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Abstract: Cembranoids are a group of natural diterpenoid compounds with pharmaceutical
potentials, and the cembratriene-diols produced by Nicotiana (tobacco) species display activities in
anti-nicotine addiction and neuron protection. Although the enzymes catalyzing cembratriene-diols’
formation in tobacco have been investigated, the regulatory mechanism underlying this physiological
process remains unknown. This study has investigated the roles of phytohormone jasmonic acid
(JA) in regulating cembratriene-diol formation in N. tabacum cv. TN90 and found that JA and COI1,
the receptor protein of the bioactive derivative of JA (i.e., JA-Ile), display critical roles in regulating
cembratriene-diols’ formation and the expression of cembranoid synthetic genes CBTS, P450 and
NtLTP1. Further studies showed that over-expressing either the gene encoding bHLH transcription
factor MYC2a or that encoding MYB transcription factor MYB305 could upregulate the cembranoid
synthetic genes and enhance the cembranoid production in plants with dysfunction of COI1. Further
studies suggest that COI1 and its downstream regulators MYC2a and MYB305 also modulate the
trichome secretion, which is correlated with cembranoid formation. Taken together, this study has
demonstrated a critical role of JA-signaling components in governing the cembratriene-diol formation
and the transcription of cembratriene-diol synthetic genes in tobacco. Findings in this study are of
great importance to reveal the molecular regulatory mechanism underlying cembranoid synthesis.
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1. Introduction

Cembranoids, a group of natural diterpenoid compounds structurally composed of a 14-carbon
cembrane ring with featured oxygen-containing substitutes, are widespread in nature, and
currently, hundreds of cembranoids have been reported from plants (conifers and tobacco), insects,
alligators and marine organisms [1]. In recent years, the biological activities of cembranoids in
antimicrobial, anti-cancer and anti-inflammation effects, as well as its fascinating architectures,
have attracted great interest from researchers of natural products and pharmaceuticals [1,2].
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Nicotiana (tobacco) species are the terrestrial plants most abundant in cembranoids, which
contribute to the characteristic aroma of tobacco. The two major cembranoids in tobacco are
4S-cembranoid (1S,2E,4S,6R,7E,11E)-cembra-2,7,11-triene-4,6-diol (α-cembratriene-diol) and its 4R
epimer (β-cembratriene-diol) [1]. Intriguingly, the tobacco β-cembratriene-diol also displays
neuroprotective and nicotine anti-addictive activities via binding to the nicotinic acetylcholine
receptors (nAChR’s) [1], implying that tobacco plants produce both addictive (alkaloids) and
anti-addictive compounds.

Cembranoids are synthesized in the glandular trichome, known as phytochemical factories,
producing a large portion of plant metabolic compounds, such as polysaccharides, terpenes,
phenylpropanoids and flavonoids [3–5]. Previously, the formation of cembranoids was investigated
by multiple studies. The first step of cembranoid biosynthesis is catalyzed by cembratriene-ol
synthase (CBTS) (Figure 1), which produces α- and β-cembratriene-ols from geranylgeranyl
diphosphate (GGPP) [1]. The amount of cembratriene-ol production was increased by transient
expressing of CBT2a [6], while the production of cembratriene-ol and cembratriene-diol was reduced
by CBTS (NtCYC1) silencing in tobacco [7]. The second step of cembranoid biosynthesis is
catalyzed by cytochrome P450 hydroxylase (P450) (Figure 1), which catalyzes the hydroxylation of
cembratriene-ols to form cembratriene-diols [8]. Suppression of P450 caused a decrease in the content of
cembratriene-diols, but an increase in the content of cembratriene-ols in tobacco [8]. Moreover, tobacco
lipid transfer proteins (NtLTP1) play important roles in lipid secretion from glandular trichomes [9].
Over-expressing NtLTP1 in tobacco resulted in the increased secretion from glandular trichomes,
while silencing of this gene led to reduced trichome secretion [9]. Although enzymes catalyzing
multiple steps of cembranoid formation in tobacco have been identified by a number of studies [10,11],
the regulatory mechanism underlying this physiological process remains largely unknown.
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Since glandular trichomes function as the factory producing cembranoids, this implies a critical
role of trichome-developmental regulators in governing cembranoid synthesis. It was shown that the
initiation, development and secretion of plant trichomes were regulated by several phytohormones,
including jasmonate acid (JA), 6-benzylaminopurine (BAP) and gibberellin (GA) [12–17]. Studies in
Artemisia annua indicated that JA and BAP positively regulate the density of glandular trichomes,
but only JA could promote the secretion of glandular trichomes [16], suggesting a pivotal role of
JA in regulating trichome secretion. JAs are a kind of fatty-acid-derived hormone functioning in
plant responses to wounding and herbivore attacks and play important roles in regulating plant
development, defense responses, secondary metabolism and other physiological processes [18–21].
In Arabidopsis, the initiation and formation of trichomes can be greatly increased by herbivore attacks
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and JA [17,22], and proper JA perception is crucial for trichome induction [23]. Studies on Solanaceae
plants showed that dysfunction of COI1 could suppress the development of glandular trichome in
tobacco and notably reduce the secretion of glandular trichome in tobacco and tomato [24,25]. These
facts suggested that JA, as well as COI1, the receptor protein of the bioactive derivative of JA (i.e.,
JA-Ile), display crucial roles in the development and secreting of trichomes.

Previous studies have established the molecular model of JA-signaling in plants.
Jasmonoyl-isoleucine (JA-Ile), the bioactive derivative of JA, is perceived and transduced by the
SCFCOI1(Skip/Cullin/F-box) complex [20,26], which results in the ubiquitination and subsequent
degradation of JAZ (jasmonate ZIM domain) proteins, the repressors of JA-signaling, via the 26S
proteasome pathway [27,28]. Then, the downstream bHLH (such as MYC2) and MYB transcription
factors are released from the JAZ repressors to activate JA-signaling responses [27,29,30]. Studies in
a number of plants have shown that the bHLH transcription factor MYC2 acts as a master regulator
mediating multiple aspects of JA responses [31–33]. The R2R3 MYB transcription factor MYB305 from
Antirrhinum was demonstrated to regulate the biosynthesis of flavonoid in flowers, and its homologue
NtMYB305 from tobacco was shown to modulate the carbohydrate metabolism in both vegetative and
reproductive organs [25,34,35]. Previously, cumulative studies in multiple plants have suggested that
the WD40-bHLH-MYB complex displays a critical role in modulating the downstream JA responses,
including trichome development, secondary metabolism and transcriptional regulations [14,15,36–39],
and a group of transcription factors are involved in this regulatory network [10].

Even though the roles of JA in regulating plant secondary metabolism have been intensively
investigate, its function in cembranoid synthesis remain largely unknown. This study has analyzed
the induction of cembranoid synthesis by JA in tobacco (N. tabacum cv. TN90) and investigated
the mechanism of JA-signaling components including COI1, MYC2 and MYB305 in governing the
cembranoid formation and modulating the transcription of cembranoid synthetic genes in tobacco.
Findings of this study have provided important information for dissecting the molecular regulation of
cembranoid synthesis in tobacco.

2. Results

2.1. The Formation of Cembratriene-Diol Is JA-Inducible in Tobacco

To investigate the roles of JA in regulating cembranoid synthesis, the four-week-old tobacco
seedlings were selected to determine the induction of cembratriene-diol formation by JA, for the
seedlings at this stage had mid-sized leaves with much lower cembratriene-diol content than the aged
plants (Figure 2A,B, showing a comparison with the eight-week-old plants) and were suitable for the
observation of JA-induction effects. The results showed that MeJA-treatment for seven days could
increase the α and β-cembratriene-diol to approximately 0.4 and 0.3 mg/g FW (fresh weight) from a
trace amount level of the control (Figure 2C,D).

Since cembranoids were secreted by the glandular trichomes on tobacco, the trichome secretion
were observed under stereo-microscope after staining with I2/KI solution [1% (w/v) I2 in 3% (w/v) KI
(potassium iodide)]. The observations showed that the color of the trichome secretion droplets of the
young plants was much lighter than those of the aged (eight-week-old) plants (Figure 2E,F). While,
the trichome secretion droplets of the MeJA-treated plants turned to a much darker color compared
with that of the control, their color was still lighter than those of the eight-week-old plants (Figure 2G).
Further analysis indicated that the trichome secretion droplets of eight-week-old plants contained a
higher soluble sugar content than those of the four-week-old plants; moreover, MeJA treatment could
increase the soluble sugar content of the trichome secretions (Figure 2H,I). These facts suggested that
the cembratriene-diol formation in tobacco is regulated by JA, which may affect the composition of
glandular trichome secretion.



Molecules 2018, 23, 2511 4 of 14
Molecules 2018, 23, x FOR PEER REVIEW  4 of 14 

 

 
Figure 2. JA treatment improved the production of cembratriene-diol in tobacco. (A) Comparison of 
cembratriene-diol content between the four-week-old and eight-week-old tobacco plants. (B) The 
representative chromatogram profiles of cembratriene-diol determination by the UPLC system for 
the four-week-old and eight-week-old plants. (C) Determination of cembratriene-diol content 
between the control (Ctrl) and MeJA-treated four-week-old tobacco plants. (D) The representative 
chromatogram profiles of cembratriene-diol determination by the UPLC system for the control and 
MeJA-treated four-week-old plants. The triangle indicates an unidentified compound. (E–G) 
Trichome secretion droplets stained by I2/KI. (H,I) Soluble sugar content of the trichome secretion 
droplets. Values in (A,C,H,I) are the average of the data from three plants with triplicate 
measurements. Asterisks in (A,C,H,I) indicate significant difference from the four-week-old plants or 
the control treatment. Insets in (B,D) show the enlargements of the chromatogram images in the blue 
rectangles, and α and β in the graphs of (B,D) indicate α-cembratriene-diol and β-cembratriene-diol, 
respectively. Error bars, mean ± SE. 

Figure 2. JA treatment improved the production of cembratriene-diol in tobacco. (A) Comparison
of cembratriene-diol content between the four-week-old and eight-week-old tobacco plants. (B) The
representative chromatogram profiles of cembratriene-diol determination by the UPLC system for the
four-week-old and eight-week-old plants. (C) Determination of cembratriene-diol content between the
control (Ctrl) and MeJA-treated four-week-old tobacco plants. (D) The representative chromatogram
profiles of cembratriene-diol determination by the UPLC system for the control and MeJA-treated
four-week-old plants. The triangle indicates an unidentified compound. (E–G) Trichome secretion
droplets stained by I2/KI. (H,I) Soluble sugar content of the trichome secretion droplets. Values in
(A,C,H,I) are the average of the data from three plants with triplicate measurements. Asterisks in
(A,C,H,I) indicate significant difference from the four-week-old plants or the control treatment. Insets
in (B,D) show the enlargements of the chromatogram images in the blue rectangles, and α and β in
the graphs of (B,D) indicate α-cembratriene-diol and β-cembratriene-diol, respectively. Error bars,
mean ± SE.
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2.2. JA Displays a Role in Regulating the Transcription of Cembratriene-Diol Synthetic Genes in Tobacco

To figure out the molecular mechanism underlying JA-regulated cembratriene-diol formation in
tobacco, we carried out a transcriptional assay to determine whether the cembratriene-diol synthetic
genes are regulated by JA treatment. The transcription levels of a set of cembratriene-diol synthetic
genes, including LTP1 (lipid transfer protein), CBTS (cembratriene-ol synthase) and P450 (cytochrome
P450 hydroxylase) [10,11], were analyzed in the qRT-PCR assays. The results showed that the
expression level of LTP1 was increased to five folds of that in the control after three days of JA-treatment
and to 17 folds of that in the control after five days of treatment (Figure 3A); CBTS was upregulated
by four-fold after seven days of JA treatment (Figure 3B); and P450 was increased by two-fold after
five days of treatment (Figure 3C). These findings suggest that JA functions as a regulator of the
cembratriene-diol synthetic genes.
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showed that the α- and β-cembratriene-diol contents of plants with dysfunction of COI1 were 
decreased to an undetectable level, while those of the control plants were 5.68 and 3.96 mg/g FW, 
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Figure 3. Effects of JA-treatment on the expression level of LTP1, CBTS and P450 genes. (A–C)
MeJA-induced transcription profiles of the cembranoid synthetic genes LTP1, CBTS and P450. Ctrl,
plants of control treatment with H2O; MeJA, plants of MeJA treatment for indicated time points.
The transcription level of each gene in the plants of control treatment at the “0” time point was arbitrarily
set as “1”; values in (A–C) are the average of data from three plants with triplicate measurements.
Asterisks indicate significant difference to the control treatment of the same time point in (A–C). Error
bars, mean ± SE.

2.3. COI1 Is Required for the Formation of Cembratriene-Diols in Tobacco

In order to uncover the mechanism of the JA-signaling pathway in regulating cembratriene-diol
formation, tobacco plants with dysfunction of COI1 [25] were adopted for further analyses.
Our previous studies showed that the trichome secretion of these plants was decreased to an extremely
lower level (Figure 4A,B) [25]. The cembratriene-diol determination with the eight-week-old plants
showed that the α- and β-cembratriene-diol contents of plants with dysfunction of COI1 were
decreased to an undetectable level, while those of the control plants were 5.68 and 3.96 mg/g
FW, respectively (Figure 4D,E). The transcriptional analyses revealed that dysfunction of COI1
greatly attenuated the expression LTP1, CBTS and P450 genes (Figure 4F). Additionally, the plants
with dysfunction of COI1 possessed significantly decreased soluble sugar content of the trichome
secretions (Figure 4C). These results further demonstrated the importance of proper JA-signaling for
cembratriene-diol synthesis in tobacco.
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trichome secretions, as well (Figure 5A–C). Following cembratriene-diol determination revealed that 
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Figure 4. COI1 is required for the synthesis of tobacco cembratriene-diols. (A,B) Trichome secretion
droplets stained by I2/KI. (C) Soluble sugar content of the trichome secretion droplets. (D) Comparison
of cembratriene-diol contents between the control (Ctrl) and plants with dysfunction of COI1
(COI1-RI). (E) The representative chromatogram profiles of cembratriene-diol determination by the
UPLC system for the control and plants with dysfunction of COI1. (F) Transcription profiles of the
cembranoid synthetic genes LTP1, CBTS and P450 in the control and plants with dysfunction of COI1.
The transcription level of each gene in the control plants was arbitrarily set as “1”. Values in (C,D,F)
are the average of data from three independent lines with triplicate measurements. Asterisks in (C,D,F)
indicate significant difference from the control plants. The inset in (E) shows the enlargement of the
chromatogram image in the blue rectangle, and α and β in the graph of (E) indicate α-cembratriene-diol
and β-cembratriene-diol, respectively. Error bars, mean ± SE.

2.4. Regulatory Roles of NtMYC2a in COI1-Mediated Cembratriene-Diol Formation in Tobacco

To investigate the regulation of cembratriene-diol formation by the regulators functioning
downstream of the JA-Ile receptor, the plants with dysfunction of COI1 were employed for further
assays. The tobacco homologue of Arabidopsis MYC2, i.e., bHLH transcription factor NtMYC2a,
was overexpressed in the tobacco with dysfunction of COI1. Trichome staining with I2/KI showed
that overexpression of NtMYC2a had no obvious effect on the volume of trichome secretion droplets,
but turned the secretion droplets to a darker color and increased the soluble sugar content of the
trichome secretions, as well (Figure 5A–C). Following cembratriene-diol determination revealed
that overexpression of NtMYC2a notably enhanced the cembratriene-diol production of plants with
dysfunction of COI1 (Figure 5D,E). The transcriptional analyses suggested that overexpression of
NtMYC2 accentuated the transcription levels of LTP1, CBTS and P450 genes in the plants with
dysfunction of COI1 (Figure 5F). This evidence suggested the involvement of NtMYC2 in regulating
COI1-mediated cembratriene-diol formation in tobacco.
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Figure 5. Regulatory roles of NtMYC2a in COI1-mediated cembratriene-diol formation in tobacco.
(A,B) Trichome secretion droplets staining with I2/KI for plants with dysfunction of COI1 (COI1-RI)
and overexpressing NtMYC2a in plants with dysfunction of COI1 (COI1-RI/MYC2-OE). (C) Soluble
sugar content of the trichome secretion droplets in the plants of COI1-RI and COI1-RI/MYC2-OE. (D)
Comparison of cembratriene-diol contents between the plants of COI1-RI and COI1-RI/MYC2-OE. (E)
The representative chromatogram profiles of cembratriene-diol determination by the UPLC system
for the plants of COI1-RI and COI1-RI/MYC2-OE. The triangle indicates the unidentified compound
observed in above results. (F) Transcription profiles of the cembranoid synthetic genes LTP1, CBTS and
P450 in the plant set of the control (Ctrl), COI1-RI and COI1-RI/MYC2-OE. The transcription level of
each gene in the control (Ctrl) plants was arbitrarily set as “1”. Values in (C,D,F) are the average of data
from three independent lines with triplicate measurements. Asterisks in (C,D,F) indicate significant
difference from the plants of COI1-RI. Error bars, mean ± SE.

2.5. Regulatory Roles of NtMYB305 in COI1-Mediated Cembratriene-Diol Formation in Tobacco

Furthermore, the tobacco homologue of Arabidopsis MYB24, i.e., MYB transcription factor
NtMYB305, was also overexpressed in the tobacco with dysfunction of COI1. Staining with I2/KI
showed that overexpression of NtMYB305 resulted in a pronounced increase in the volume of trichome
secretion droplets of plants with dysfunction of COI1, and subsequent analysis also revealed an
increase in the soluble sugar content of the trichome secretions (Figure 6A–C); whereas no obvious
color change in the trichome secretion droplets was observed (Figure 6A,B). Further determination
showed that the contents of cembratriene-diol of the trichome secretions was obviously increased by
overexpression of NtMYB305 in tobacco with dysfunction of COI1 (Figure 6D,E). The transcription
levels of LTP1, CBTS and P450 genes were also accentuated by overexpression of NtMYB305 (Figure 6F).
This evidence suggested the involvement of NtMYB305 in regulating COI1-mediated cembratriene-diol
formation in tobacco. Interestingly, an unidentified compound observed in the above results was
abolished by overexpressing NtMYB305 in the plant with dysfunction of COI1, but a novel unidentified
compound appeared with the retention time shifted to 5 min from 6.8 min.
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Figure 6. Regulatory roles of NtMYB305 in COI1-mediated cembratriene-diol formation in
tobacco. (A,B) Trichome secretion droplets staining with I2/KI for plants with dysfunction of COI1
(COI1-RI) and overexpressing NtMYB305 in plants with dysfunction of COI1 (COI1-RI/MYB305-OE).
(C) Polysaccharide content of the trichome secretion droplets in the plants of COI1-RI and
COI1-RI/MYB305-OE. (D) Comparison of cembratriene-diol contents between the plants of COI1-RI
and COI1-RI/MYB305-OE. (E) The representative chromatogram profiles of cembratriene-diol
determination by the UPLC system for the plants of COI1-RI and COI1-RI/MYB305-OE. The triangles
indicate the unidentified compounds observed in the analyzed samples. (F) Transcription profiles
of the cembranoid synthetic genes LTP1, CBTS and P450 in the plant set of Ctrl, COI1-RI and
COI1-RI/MYB305-OE. The transcription level of each gene in the control (Ctrl) plants was arbitrarily
set as “1”. Values in (C,D,F) are the average of data from three independent lines with triplicate
measurements. Asterisks in (C,D,F) indicate significant difference to the plants of COI1-RI. Error bars,
mean ± SE.

3. Discussion

The therapeutic activities of cembranoids in cancer and inflammation treatment, as well as their
fascinating architectures are attractive to pharmaceutical developers [1,2]. Currently, the majority of
cembranoids from plants were identified from conifers and tobacco [1], and tobacco is the most feasible
plant that could be applied to dissect the molecular mechanism of cembranoids’ synthesis in plants.
Thus, the studies of JA-induced cembranoid formation in this study are of great importance for the
utilization of plant-derived cembranoids.

Many studies have proven that JAs display important roles in regulating the secondary
metabolism in plants [18–21] and also act as regulators in controlling the initiation and secondary
metabolism of glandular trichomes, which are the factories producing cembranoids [4,17,22,23,40,41].
In this study, treatment of tobacco seedlings with MeJA could not only increase the secretion level
of glandular trichome, but also promote the formation of cembratriene-diols, which evidenced the
regulatory function of JA in cembranoid formation. Previous studies identified several genes involved
in cembranoid synthesis, CBTS (cembratrienol synthase), P450 (cytochrome P450 hydroxylase) and
LTP1 (lipid transfer protein) [1,8,9], and the qRT-PCR analyses carried out in this study demonstrated
that MeJA treatment could significantly enhance the transcription levels of CBTS, P450 and NtLTP1
genes in tobacco. This finding implied that JA functions as positive regulator of cembratriene-diol
formation via upregulating the cembranoid synthetic genes.

COI1 is a critical component of the SCFCOI1 receptor complex of the JA-signaling pathway, which
displays diverse roles in the regulation of JA-mediated plant growth and development, defense
response and secondary metabolism [20,26–28]. In this study, we analyzed the roles of tobacco
COI1 in regulating cembranoid synthesis using previously developed transgenic plants [25], and
the results showed that dysfunction of COI1 decreased the cembratriene-diol content of tobacco
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leaves to an undetectable level. Subsequent research found that the transcription levels of CBTS,
P450 and NtLTP1 genes were significantly decreased in plants with dysfunction of COI1 compared
to that in the control plants. These results evidenced the involvement of COI1 in regulating the
formation of cembratriene-diols and the transcription of cembranoid synthetic genes including CBTS,
P450 and NtLTP1. Since the COI1-mediated JA-signaling network was well established [28,42–45],
the involvement of the JA perception complex in cembranoid synthesis will provide important clues to
uncover the regulatory mechanism underlying cembranoid formation.

Previous studies established that COI1 and JAZ proteins are the key components of the
JA-Ile receptor complex and play pivotal roles in governing the JA responses in plants [20,26–28].
The WD40-bHLH-MYB complex acts as a critical modulator in controlling the downstream JA
responses, including secondary metabolism and transcriptional regulations [10,14,15,36–39], in which
the bHLH (such as MYC2) and MYB transcription factors are the direct targets of JAZ proteins and exert
important functions in mediating JA responses [27,29,30,46]. Thus, it is of great importance to study the
functions of JA-responsive bHLH and MYB transcription factors in regulating cembranoid synthesis,
which may provide direct evidence of the molecular regulation of cembranoid synthesis. To analyze
the roles of NtMYC2a and NtMYB305 in regulating cembranoid synthesis, NtMYC2a and NtMYB305
were overexpressed in the tobacco with dysfunction of COI1, respectively. The studies showed
that MYC2-overexpression could notably enhance the cembratriene-diol production of plants with
dysfunction of COI1, but with no obvious effects on the trichome secretion. MYB305-overexpression
not only increased the cembratriene-diol production, but also increased the quantity of the trichome
secretion of plants with dysfunction of COI1. Moreover, the transcriptional assays revealed that
overexpression of MYC2 or MYB305 could increase the transcriptional levels of cembranoid synthetic
genes including CBTS, P450 and NtLTP1 in the plants with dysfunction of COI1. Thus, these
findings demonstrated that MYC2 and MYB305 function as positive regulators of cembratriene-diols
synthesis, but these two kinds of regulators worked in distinctive patterns. As mentioned above,
bHLH transcription factor MYC2 and MYB transcription factor MYB305, the tobacco homologues of
Arabidopsis MYB21 and MYB24 [47], are the direct targets of JAZ proteins and function downstream of
COI1 to regulate secondary metabolism in plants [31,34,46–51]. The enhancement of cembratriene-diol
production, as well as the upregulation of cembranoid synthetic genes in plants with dysfunction
of COI1 by overexpression of MYC2 or MYB305 evidenced that MYC2 and MYB305 both function
downstream of COI1 in regulating cembratriene-diol synthesis in tobacco, which is consistent with
their function patterns in regulating other JA responses [10,14,15,27,29,30,36–39,46].

4. Materials and Methods

4.1. Plant Materials

Tobacco cultivar Nicotiana tabacum L. cv. TN90 was used in this study. The NtCOI1-silenced
tobacco plants and the empty-vector-transformed control plants were developed in our previous
study [25].

The NtMYC2a- and NtMYB305-overexpressing plants were generated using
Agrobacterium-mediated transformation with Agrobacterium tumefaciens LBA4404 carrying the
target binary vectors, which were constructed as following. The binary vectors to express
NtMYC2a and NtMYB305 were constructed by inserting the cDNAs of NtMYC2a (amplified
with primers 5′-ATGACTGATTACAGCTTACCC-3′ and 5′-GCGTGTTTCAGCAACTCTGGA-3′)
and NtMYB305 (amplified with primers: 5′-ATGGATAAAAAACCATGCAAC-3′ and
5′-ATCGCCGTTAAGCAATTGCAT-3′) into a 2X35S promoter carrying binary vector pBIN19-attR-HA,
which was modified from pBIN19-attR-YFP [52], by Gateway® cloning, as the manufacture’s
introduction (Invitrogen, Carlsbad, USA) to get the vectors pBIN19-NtMYC2a-HA and
pBIN19-NtMYB305-HA, respectively.
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The hybrid plant of NtCOI1-silenced and NtMYC2a-overexpression was generated by crossing
of the NtCOI1-silenced plants with pollens from NtMYC2a-overexpressing plants. The hybrid of
NtCOI1-silenced and NtMYB305-overexpression was generated in a similar manner.

4.2. Plant Cultivation and Phytohormone Treatment

All tobacco plants were grown at 23 ◦C in a greenhouse with a photoperiod of 14 h light/10 h
dark. For phytohormone treatment with jasmonate (JA), the 4-week-old seedlings of wild type TN90
were sprayed daily with MeJA aqueous solution (100 µM) for seven days, while the seedlings of
control treatment were sprayed with distilled water simultaneously. The leaf samples were collected at
indicated time points for further analyses.

4.3. Visualization of Trichome Secretion Droplets by Iodine Staining

To visualize the trichome secretion droplets, tobacco leaves were stained by I2/KI solution (1%
(w/v) I2 in 3% (w/v) KI), as previously described [25]. The stained leaves were observed under the
stereoscopic microscope and photographed. A darker color indicates higher soluble sugar content of
the tested samples.

4.4. Soluble Sugar Content Determination

The soluble sugar content of the trichome secretion was determined using the method for total
soluble sugar measurement with anthrone reagent as previously described [53]. Briefly, the soluble
sugar of glandular trichome secretion was extracted with anhydrous alcohol by washing the leaf
sample, and then, 1/4 V (volume) distilled water was added into the extraction for a dilution. Following
that, 0.5 mL of extraction were mixed with 2.5 mL of ice-cold anthrone solution (0.2% (w/v) anthrone
in 72% (v/v) H2SO4) and incubated in the water-bath of 100 ◦C for exactly 11 min. Then, the reactions
were transferred onto ice immediately to stop the reaction. The absorbances of the reactions were
measured at 630 nm, and the soluble sugar content of each sample was calculated as previously
described [53].

4.5. Measurement of Cembratriene-Diols

The cembratriene-diol content of tobacco glandular trichome secretion was determined using
the UPLC (ultra performance liquid chromatography) system. In brief, the cembratriene-diol of
glandular trichome secretion was extracted by washing tobacco leaves with ethyl acetate and dried
in the nitrogen flow. Then, the extraction was dissolved in the solvent of 80% acetonitrile in water
(v/v) and filtrated through filters with a membrane with a 0.22-µm pore size for injection (10 µL).
The chromatography assay was performed on an ACQUITY UPLC system (Waters, Milford, CT, USA)
under the following optimized conditions: BEH C18 column (1.7 µm, 2.1 mm × 100 mm) with the
column temperature of 35 ◦C, a mobile phase of gradient acetonitrile (Table 1) at the flow rate of 0.3 mL
min−1 and a UV detector for the detection of cembratriene-diols at 200 nm. Cembratriene-diol purified
from tobacco leaves with preparative LC (liquid chromatography) system and verified by the MS
spectrum was used as the standard. Standard curves were made for quantification by serial dilutions
of the cembratriene-diol stock solutions (1 mg/mL).



Molecules 2018, 23, 2511 11 of 14

Table 1. Gradient acetonitrile concentrations.

Time (min) Acetonitrile Concentration (v/v)

0 50%
1 60%
2 70%
3 75%
4 90%
5 100%
6 90%
7 80%
8 60%
9 50%

4.6. Quantitative RT-PCR (qRT-PCR)

Samples for total RNA extraction were collected from fully-expanded leaves of the indicated
plants. Total RNAs were extracted using TRIzol reagent (Invitrogen) according to the manufacturer’s
instructions. First-strand cDNAs were synthesized using the PrimeScript™ II 1st Strand cDNA
Synthesis Kit (TaKaRa, Dalian, China) and used as templates for qRT-PCR. Reactions were performed
using an ABI 7500 real-time PCR system with GoTaq® qPCR Master Mix (Promega, Madison, USA).

Primers for quantification of target genes in qRT-PCR assays are as follows:
5′-AGCAAGATTGCATGTTTCGTG-3′ and 5′-CCAGCAAATAAGGGACGCAA-3′ for
LTP1 (GenBank Accession: AB625593); 5′-TCAGACTGCATCCTCCACTACC-3′ and
5′-CTCCTTCCGCTACCAAAGGG-3′ for P450 (GenBank Accession: AF166332.1);
5′-ATGAGAGTGCACGACGAGGA-3’ and 5′-CCTTGCTCCCACCCTTGGTA-3′ for CBSTs (GenBank
Accessions: HM241151, HM241152, HM241153); 5′-CCACACAGGTGTGATGGTTG-3′ and
5′-GTGGCTAACACCATCACCAG-3′ for Actin (GenBank Accession: X63603). The Actin gene was
used as an internal control. The relative transcripts were obtained by calibrating the threshold cycles of
the genes of interest with that of Actin using the equation 2(–∆∆CT) [54], where CT is the cycle number
of the threshold point at which fluorescence is detectable.

4.7. Statistical Analysis

Data in the figures are presented as the mean ± SE. Student’s t-test was carried out for the
statistical analyses of cembratriene-diol and soluble sugar contents and for the qRT-PCR data.
Differences in the tests were considered statistically significant at a p-value < 0.05 (*) or <0.005 (**).

5. Conclusions

This study has demonstrated a critical role of JA, as well as COI1, the receptor protein of the
bioactive derivative of JA (i.e., JA-Ile), in governing cembratriene-diol synthesis in tobacco. Findings
of this study suggested that JA-signaling pathways may control the cembratriene-diol formation in
tobacco via manipulating not only the formation of trichome secretion, but also its composition, which
involves the function of downstream bHLH and MYB transcription factors. However, NtMYC2a
and NtMYB305 exhibit distinctive roles in regulating the cembratriene-diol formation and trichome
secretion in tobacco.
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