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Mapping the Potential Global 
Codling Moth (Cydia pomonella L.) 
Distribution Based on a Machine 
Learning Method
Dong Jiang   1,2,3, Shuai Chen1,2, Mengmeng Hao1,2, Jingying Fu1,2 & Fangyu Ding1,2

The spread of invasive species may pose great threats to the economy and ecology of a region. The 
codling moth (Cydia pomonella L.) is one of the 100 worst invasive alien species in the world and is the 
most destructive apple pest. The economic losses caused by codling moths are immeasurable. It is 
essential to understand the potential distribution of codling moths to reduce the risks of codling moth 
establishment. In this study, we adopted the Maxent (Maximum Entropy Model), a machine learning 
method to predict the potential global distribution of codling moths with global accessibility data, 
apple yield data, elevation data and 19 bioclimatic variables, considering the ecological characteristics 
and the spread channels that cover the processes from growth and survival to the dispersion of the 
codling moth. The results show that the areas that are suitable for codling moth are mainly distributed 
in Europe, Asia and North America, and these results strongly conformed with the currently known 
occurrence regions. In addition, global accessibility, mean temperature of the coldest quarter, 
precipitation of the driest month, annual mean temperature and apple yield were the most important 
environmental predictors associated with the global distribution of codling moths.

Biological invasions could result in serious global consequences if not handled properly, including ecological 
destruction and economic losses. Especially in agriculture, crop losses and pest control can be extremely expen-
sive1. The increases in international trade and transportation have established novel pathways for the spread of 
invasive species2, which worsens the situation.

The codling moth, Cydia pomonella L. (Lepidoptera: Tortricide) is one of the most detrimental and econom-
ically important apple pests, and the moth has the potential to cause complete crop losses in untreated apple 
orchards3. The codling moth is a multivoltine species, and adaptive behaviour, such as facultative diapause and 
multiple generations per breeding season, have allowed the codling moth to adapt to diverse climatic conditions. 
Although the flight capacity of the codling moth is limited4, they can spread over long distances through the 
transportation of infested fruit and packing material, and this has become the most common method for coloni-
zation of new habitats. The codling moth is considered to have originated from south-eastern Europe5, over the 
last two centuries, they have dispersed throughout the world and have reached almost global distribution. The 
codling moth is now a cosmopolitan insect that occurs in almost every country where apples are grown, becom-
ing one of the most successful pest insect species in terms of invasiveness6.

Prevention of biological invasions is much less expensive than post-entry control1. Detailed knowledge of 
the geographic and ecological distribution of a species is fundamental for conservation planning and forecast-
ing7. To reduce the ecological destruction and economic losses caused by codling moth invasions, it is essential 
to understand the potential distribution of codling moths for risk assessment and decision making. Ecological 
niche models (ENM) have become an effective tool for assessing the potential risk for establishment of inva-
sive species in recent years. There are basically two types of ecological niche models used: correlative models 
(e.g., Maxent, GARP, ENFA) and process-based distribution models (e.g.; CLIMEX). These models were used 
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to estimate the potential risk of codling moths by some researchers. Liang et al. analysed the suitability for cod-
ling moths in China based on biological data of codling moths and meteorological data from 760 weather sites 
by using CLIMEX and ArcGIS8. Svobodova et al. investigated the historical occurrence of the codling moth in 
southern Moravia and northern Austria by using CLIMEX9. Vavrovic et al. used the CLIMEX model to estimate 
the potential codling moth infestation pressure in Slovakia under the conditions of climate change10. Zhao et al. 
adopted an ecological niche model, Maxent, to interpret the disjunct distribution and potential distribution of 
codling moths in China and identified the relative roles of climate, humans and vegetation with respect to the 
present codling moth distribution11. Kumar et al. used CLIMEX and Maxent model to map the global risk of 
codling moth establishment and compared the results of the two models12.

However, there are some limitations of the current studies: Firstly, the existing codling moth occurrence 
records that have been used to fit the models are inadequate. Secondly, most of the studies have merely focused 
on climate conditions for the establishment of codling moths, ignoring the availability of host plants and the 
increased possibility of transportation. Although climatic conditions are a major determinant of the potential 
distribution of codling moths, the risk of establishment of codling moths in new places is also largely influenced 
by human factors. Thirdly, many studies have adopted mechanism models, which are suitable for macroscopical 
predictions, but the performance at local scales is not good. Lastly, most research is based on regional studies, and 
there are few studies on the potential distribution of codling moths at the global scale. To solve these problems, 
in this study, codling moth occurrence records were collected from multiple sources. In addition, a maximum 
entropy model, which is a machine learning method, was used to simulate the potential global distribution of 
codling moths with global accessibility data, apple yield data, elevation data and 19 bioclimatic variables, consid-
ering the ecological characteristics and the expansion channels that cover the processes from growth and survival 
to the dispersal of codling moths.

Results
Potential distribution of codling moth.  The potential distribution of codling moth predicted by the 
Maxent model is in good agreement with the current known codling moth occurrence regions (Fig. 1). Overall, 
the areas that were predicted to be suitable for codling moths are distributed on all continents except Antarctica. 
The suitable regions for codling moth are mainly distributed in Europe, North America and Asia. It is notewor-
thy that few areas between the latitudes of 20°N and 20°S or beyond 70°N and 70°S are predicted to be suitable 
for codling moths. By contrast, most of the suitable areas are distributed between the latitudes of 30° and 60°. In 
addition, the distribution of codling moths is significantly different on different continents.

In Asia (Supplementary Fig. S1), the areas that were predicted to be suitable for codling moths are primarily 
distributed in Central Asia and East Asia. The model predicted higher codling moth suitability in China but lower 
suitability in Central Asian countries including Kazakhstan, Uzbekistan, and Tajikistan. The suitable regions cov-
ered most of the apple-growing countries such as China, Turkey, Azerbaijan, Japan, North Korea, South Korea, 
India, Iran, Pakistan and Kazakhstan. In China, the model predicted no or very low suitability in the south-
ern provinces and Qinghai-Tibetan Plateau, which might be the result of the lack of host plants. Medium or 
highly suitable areas are distributed in most of the apple-producing provinces including Xinjiang, Gansu, Shanxi, 
Shaanxi, Shandong, Hebei, and Liaoning. In addition, it should be noted that the model predicted suitable con-
ditions for codling moths in some regions where codling moths do not yet occur, such as South Korea and Japan, 
but there are host plants in these regions that are preferred by codling moths such as apple trees.

Figure 1.  Global potential distribution of codling moth using Maxent.
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The areas that were predicted to be suitable almost cover all of Europe (Supplementary Fig. S2), which closely 
matches the known codling moth European distribution. This area also seems to have the highest predicted 
suitability for codling moth. On the one hand, codling moths are believed to have originated from somewhere in 
south-eastern Europe where there are favourable climate conditions for growth and reproduction. On the other 
hand, there are sufficient occurrence records in Europe, and this could be another reason for the high suitabil-
ity. The suitable areas covered almost all apple-growing European countries including Poland, Italy, France, the 
Netherlands, Belgium, Spain, Austria, Germany, Russian Federation, Hungary, Portugal, the United Kingdom, 
and Switzerland. The model predicted highly suitable areas in the United Kingdom, Germany, France, Poland, 
Belgium, the Netherlands, Denmark and the southern parts of Sweden and Finland, which is consistent with the 
current known distribution of codling moth.

In North America (Supplementary Fig. S3), the Maxent model predicted medium suitability in the eastern 
United States and relatively high suitability on the west coast. The model also predicted suitable conditions in 
the southern parts of Alaska and Greenland. The model predicted low suitability in the southeast and southwest 
corners of Canada and the central part of Mexico. The three countries of North America are all apple-growing 
and exporting countries.

In South America (Supplementary Fig. S4), the areas that were predicted to be suitable for codling moth by 
the Maxent model were mainly distributed along the Andes mountain range and in the southern parts of the 
continent, including the Patagonia Plateau, Pampas grasslands and Parana Plateau. The suitability of these areas 
is relatively low, covering the major apple-growing countries in North America such as Chile, Argentina, Brazil 
and Peru. The model predicted no or little suitable area in low-latitude regions including most of the Central 
American countries.

In Oceania (Supplementary Fig. S5), the suitable codling moth areas that were predicted by the Maxent model 
were mainly distributed in south and south-eastern Australia and New Zealand. Both Australia and New Zealand 
are apple-growing countries. The predicted suitability for codling moth is relatively high in the south-east of 
Australia, and the suitability gradually declines from the coast to inland areas.

The fewest suitable areas were in Africa (Supplementary Fig. S6), and the Maxent model predicted only a 
few small areas with suitable environmental conditions for codling moths. These areas are mainly located in the 
southern and northern coastal regions such as South Africa, Morocco and Algeria, and all three of these coun-
tries are major apple-growing countries in Africa. It is remarkable that there are no occurrence records in either 
Africa or North America, but the Maxent model predicted suitable areas on both continents, and these areas are 
consistent with the current apple-planting areas. This result indicates that the environments in these areas are 
appropriate for the growth and reproduction of codling moth, and also demonstrates the predictive power of the 
Maxent model.

Accuracy analysis.  By using 22 factor layers and 1776 presence locations (25% was set aside for testing) 
as the input data for Maxent, the model results show that this model performed well, and the AUC values of 
the training data and test data were 0.942 and 0.941, respectively (Fig. 2), which strongly supports its predictive 
power. In addition, the model had low omission rates (Fig. 3). A low omission rate is a necessary (but not suffi-
cient) condition for a good model13.

Effects of environmental factors.  The following chart (Fig. 4) gives estimates of the relative contributions 
of each variable to the distribution of codling moth. From the statistics, global accessibility, mean temperature 

Figure 2.  Receiver operating characteristic (ROC) curve for the Maxent model, the AUC (area under 
the receiver operating characteristic curve) values vary from 0 to 1; values < 0.5 indicate that the model 
performance is worse than random, 0.5 indicates performance that is not better than random, 0.5–0.7 
indicates poor performance, 0.7–0.9 indicates reasonable or moderate performance, and >0.9 indicates high 
performance34.
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of the coldest quarter, precipitation of the driest month, annual mean temperature and apple yield were the most 
important environmental predictors associated with codling moth global distribution with average contributions 
to the Maxent model of 38%, 13%, 13%, 12%, and 6%, respectively.

From the contribution of each variable, we can see that global accessibility and apple yield have great impacts 
on the potential distribution of codling moths in addition to climatic conditions. Therefore, it is necessary to 
consider these factors when predicting codling moth invasions.

Discussion
In the present study, we adopted the Maxent machine learning method to assess the potential global distribution 
risk of codling moths. Codling moth occurrence records were collected from multisource as many as possible. 
In addition to climatic variables, the availability of host plants together with international trade and transporta-
tion were also taken into account, covering the processes from growth and survival to the dispersion of codling 
moth. The AUC values indicate that the model performed well, and a global suitability map for codling moth was 
generated.

By comparison with other studies, the overall codling moth distribution range is roughly the same, but our 
study included a better representation of details. Results from different studies agreed with each other in major 

Figure 3.  Omission and predicted areas for codling moth; lower omission rates represent better model 
performance.

Figure 4.  Relative contributions of the environmental variables to the model.
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codling moth occurrence regions, for example, in Europe, North America, central Chile, Argentina, northern 
Morocco, northern Algeria, South Africa, southern Australia, New Zealand, Central Asia and East Asia. The pre-
dicted areas with high suitability in all three studies are mainly distributed in Europe, Asia and North America, 
which conformed to the current known distribution of codling moth.

However, the environmental suitability of codling moth in this study was significantly different from Zhao’s11 
and Kumar’s12. In the study of Kumar, it predicted more suitable areas in Central Asia and northeast China than 
this study. By contrast, our study predicted more suitable areas in Northern Europe, such as Norway, Sweden 
and Finland. One of the reasons might be the different distribution of occurrence records, another is that we 
considered more input variables such as global accessibility and apple yield data. Besides, our study has different 
suitability distribution patterns comparing with Kumar and Zhao. In Kumar’s study, the degree of suitability was 
distributed roughly along latitude lines, suitability in two hemispheres was almost symmetrical regardless of the 
discontinuous continents. In our study, the predicted suitability for codling moth is less regularly distributed, 
looks similar to Zhao’s study from the global scale. But there are notable differences from a local perspective, the 
suitability in our study included more details that highly correlated with the global accessibility.

The model also predicted suitable environments for codling moths in some regions where they do not occur 
yet but include their favourite host plants. Finally, the major codling moth predictors were extracted, and global 
accessibility, mean temperature of the coldest quarter, precipitation of the driest month, annual mean temperature 
and apple yield were the most important predictors associated with the global distribution of codling moths. All 
of this information is very useful in assessing the risk of codling moth colonization in new areas.

However, this study has some defects that can be ameliorated by additional research. The codling moth occur-
rence data are still insufficient in some regions, and the Maxent model prediction may be affected by occurrence 
points that are not uniformly distributed. In addition, biological invasions are very complex processes. There are 
some other factors that affect the potential distribution of codling moths. Therefore, more complex models and 
more elements will be our next research directions.

Methods
The main work of this paper can be summarized as the following aspects.

�Step 1: Codling moth occurrence records were collected from multiple sources, ensuring the highest possible 
data integrity.
�Step 2: A high-resolution spatial dataset was produced, which included the ecological characteristics and the 
expansion channels that cover the processes from growth and survival to the invasion of codling moth.
Step 3: A Maxent model was built to simulate the potential global distribution of codling moths.
The technical flow chart of this study is shown in Fig. 5.

Occurrence data.  Georeferenced occurrence data of codling moths were collected from three different 
sources: (1) Existing open source data, which were mainly accessed via the online Global Biodiversity Information 
Facility database14, which is one of the most popular species distribution data sources. (2) Published articles and 
maps of codling moth occurrences were also used to extract occurrence location information. (3) Government 
documents, reports and related supportive materials were also used. Occurrence data from the GBIF covered 
most regions in the world where the codling moth is known to occur except Asia, South America and Africa. 
Therefore, occurrence data from published literatures and government reports were used as supplemental mate-
rial for the GBIF data. After removing duplicate occurrence records, a total of 1776 occurrence records were 
collected for Maxent input occurrence data (Fig. 6).

Factor data.  The factor data needed for the Maxent model consists of bioclimatic variables, global accessibil-
ity, apple yield data and elevation data (Table 1). The bioclimatic variable data were acquired from the World-Clim 
dataset15 with a resolution of 30 arc seconds, which is approximately 1 km2; these bioclimatic variables are more 
biologically meaningful variables that were derived from the monthly temperature and rainfall values, repre-
senting annual trends (e.g., mean annual temperature, annual precipitation), seasonality (e.g., annual ranges of 
temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest 
and warmest months and precipitation of the wet and dry quarters). The global accessibility map was download 

Figure 5.  Technical flow chart of this study.



www.nature.com/scientificreports/

6SCIEntIfIC RePOrts |  (2018) 8:13093  | DOI:10.1038/s41598-018-31478-3

from the Joint Research Centre of the European Commission’s science and knowledge service16, and it reflects the 
global connectivity of transportation and the concentration of economic activities; the pixel values on the map 
represent the travel time in minutes to major cities with a resolution of 30 arc seconds, which is approximately 

Figure 6.  Worldwide codling moth occurrence records. The map was generated by ArcGIS 10.2 software35; 
the red points represent the occurrence records from the GBIF, and the yellow points represent the occurrence 
records extracted from the existing literature and reports.

Categories Variables Description Data Source

dispersal means acc global accessibility JRC of European 
Commission

availability of host plants app global apple production EarthStat

climatic indicators

dem global elevation SRTM

bio1 annual mean temperature

World Clim version 2

bio2 mean diurnal range

bio3 isothermality (bio2/bio7) (* 100)

bio4 temperature seasonality

bio5 max temperature of warmest 
month

bio6 min temperature of coldest month

bio7 temperature annual range (bio5-
bio6)

bio8 mean temperature of wettest 
quarter

bio9 mean temperature of driest quarter

bio10 mean temperature of warmest 
quarter

bio11 mean temperature of coldest 
quarter

bio12 annual precipitation

bio13 precipitation of wettest month

bio14 precipitation of driest month

bio15 precipitation seasonality

bio16 precipitation of wettest quarter

bio17 precipitation of driest quarter

bio18 precipitation of warmest quarter

bio19 precipitation of coldest quarter

Table 1.  Variables for Maxent input.
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1 km2. The apple production data were acquired from EarthStat17 with a 5-minute spatial resolution, which is 
approximately 10 km2; these data represent the total apple production in metric tons on the land-area mass of a 
grid cell. The elevation data were obtained from the NASA Shuttle Radar Topography Mission (SRTM)18, which 
provides high-quality digital elevation models (DEM) for the entire globe with a spatial resolution of 3 arc sec-
onds, which is approximately 250 m. To ensure spatial consistency of these variables, we converted the spatial 
resolutions of all data to 0.05 degrees.

The 22 variables were selected as Maxent model inputs for three main reasons:
Firstly, as climatic conditions are the major determinants for the establishment of codling moths, nineteen 

bioclimatic variables and elevation data were selected to indicate the ecological conditions that are required for 
codling moth survival and growth, referring to some existing studies11,19.

Secondly, the global apple yield data represents the availability of host plant apple trees for codling moths, 
which is another important indicator used to assess the risk of codling moth establishment. If host plants exist in 
a region, it might also contain suitable environmental conditions for codling moths.

Thirdly, the long-distance spread of codling moths to new habitats mainly occurs through international trade 
and transportation. The global accessibility (travel time to major cities) data reflect the connectivity and the 
concentration of international trade and transportation. As we mentioned before, codling moths have a broad 
environmental tolerance and are able to opportunistically establish populations in areas with low climate suita-
bility with the assistance of humans; So human factors are indispensable for assessing the potential codling moth 
distribution.

The three kinds of indicators above comprehensively cover the processes from growth and survival to the 
spread of codling moth and considering as many aspects as possible, guaranteeing the rationality of the model.

Maximum entropy model (Maxent).  There are many models used to assess the potential distribution 
of species. According to some comparative studies on different models, Maxent outperforms GARP20 and some 
presence-only methods (e.g. DOMAIN, ENFA)21, have advantages over BIOCLIM22. Maxent is a general-purpose 
machine learning method with a precise mathematical formulation, it has a number of aspects that make it 
well-suited for species distribution modelling, such as Maxent uses a regularization multiplier to control model 
complexity and thus avoids over-fitting20,23,24, it is possible to analyse the contribution of each environmental 
variable to the suitability and lower data requirement25–27. Therefore, the Maxent niche model has been widely 
used to model potential species distributions28–31. In this study, the Maxent model was selected to simulate the 
potential risk area of codling moth.

The Maxent model applied a machine learning method called maximum entropy modelling32, it follows the 
principle of maximum entropy: when approximating an unknown probability distribution, the best approach is to 
ensure that the approximation is subject to any constraints on the unknown distribution33. The entropy formula 
is defined as below:

∑π π π= −
∈

ˆ ˆ ˆH x ln x( ) ( ) ( )
(1)x X

where π is the unknown probability distribution; π̂ is the approximation of π; X is a finite set; x is an individual 
element in set X; and ln is the natural logarithm. The entropy is nonnegative and is at most the natural log of the 
number of elements in X.

Maxent integrates species presence locations with a set of environmental variables (e.g., temperature, precip-
itation) across a study area that is divided into grid cells and generates probabilities of species presence or pre-
dicted local abundance20. Maxent identifies areas that have conditions that are most similar to the current known 
occurrences of a species and ranks them from 0 (unsuitable) to 1 (most suitable).
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