pone.0065541.g005

trf4D Transcription-Associated Genome Instability
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for the quality control of different types of RNAs [46].

Interestingly, it was originally isolated in a synthetic growth screen

with top1 (topoisomerase one-requiring function) [47]. This is a

notable observation because THO mutations also show a synthetic

growth defect with top1 [48] and indeed hpr1D was also recovered

in that screen. In addition, trf4 interacts genetically with mutations

in different components of transcription, histone modification and

histone remodeling complexes, and proteins involved in cohesion

and DNA repair (reviewed in [49]). Beside its function in RNA

surveillance, Trf4 has been shown to control chromatid cohesion,

mitotic chromosome condensation and mitotic segregation

[50,51,52], rDNA copy number [53], and telomere length [32].

Therefore, it seems that Trf4 plays a role in DNA metabolism of

unknown nature.

We show that TRF4 prevents genetic instability, as trf4D was

identified as in our screening with recombination systems

containing truncated repeats of the LEU2 gene (Figure 1).

Modulating the transcription levels of the repeats through

constitutive and regulatable promoters, we have demonstrated

that the hyperrecombination phenotype of trf4D is transcription-

dependent (Figure 2). In addition, the hyperrecombination

phenotype of trf4D cells can be suppressed by the action of a

ribozyme inserted at the nascent mRNA as well as by RNase H

overexpression (Figure 4 and Figure 6). The data indicate that

RNA:DNA hybrids accumulate in the absence of this mRNA

surveillance factor. Interestingly, we have previously reported that

mutation in RRP6, the exonuclease subunit of the nuclear

exosome, has an effect on transcription elongation and genome

integrity [43]. Recently, it has been shown that deletion of TRF4,

and of other mRNA surveillance factors, such as KEM1 (an

exonuclease involved in cytoplasmic mRNA decay), AIR1 (a RNA-

binding protein of the TRAMP complex) and RRP6 lead to

elevated GCRs in the form of terminal deletions and mini-

chromosome losses using YACs. These events were partially

suppressed by RNAse H overexpresssion [17], although its

dependency on transcription was not established. Our results

indicate that Trf4 is a factor that prevents different forms of

genome instability, including that associated with transcription

(Figure 1 and Figure 2). Importantly, we provide evidence that

both recombination and mutation were enhanced in trf4D mutants

(Figure 7). Altogether, our data suggest that cotranscriptional R-

loop are responsible for both phenotypes, consistent with the

exacerbated recombination and mutation phenotypes of trf4D cells

upon AID cytidine deaminase overexpression (Figure 6 and

Figure 7).

The impact of mutations in the RNA surveillance machinery on

genome integrity reveals the global relevance of RNA metabolism

in genome dynamics. Interestingly, in mammalian cells the core

nuclear exosome subunit Rrp40 has been shown to be recruited to

S regions of Ig genes and to be required for optimal class switching

recombination [54]. It has been proposed that the exosome could

provide the ribonuclease activity for degradation of the RNA

strand of RNA-DNA hybrids exposing the template DNA strand

to AID activity [54], but this is in principle unrelated with the

Figure 6. Genetic evidence for R-loop formation in trf4D
mutants. Effect of RNaseH1 and AID over-expression on the mutation
frequency in trf4 mutants. Upper panel shows the analysis of
recombination frequencies in W303-1A (WT) and TRF4D-C5 (trf4D) cells
containing the recombination system LYDNS, without RNaseH1
overexpression (-RNH1) or with over-expression of RNaseH1 (+RNH1).
The latter was achivied with the multicopy plasmid pGAL-RNH1 carrying
RNH1 under the GAL1 promoter. Lower panel shows recombination
frequencies as in the upper one, but over-expressing AID from plasmid
p413GALAID. The average median value and SD of 3–4 fluctuation tests
are shown. Other details as in Figure 2. Asterisks indicate statistically
significant differences, according to Student’s t tests (***, R,0.0005).
doi:10.1371/journal.pone.0065541.g006

Figure 7. Spontaneous and AID-induced mutation frequencies
in wild-type and trf4D strains. Mutation frequency of W303-1A (WT),
TRF4D-C5 (trf4D) strains, using the LAUR fusion construct. Ura- mutants
are selected in SC+FOA. The human AID gene was overexpressed in 2%
galactose medium using plasmid p413GALAID. The median values of
mutation frequencies and SD of 3–4 different fluctuation tests are
shown. Asterisks indicate statistically significant differences, according
to Student’s t tests (*, P,0.05; **, R,0.005).
doi:10.1371/journal.pone.0065541.g007
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AID-independent phenomenon described here. As AID induces

mutation and recombination in different yeasts cells [55,13],

including trf4 cells (this study) we believe that the loss of Trf4 may

cause an accumulation of transcripts at the site of transcription

with the potential to form R-loops, which are highly susceptible of

AID, as previously shown for THO mutants [13].

R-loops structures accumulate in different mutants of mRNP

biogenesis. mRNA processing and transcription factors could

prevent R-loop formation by facilitating assembly of the nascent

mRNA into a ribonucleoprotein particle, therefore limiting its

ability to rehybridize with the template DNA strand (reviewed in

[8]). Accumulative data indicate that R-loops in THO mutants

hinder transcription elongation and generate recombinogenic

structures that could represent an obstacle for the replication

machinery [11,56,57,58]. However, these properties are not

shared by every mutant impairing mRNA biogenesis [43]. Indeed

trf4D mutants do not show a reduction in the expression level the

GC-rich lacZ gene from E. coli (Figure 3), in contrast to mutants of

THO/TREX and other transcription elongation factors [31,44].

On the other hand, mRNA processing and assembly into an

export-competent mRNP is a tightly regulated process and a

defect in mRNA processing can affect downstream steps

[10,59,60]. TRAMP together with the nuclear exosome have

been proposed to mediate a quality-control checkpoint activated

upon mRNA export blockage [61]. Therefore, it is possible that

aberrant mRNA transcripts that escape degradation in trf4D cells

hybridize with the DNA contributing to R-loop formation and

genome instability.

TRAMP plays a role in polyadenylation and stimulates RNA

degradation mediated by the nuclear exosome [25,26,27].

However, polyadenylation is not essential for active degradation

in vitro [27] and a polyadenylation-defective Trf4 protein is fully

active, suggesting that mRNA degradation triggered by Trf4 is

independent of its polyadenylation activity [61]. Indeed, genome-

wide expression analysis shows that the overexpression of TRF4-

DADA restores the levels of most RNAs with an altered expression

in trf4D cells, except a small fraction corresponding to highly

expressed and structured RNAs [32]. The fact that hyper-

recombination phenotype of trf4D cells is suppressed by the

overexpression of the TRF4-DADA mutant allele (Figure 5)

indicates that occurs via a polyadenylation-independent mecha-

nism. Interestingly, other DNA-related phenotypes, such as the

maintenance of telomere, have also been shown to be polyade-

nylation independent [32]. In addition, although Trf4 has been

defined as a non-canonical poly-A-polymerase playing a role in

RNA surveillance, its function role is not restricted to RNA

degradation, but rather contributes to the processing of different

RNAs such as tRNAs, snoRNA, snRNAs and rRNA precursors

[32,62,63]. Indeed, Trf4 has been shown recently to be associated

with introns in vivo, as shown by crosslinking-RNA-immunopre-

cipitation, and to regulate degradation of spliced-out introns [32].

Therefore Trf4 could link RNA processing with the maintenance

of genome integrity.

A number of reports suggest that R-loops are formed at a higher

frequency in the genome than previously anticipated with an

impact in both gene expression and genome integrity [8]. Given

the role of Trf4 in the processing and degradation of different

types of RNAs [46], it is also possible that the loss of rDNA repeats

observed previously in trf4D cells, could be associated with the

formation of R-loops [53,15]. In summary our work suggests that

trf4D leads to a general transcription-associated genome instability

phenotype that is mediated by the cotranscriptional formation of

R-loops, providing a further connection between genome dynam-

ics and RNA metabolism.
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