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Acidosis (arterial pH ≤ 7.35) is a major contributor to 
trauma-associated coagulopathy.1–3 Acidosis arises 
when trauma is accompanied by severe hemor-

rhage and shock, and the resulting hypoperfusion leads to 
the accumulation of lactic acid.3,4 Moreover, the infusion of 
resuscitation fluids, such as normal saline, can exacerbate 
acidosis.2 Similar factors can trigger acidosis in patients 
undergoing complex surgery.5

The molecular mechanisms by which acidosis affects 
thrombin formation and activity have not been definitively 
elucidated. Blood coagulation is a complex phenomenon 
comprising cell-dependent thrombin generation, fibrin 
formation, and fibrinolysis. While each of these stages 
could potentially be impaired by acidosis, its effects on 
the biochemistry of thrombin generation are of particular 
interest because of the central role of thrombin in throm-
bus formation.6,7 Several studies using different experi-
mental methodologies showed that thrombus formation 
is considerably impaired in acidosis,8,9 and this effect can 
even exceed that observed from hypothermia.10 However, 
other reports suggest that acidosis without hypothermia 
has a very limited impact on blood coagulation.11,12 Direct 
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experimental evidence demonstrates that key coagulation 
enzymes are inhibited by decreasing pH,13 but the effects 
of acidosis on thrombin generation kinetics in human 
blood plasma have not been investigated. Furthermore, it 
is not known how intersubject variability would influence 
acidosis-induced effects.

Computational modeling can be used to integrate the 
available knowledge of individual biochemical reactions 
and make predictions about their cumulative effect on 
thrombin generation kinetics.6,14 Such approaches have been 
applied to analyze how thrombin generation is influenced 
by dilution15,16 and hypothermia,17 as well as by the action 
of therapeutic agents, such as recombinant factor VIIa15,18 
and prothrombin complex concentrates.15 These results 
were obtained by applying, and extending the capabilities 
of, the Hockin-Mann kinetic model19,20 of thrombin genera-
tion. This model is a simplified representation of thrombin 
generation biochemistry in human plasma in vitro and can 
serve as a framework for simulating complex combinations 
of factors affecting blood clotting.6,14,18

In this study, we extend the Hockin-Mann model to rep-
resent the effects of acidic pH on thrombin generation. We 
hypothesize that acidosis has the ability to affect the kinet-
ics of free thrombin and thrombin-antithrombin complex 
(TAT) by both delaying their accumulation and reducing 
their maximum levels. Moreover, we hypothesize that these 
effects will be consistent throughout a large population of 
subjects. Finally, we compare the sensitivity to acidosis for 
different quantitative parameters of thrombin generation 
both at the single-subject level and at the subject-group level.

METHODS
Study Group
This work is a computational modeling study; no actual 
blood samples were drawn or analyzed. This study was 
conducted in compliance with the document defining our 
organization’s (BHSAI) Standard Operating Procedure for 
acquisition, warehousing, and sharing human data, which 
has been approved by the U.S. Army. Because this study 
only used previously obtained data, it was exempt from 
IRB review based on these procedures. Our computational 
analyses were performed for a virtual subject defined based 
on average values of coagulation protein concentrations 
in human plasma.18,20 Moreover, we analyzed virtual sub-
jects defined using the clotting factor composition data for 
472 individual subjects in the Leiden Thrombophilia Study 
(LETS)21 control group, as described below.

Model Parameters, Inputs, Outputs, and the 
Basic Simulation Protocol
The Hockin-Mann model of thrombin generation is a sys-
tem of 34 ordinary differential equations reflecting the 
mass action kinetics of essential biochemical reactions in 
the thrombin generation network (i.e., in the system of bio-
chemical reactions responsible for thrombin generation).19,20 
Each equation represents one of the coagulation proteins 
or their complexes. The model’s parameters are the initial 
concentrations of the coagulation proteins and 44 kinetic 
constants that determine the rates of the constituent bio-
chemical reactions (the reactions are listed in Table S1 in the 

Supplemental Digital Content, http://links.lww.com/AA/
B118). The default initial concentrations are equal to the 
corresponding average values in human plasma, and the 
default values of the kinetic constants correspond to physi-
ological pH level (i.e., pH 7.4). The main input of the model 
is the initial concentration of tissue factor, which is a biologi-
cal trigger of thrombus formation. The model’s outputs are 
temporal curves, called “kinetic trajectories,” that reflect the 
time dependence of the concentrations of the coagulation 
proteins. The 2 main outputs considered in this work corre-
spond to the concentration of thrombin (primary end point) 
and TAT complex (secondary end point).

To run the model and generate output trajectories for 
the chosen parameter values, we used a software function 
that computes the trajectories spanning a preselected time 
interval (in our case, 0–80 minutes). The model trajectories 
were subjected to further numerical analyses and/or plot-
ted against time. All computations were performed in the 
software suite MATLAB R2012a (MathWorks, Natick, MA). 
Additional details pertaining to the computational proce-
dures are provided in the Supplemental Digital Content 
(http://links.lww.com/AA/B118).

To model thrombin and TAT generation in the individ-
ual LETS subjects, we followed our previously described 
approach15–17 and substituted the default values of the ini-
tial coagulation protein concentrations in the model with 
the corresponding values determined experimentally for 
each of the 472 individual subjects in the LETS control sub-
ject group. The resulting 472 variants of the Hockin-Mann 
model can be regarded, and are henceforth referred to, as 
virtual LETS subjects. After this adjustment to the initial 
concentrations, we generated and processed output trajec-
tories as described above.

Modeling the pH Dependence of Thrombin and 
TAT Generation
To represent the pH dependence of thrombin and TAT gen-
eration, the basic simulation protocol (suitable only for pH 
7.4) had to be modified. Because it is known that the rates 
of individual enzymatic reactions depend on pH,22–24 we 
represented the pH-dependent modulation of the throm-
bin/TAT generation kinetics by adjusting the catalytic rates 
of the enzymatic reactions in the Hockin-Mann model. 
Specifically, we used the expression k(pH) = f(pH)*k(7.4), 
where k(pH) is the catalytic rate constant of an enzymatic 
reaction at a given pH level, k(7.4) is the rate constant’s 
value for physiological pH = 7.4, and f(pH) is a pH-depen-
dent quantity that we refer to as “pH factor.” We considered 
the following acidotic pH levels: 6.9, 7.0, 7.1, 7.2, and 7.3.

We developed and compared 2 strategies, designated 
“full” and “reduced,” for the pH-dependence simulations; 
these strategies were analogous to our recently developed 
approach to model the effects of hypothermia on thrombin 
generation.17 The full strategy involved pH factor random 
sampling from a pH-dependent interval (shown in Fig. 1), 
which accounted for the uncertainty in the pH factor values. 
For a given acidotic pH value, this strategy produced a large 
number (by default, 5000) of random pH factor sets, each of 
which was used to adjust the kinetic constants in the model. 
After the adjustments, the model was run according to the 
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basic simulation protocol (see previous subsection) to pro-
duce a group of 5000 distinct trajectories for thrombin and 
TAT generation. These distinct trajectories were subjected 

to further analyses, such as quantitative parameter calcula-
tion, or plotted against time (Figs. 2–4). For trajectory com-
parisons and plotting, the default 80-minute time interval 
was divided into 800 evenly spaced points, and the value 
of each trajectory at each time point was recorded. Thus, 
for each time point, we obtained a sample of 5000 trajectory 
values, which were used for statistical analyses. For exam-
ple, for each sample at each time point, we calculated the 
median (Fig. 2, C and D) and quartiles (Fig. 3) and plotted 
them against time. Moreover, the samples for each model 
output (i.e., thrombin or TAT), each acidotic pH level, and 
each time point were tested for normality using the Jarque-
Bera test.25

Because the full pH-dependence simulation strategy is 
computationally intensive, a simpler simulation algorithm 
might be preferable for the LETS subject group analysis. 
The reduced strategy that we developed did not rely on 
pH factor randomization, but provided a method for direct 
estimation of the median and quartiles for the quantities of 
interest (Figs. 3 and 4). This was achieved by adjusting all 
the catalytic rate constants in the Hockin-Mann model using 
1 appropriately selected pH factor set (see Supplemental 
Digital Content, http://links.lww.com/AA/B118), which 
was followed by running the model with these new kinetic 
constants according to the basic simulation protocol. Thus, 
in the case of the default initial concentrations, we used 

Figure 1. Relative enzyme activity as a function of pH. For every con-
sidered acidotic pH level, the pH factor values (which express enzy-
matic activity relative to that at pH 7.4) were sampled uniformly from 
the interval delimited by the dashed lines at that pH level. For the 
pH levels of 6.9, 7.1, and 7.3, such intervals are indicated by black 
arrows. The dashed lines were obtained by increasing (by 100%) the 
distance between the solid lines, which approximate the experimen-
tal data (extracted from Figs. 2 and 3 in Meng et al.13) shown with 
square markers. The markers on the upper and lower solid lines 
correspond to the enzymatic activity of the extrinsic tenase and pro-
thrombinase coagulation factor complexes, respectively. The solid 
lines were fitted to the experimental data using the MATLAB function 
PCHIP. See Supplemental Digital Content for further details.

Figure 2. Thrombin generation versus time 
under physiological and acidotic conditions.  
TAT = thrombin-antithrombin complex. Subplots 
A and B: each subplot shows 30 green and 30 
red kinetic trajectories, with each trajectory cor-
responding to a randomly generated set of pH fac-
tors; the blue lines correspond to trajectories at 
the physiological pH level. Subplots C and D rep-
resent kinetic trajectories at the physiological pH 
level (blue) and median trajectories correspond-
ing to the 5000-trajectory groups computed for 
acidotic pH levels (other colors) as described in 
Methods (via the full pH-dependence simulation 
strategy). E, Normalized thrombin-antithrombin 
complex (TAT) data on induced acidosis for an 
in vivo porcine model; the data values are des-
ignated with square markers and were extracted 
from Figure 5 in Martini et al.9
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both the full and the reduced strategies, whereas in our vir-
tual LETS subject analysis (Figs. 5 and 6), we only used the 
reduced strategy.

Quantitative Parameter Analysis for Kinetic 
Trajectories
For the simulated thrombin trajectories, we calculated quan-
titative parameters of thrombin generation16,18: clotting time 
(CT) (i.e., time to 10 nM thrombin), thrombin peak time, 
maximum slope of the thrombin trajectory (also known as 
the maximum rate of thrombin generation), thrombin peak 
height, and the area under the thrombin trajectory (AUC). 

We also analyzed prothrombin time, which was computed 
as CT for an initial tissue factor concentration of 17 nM17 (its 
default concentration in the model was 5 pM, a standard 
value for in vitro thrombin generation assays). Likewise, 
for the simulated TAT trajectories, we calculated the fol-
lowing quantitative parameters: onset time (i.e., time to 10 
nM TAT), activation time (i.e., time to 50% of the TAT final 
level), maximum slope of the TAT trajectory, and TAT final 
level (i.e., the TAT level at 80 minutes).

For each acidotic pH level, application of the full pH-
dependence simulation strategy resulted in the generation of 
5000 values for each quantitative parameter (i.e., 1 parameter 

Figure 3. Thrombin generation ranges for acidotic 
pH levels. Solid green and red lines correspond to 
the interquartile range and median, respectively, cal-
culated for the groups of 5000 kinetic trajectories 
generated via the full pH-dependence simulation 
strategy as described in Methods (the medians, also 
shown in Fig. 2, C and D, are shown here for com-
parison purposes). The dashed lines correspond to 
the acidotic-pH kinetic trajectories calculated using 
our reduced pH-dependence simulation strategy. For 
each subplot, the left and right groups of trajecto-
ries correspond to pH 7.2 and 7.0, respectively.

Figure 4. Box and whisker plot of the quantitative 
parameters of thrombin generation trajectories 
under physiological and acidotic pH conditions. A, 
Clotting time; B, Thrombin peak time; C, Maximum 
slope of the thrombin trajectory; D, Thrombin peak 
height; E, Area under the thrombin trajectory (or 
“curve”); F, Prothrombin time. The blue squares 
correspond to single values for physiological pH, 
whereas the box plots show thrombin genera-
tion parameter distributions corresponding to the 
groups of 5000 thrombin trajectories generated 
via the full pH-dependence simulation strategy. 
Dashed whiskers, green boxes, and red lines 
show the ranges, interquartile ranges, and medi-
ans of the parameter distributions, respectively. 
The red circles correspond to the estimates of the 
median values calculated using our reduced pH-
dependence simulation strategy (see Methods). 
The green circles were calculated similarly to the 
red circles as an estimate of the interquartile 
ranges shown as green boxes. Acidosis-induced 
median fold changes in the area under the throm-
bin trajectory with respect to its physiological 
value were smaller than corresponding median 
fold changes for every other thrombin generation 
parameter (P = 0 to machine precision, Wilcoxon 
rank sum test; comparisons for each acidotic pH 
level performed independently.) For each (aci-
dotic) thrombin trajectory and each thrombin gen-
eration parameter, fold_change = AV/NV if AV > 
NV and fold_change = NV/AV otherwise, where AV 
and NV are the (acidotic) value of the parameter 
for that thrombin trajectory and the parameter’s 
physiological value, respectively.
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value for each kinetic trajectory). The samples were tested 
for normality using the Jarque-Bera test. To compare these 
parameter samples with the physiological values of the cor-
responding parameters, we used the Wilcoxon rank sum 
test.26 In our virtual LETS subject analysis (performed using 
the reduced pH-dependence simulation strategy), for each 
considered pH level and each quantitative parameter, we 
generated a sample of 472 values (i.e., 1 value per 1 virtual 
subject). Such samples were also tested for normality using 
the Jarque-Bera test. To test for statistically significant dif-
ferences between such parameter samples for physiological 
and acidotic pH levels, we used the Wilcoxon signed rank 
test.26 The differences between the samples were illustrated 
by calculating their medians and interquartile ranges. The 
P values resulting from the Wilcoxon tests were Bonferroni-
corrected to account for multiple comparisons. The denomi-
nator for the Bonferroni correction was equal to 5, which 
reflects comparisons between a sample for the physiological 
pH level and the corresponding samples for each of the con-
sidered five acidotic pH levels.

Intrasubject Parameter Change Analysis for  
the LETS Subject Group
The magnitude of pH-induced change in different thrombin 
generation parameters for the same subject was assessed via 
intrasubject fold change comparisons. For each virtual LETS 

subject, each parameter, and each acidotic pH level, fold_
change = AV/NV if AV > NV and fold_change = NV/AV 
otherwise, where AV and NV are the acidotic and physi-
ological values of the parameter, respectively. We then 
followed our previous work15,16 and estimated the prob-
ability of fold change patterns by calculating the fraction 
of virtual subjects for which the pattern of interest was 
detected. For example, we considered the pattern FC(AUC) 
< FC(X), where FC(AUC) is the fold change in the AUC 
and FC(X) is the fold change in any other thrombin genera-
tion parameter in the same virtual subject at the same pH 
level. The SE of a probability estimate q was computed as 
SE = −q q N( )/1 , where N = 472 is the LETS subject group 
size.26 We also report a 95% confidence interval (95% CI) for 
q; its upper boundary point is 1.00, and its lower bound-
ary point was calculated as the exact (Clopper-Pearson) 
1-sided 95% lower confidence limit.27

Intersubject Variability Analysis for  
the LETS Subject Group
We analyzed the intersubject variation of the parameter 
fold changes and parameter values by visualizing the 
fold-change and parameter histograms (Figs. 5 and 6) and 
calculating the interquartile ranges for the parameter dis-
tributions (Tables 1 and 2). The overlap between 2 distribu-
tions (or histograms) of a thrombin generation parameter 

Figure 5. Fold change distributions in the vir-
tual Leiden Thrombophilia Study (LETS) subject 
group for the 5 thrombin generation parameters 
and prothrombin time. For each virtual LETS sub-
ject, each parameter, and each acidotic pH level, 
fold_change = AV/NV if AV > NV and fold_change 
= NV/AV otherwise, where AV and NV are the aci-
dotic and physiological values of the parameter 
in that subject, respectively. The plots show dis-
tribution histograms generated using the MATLAB 
function HIST with 100 bins splitting up the inter-
val between 1 and the maximum parameter fold 
change value for a given pH level. CT = clotting 
time; PT = thrombin peak time; MS = maximum 
slope of the thrombin trajectory; PH = thrombin 
peak height; AUC = area under the thrombin tra-
jectory (or “curve”).
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(with the 2 distributions corresponding to 2 distinct pH 
levels) was quantified via the Bhattacharyya coefficient ρ  
(Table  3) defined as follows.28 Let x and y be histograms 
with m bins each, and let xi and yi  be the numbers of obser-
vations from x and y, respectively, falling into the ith bin. (In 
our analysis, the number of observations in the ith bin is the 
number of virtual LETS subjects whose thrombin generation 
parameter values fall within that bin.) The Bhattacharyya 
coefficient was defined by the expression

ρ( , ) ( / )( / )x y x N y Ni i
i

m

=
=
∑

1

where N = 472. It follows that 0 1≤ ≤ρ( , )x y ; ρ( , )x y = 0  
when x and y do not overlap (i.e., when none of the bins 
contain observations from both x and y), and ρ( , )x y = 1  
when x and y coincide (i.e., when x yi i= , i m= 1, ,… ).

RESULTS
pH Dependence of Thrombin Generation
Examples of distinct thrombin and TAT kinetic trajectories 
generated using the full pH-dependence simulation strat-
egy are shown in Figure  2, A and B, respectively. In each 
5000-trajectory group (1 group corresponded to 1 acidotic 
pH level), all thrombin trajectories possessed a charac-
teristic one-peaked shape, and all TAT trajectories were 

monotonically increasing. Trajectories from the groups cor-
responding to different pH levels often overlapped (Fig. 2, 
A and B), which reflects the variations in the randomly sam-
pled pH factors. Yet, for each distinct thrombin trajectory 
and each acidotic pH level, the values of CT, peak time, and 
prothrombin time were larger, and the values of maximum 
slope and peak height were smaller, than the corresponding 
values at pH 7.4. The AUC (i.e., the area under the curve) for 
acidotic pH levels was larger than that for pH 7.4 in 99.54% 
of the trajectories. Likewise, for each distinct TAT trajectory 
and each acidotic pH level, the values of onset time and acti-
vation time were larger, and the values of maximum slope 
were smaller, than the corresponding values at pH 7.4. The 
TAT final level for acidotic pH levels was smaller than that 
for pH 7.4 in 99.49% of the trajectories.

To elucidate major trends in the 5000-trajectory groups at 
each acidotic pH level, we analyzed the corresponding median 
trajectories. Median trajectories were used because the distri-
butions of thrombin and TAT concentrations in each 5000-tra-
jectory group deviated from normality (P ≤ 0.001, thrombin 
and TAT samples at each time point and each acidotic pH 
level tested independently). Acidosis progressively delayed 
the time of onset and reduced the amount of thrombin and 
TAT generation, as reflected by median trajectories (Fig. 2, C 
and D). These model predictions were consistent with experi-
mental results for a porcine model of acidosis (Fig. 2E).9

Figure 6. Thrombin generation parameter distri-
butions (including prothrombin time) in the virtual 
Leiden Thrombophilia Study (LETS) subject group 
for different pH levels. The plots show distribution 
histograms generated using the MATLAB func-
tion HIST with 50 bins splitting up the interval 
between 0 and the maximum value for a given 
thrombin generation parameter. CT = clotting 
time; PT = thrombin peak time; MS = maximum 
slope of the thrombin trajectory; PH = thrombin 
peak height; AUC = area under the thrombin tra-
jectory (or “curve”).
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The interquartile distances for the simulated groups of 
distinct trajectories could be considerable (up to 89.00% of 
the maximum median value for thrombin generation and 
up to 64.22% of the maximum median value for TAT gen-
eration; see examples in Fig. 3). One reason for this could 
be imprecise estimation of the median and quartile trajec-
tories owing to insufficient sample size. To test this possi-
bility, we repeated the computations with trajectory group 
size increased to 10,000 (trajectories generated using our 
full strategy for pH-dependence simulation, as described 
in Methods). The resulting median and quartile trajectories 
practically coincided with the corresponding trajectories for 
the 5000-trajectory groups (results not shown). This finding 
suggests that the interquartile value spread may primarily 
reflect the uncertainty in the pH factor values, which is cap-
tured in the full pH-dependence simulation strategy. Yet, 
the domain shapes defined by the interquartile distances 
were consistent with the trends shown by the median tra-
jectories (Fig. 2, C and D, and Fig. 3).

To test our reduced pH-dependence simulation strategy, 
we used it to approximate the median trajectories generated 
via the full simulation strategy. Yet, the temporal trajectories 
generated via the reduced strategy (see examples shown for 
pH 7.2 and 7.0, dashed black lines in Fig. 3) could noticeably 
deviate from the 5000-trajectory group medians (red lines 
in Fig. 3) for both thrombin and TAT, especially at pH 6.9 
and 7.0 (comparison of statistical samples using Wilcoxon’s 
rank sum test, P < 10–5 for certain time points and acidotic 
pH levels). This result indicates that the use of the full pH-
dependence simulation strategy is preferable for accurate 
estimation of the thrombin and TAT time courses at acidotic 
pH levels.

Quantitative Parameters of Thrombin Generation
The groups of quantitative parameter values for thrombin 
and TAT corresponding to each group of 5000 trajectories 
(generated via the full pH-dependence simulation strategy) 
were characterized using medians and interquartile ranges 
because all corresponding distributions deviated from nor-
mality (P ≤ 0.001 for each parameter at each pH level tested 
independently). Acidosis caused a progressive increase in 
median CT, thrombin peak time, the AUC, and prothrom-
bin time, while the medians for both maximum slope of the 
thrombin trajectory and thrombin peak height progressively 
decreased (statistical sample comparisons for each param-
eter tested independently: physiological-pH parameter val-
ues versus acidotic values for the same parameter, P = 0 to 
machine precision) (Fig. 4). Interestingly, the median value 
of the AUC at pH 6.9 was only 1.06-fold (95% CI, 1.061–
1.062, calculated using the large sample CI approximation 
for the median29) larger than its value at physiological pH, 
which is a small change compared with other parameters.

The interquartile ranges for CT, thrombin peak time, the 
AUC, and prothrombin time were comparatively small in 
relation to the median values, particularly for higher pH 
levels (Fig. 4). This suggests that the full simulation strat-
egy can produce informative estimates of the quantitative 
thrombin generation parameters. Interestingly, the param-
eter values calculated using the reduced pH-dependence 
simulation strategy nearly coincided with the correspond-
ing parameter values calculated as sample medians for the Ta
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5000-trajectory groups from the full pH-dependence simula-
tion strategy (Fig. 4). Moreover, the parameter distributions’ 
1st and 3rd quartiles could also be approximated using the 
reduced simulation strategy. These approximations were 
particularly accurate for pH 7.2 and 7.3 (Fig. 4).

For TAT, acidosis progressively increased median onset 
time and activation time, and progressively decreased the 
median maximum slope of the TAT trajectory and TAT 
final level (statistical sample comparisons for each param-
eter tested independently: physiological-pH parameter 
values versus acidotic values for the same parameter, P = 0 
to machine precision). Accuracy of approximation of the 
median and quartile parameter values using our reduced 
pH-dependence simulation strategy was similar to the 
case of thrombin trajectories (Fig. 4). Taken together, these 
results suggest that the application of our reduced simula-
tion strategy can be particularly effective in the analysis of 
individual quantitative trajectory parameters (Fig. 4), rather 
than whole trajectories (Fig. 3).

pH Effects in the Group of Virtual LETS Subjects
Because our virtual LETS subject analysis focused only on 
quantitative parameters (rather than the whole trajecto-
ries) of thrombin generation, we performed the simulations 
using only the reduced pH-dependence simulation strategy. 
Indeed, its use was justified by the sufficiently high accu-
racy of this approximation detected in the case of average 
initial concentrations of coagulation proteins (Fig. 4). While 
the calculated thrombin and TAT generation parameter val-
ues in the LETS group displayed substantial intersubject 
variability (Tables 1 and 2), the general patterns character-
izing the effects of acidosis were robust and consistent with 
our results for the case of average initial concentrations of 
coagulation proteins. Indeed, for every virtual subject, CT, 

thrombin peak time, the AUC, and prothrombin time mono-
tonically increased with acidosis, whereas maximum slope 
of the thrombin trajectory and thrombin peak height mono-
tonically decreased. Likewise, for TAT trajectories, onset 
time and activation time increased, while maximum slope 
and final level decreased.

For every acidotic pH level, the pattern FC(MS) 
> FC(CT) > FC(X) occurred in every virtual subject. 
Therefore, estimated probability of the pattern’s occur-
rence in the same subject was equal to 1.00 (SE, 0.00; 
95% CI, 0.99–1.00). [Here, FC(·) denotes fold change in a 
thrombin generation parameter, and MS, CT, and X des-
ignate maximum slope of the thrombin trajectory, clot-
ting time, and any other thrombin generation parameter, 
respectively.] This result suggests that maximum slope 
and CT can be regarded as the 2 most sensitive thrombin 
generation parameters in each virtual LETS subject. The 
least sensitive parameter was the AUC because the pat-
tern FC(AUC) < FC(X) (with X being any other thrombin 
generation parameter) occurred in every virtual subject 
and, therefore, its estimated probability was equal to 1.00 
(SE, 0.00; 95% CI, 0.99–1.00). Interestingly, while these 
results reflect the intrasubject variability, our conclusions 
regarding the most- and the least-sensitive parameters 
can also be reached by visually comparing the fold change 
distributions reflecting the intersubject variability in the 
virtual subject group (Fig. 5).

These findings imply that maximum slope of the throm-
bin trajectory could potentially be used to discriminate 
between physiological and acidotic thrombin generation—
a question related to the problem of coagulopathy diag-
nostics. Specifically, would it be possible to tell whether a 
thrombin trajectory was generated under physiological (pH 
7.4) or acidotic pH (for example, pH 7.0) conditions just by 

Table 3.   Bhattacharyya Coefficients for the Thrombin Generation Parameters in the Virtual Leiden 
Thrombophilia Study (LETS) Subject Group
pH CT, min PT, min MS, nM/min PH, nM AUC, nM × min Prothrombin time, s
7.3 0.75 0.65 0.86 0.93 1.00 0.74
7.2 0.30 0.13 0.55 0.78 0.98 0.26
7.1 0.04 0.01 0.22 0.56 0.98 0.05
7.0 0.00 0.00 0.04 0.30 0.97 0.00
6.9 0.00 0.00 0.00 0.09 0.96 0.00

The coefficients reflect the overlaps between the distributions (or histograms) for the thrombin generation parameters at pH 7.4 and the distributions for the 
same parameters at the indicated acidotic pH levels. 
CT = clotting time; PT = thrombin peak time; MS = maximum slope of the thrombin trajectory; PH = thrombin peak height; AUC = area under the thrombin 
trajectory (or “curve”).

Table 2.   Thrombin–Antithrombin Complex (TAT) Generation Parameters in the Virtual Leiden Thrombophilia 
Study (LETS) Subject Group Under pH Variation
pH OT, min AT, min MS_TAT, nM/min FL, nM
7.4 5.33 (5.03−5.80) 8.27 (7.75−8.88) 288.76 (249.67−323.14) 999.71 (901.51−1092.40)
7.3 6.69 (6.27−7.30) 10.06 (9.46−10.91) 236.69 (204.75−265.90) 933.41 (839.87−1028.64)
7.2 8.57 (7.98−9.41) 12.57 (11.77−13.64) 187.79 (160.26−212.51) 859.95 (767.23−954.45)
7.1 11.21 (10.33−12.34) 16.00 (14.91−17.44) 142.43 (119.07−162.94) 781.79 (693.56−871.77)
7.0 15.24 (13.96−16.91) 21.30 (19.64−23.31) 98.61 (81.56−116.21) 687.70 (600.81−767.77)
6.9 22.76 (20.59−25.43) 31.06 (28.40−34.24) 58.44 (45.80−71.13) 556.93 (484.20−635.42)

The data are shown as median (interquartile range), because the distributions of all the parameters at all considered pH levels deviated from normality (P ≤ 0.001 
for each parameter at each pH level tested independently).
Statistical significance of acidosis-induced differences (for each parameter tested independently): physiological-pH parameter values versus acidotic-pH values 
for the same parameter (comparison of statistical samples), P < 10–5. The P-value computations were performed as described in Mitrophanov et al.17 (Table 2).
OT = TAT onset time; AT = 50% activation time; MS_TAT = maximum slope of the TAT trajectory; FL = TAT final level.
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looking at its maximum slope value? To investigate this 
possibility in the context of intersubject variability in the 
LETS group, we estimated the overlaps between the param-
eter distributions for different pH values (Fig. 6) using the 
Bhattacharyya coefficients (Table 3). Surprisingly, maximum 
slope was inferior to other parameters in its discriminative 
capacity. Indeed, the maximum slope distributions for pH 
7.4 and pH 7.0 overlapped (Fig. 6C, Table 3), thereby thwart-
ing the possibility to tell whether a given maximum slope 
value has arisen under a physiological (pH 7.4) or acidotic 
(pH 7.0) condition. By contrast, the pH 7.4 and pH 7.0 distri-
butions for CT (Fig. 6A), thrombin peak time (Fig. 6B), and 
prothrombin time (Fig. 6F) were fully separated (Table 3), 
even though thrombin peak time and prothrombin time dis-
played only moderate fold change magnitudes (Fig. 5). In 
fact, the overlaps between the maximum slope distributions 
at acidotic pH levels with the maximum slope distribu-
tion at physiological pH level exceeded the corresponding 
distribution overlaps for CT, thrombin peak time, and pro-
thrombin time for all acidotic pH levels except 6.9 (Table 3). 
This effect could be understood by noticing the large spread 
of the fold change distribution for maximum slope (Fig. 5), 
which suggests that its high sensitivity to intersubject vari-
ability causes its distributions for different pH levels to 
overlap (Fig. 6C). This sensitivity to intersubject variability 
thus prevents maximum slope from being an informative 
indicator of acidosis in a subject population, despite its high 
sensitivity to acidosis in individual subjects.

DISCUSSION
It is generally known that enzymatic activity is influenced 
by the pH of the biochemical milieu.22–24 Therefore, it can 
be expected that the phases of the complex enzymatic 
aspects of the blood coagulation process would be signifi-
cantly affected by acidosis. Our computational modeling 
methodology allowed us to link the pH dependence of indi-
vidual reactions in the thrombin generation network with 
the final end points of the study. We used the LETS data in 
the definition of the initial concentrations for the model and 
incorporated the pH dependence by adjusting the values 
of the model’s kinetic constants. We analyzed the model’s 
ability to qualitatively predict the effects of acidosis. Our 
results support our hypothesis that acidosis may progres-
sively delay, and reduce the levels of, thrombin generation. 
Moreover, we found this combined effect to be pronounced, 
despite considerable intersubject variability in the LETS 
subject group.

The assessment of thrombin generation can be divided 
into 2 categories: assessment of thrombus formation (CT, 
thrombin peak time, and maximum slope of the thrombin 
trajectory) and the assessment of the quantity of thrombin 
generated (thrombin peak height and the AUC).18 Likewise, 
the TAT trajectory parameters that we used in this study are 
an indicator of the latency of thrombus formation as mea-
sured by onset time, activation time, and maximum slope, 
whereas TAT final level represents a measurement of the 
quantity of thrombus. Our results indicate that acidosis 
strongly influenced all of the above parameters except the 
AUC. In our analysis, acidosis acted by delaying thrombin 
generation, as evidenced by an increase in CT, thrombin 
peak time, the prothrombin time, TAT onset time, and TAT 

activation time, and by reducing the maximum thrombin 
level, as evidenced by a decrease in thrombin peak height 
and TAT final level. The relative insensitivity of the area 
under the curve to acidosis may be explained by noticing 
that lower rates of thrombin accumulation and the result-
ing lower levels of active thrombin lead to a decreased rate 
of thrombin inhibition by antithrombin. This, in turn, may 
result in a relatively wider thrombin trajectory, thereby 
compensating for the acidosis-induced reduction in the 
thrombin peak height.

Trauma-associated coagulopathy can have several 
causes, including plasma dilution and hypothermia. Our 
results suggest that the effect of acidosis on thrombin gen-
eration is similar to that expected from hemodilution.16 
There is, however, a considerable difference. The maximum 
slope of the thrombin curve is the most sensitive parameter 
for both acidosis and hemodilution, and CT is the second 
most sensitive parameter for acidosis. In contrast, throm-
bin peak height is the second most sensitive parameter for 
hemodilution.16 Hypothermia is expected to considerably 
delay thrombin generation and increase the area under the 
thrombin trajectory, and to leave thrombin peak height and 
TAT final level practically unchanged.17 Thus, each of these 
3 coagulopathy-inducing factors (i.e., hemodilution, hypo-
thermia, and acidosis) is characterized by unique “signa-
ture” effects on thrombin generation. It can be anticipated 
that a combination of hypothermia and acidosis, similarly 
to a combination of hypothermia and dilution,17 would both 
strongly delay the onset and decrease the levels of thrombin 
generation.1,3

Our results are consistent with those reported by 
Martini et al.,9 who showed that acidosis induced in an in 
vivo porcine model (by infusion of hydrochloric acid in 
lactated Ringer’s solution) delays the onset and decreases 
the levels of TAT generation. Further, Darlington et al.,30,31 
using a porcine model of acidosis, found that CT and pro-
thrombin time (which, like TAT onset time, reflect the time 
of onset of thrombin generation) significantly increased 
when acidosis was induced by hydrochloric acid infu-
sion.30,31 In contrast, when acidosis was induced by hem-
orrhage/hypoventilation, it resulted in a thrombin peak 
height decrease, with no significant effect on the prothrom-
bin time and CT measured via the Calibrated Automated 
Thrombogram (Thrombinoscope BV, Maastricht, The 
Netherlands).30,31 These discrepancies between experi-
mental results using different strategies to induce acidosis 
and different types of measurement assays suggest that 
these (and perhaps other) factors influence the observed 
effects of acidosis on the onset (and perhaps other aspects) 
of thrombus formation. This conclusion is supported by 
evidence obtained from human blood in vitro.10 Indeed, 
it was shown that acidosis induces delays in prothrom-
bin time and the onset of thrombus formation determined 
using thromboelastography.10 Yet, other studies reported 
a lack of significant acidosis-induced changes in clotting 
initiation time measured by viscoelastic assays in whole 
human blood.8,12 Paradoxically, Bladbjerg and Jespersen32 
reported accelerated clotting initiation upon pH reduction 
from 7.4 to 7.0. These disparities highlight the limits of our 
current knowledge about acidosis and illustrate the neces-
sity of further experimental work.
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Thrombin generation assays have been proposed as an 
alternative to traditional laboratory tests, such as prothrom-
bin time and partial thromboplastin time, for accurate 
assessment of the functional status of the blood coagulation 
system and diagnosis of its abnormalities.33,34 While their 
utility in the specific settings of trauma and complex sur-
gery require further studies, in this study we investigated 
the concept of using numerical parameters of thrombin 
generation to distinguish between healthy and diseased 
states. It is conceivable that a high sensitivity of a thrombin 
generation parameter based on intrasubject comparisons 
(i.e., its larger acidosis-induced fold change in comparison 
with that of the other parameters in the same subject) may 
lead to better diagnostic dicrimination between healthy and 
diseased states, because decreasing the pH would lead to 
large, easily detectable shifts in the parameter distribution. 
However, our results demonstrate that the most sensitive 
parameter to lowered pH, that is, the maximum slope of 
the thrombin curve, is also highly sensitive to intersubject 
variability in clotting factor composition, which leads to 
increased overlaps between maximum slope distributions 
corresponding to different pH levels. Thus, our results sug-
gest that the best discriminating parameters for determin-
ing the impact of lowered pH on thrombin kinetics should 
demonstrate both a sufficiently high intrasubject sensitivity 
to acidosis and only moderate intersubject variability. This 
general principle can be applied to other coagulation mea-
surement techniques suggested for coagulopathy diagnos-
tics, such as thromboelastography.35,36

There are several limitations to this study. Because our 
investigation strategy builds on the computational model 
of thrombin generation (i.e., the Hockin-Mann model),6,19,20 
our approach has the conceptual limitations of the origi-
nal model. First, it primarily reflects biochemical reactions 
in synthetic plasma; therefore, it does not represent plate-
let activation kinetics and only partially represents the 
hemostatic proteome of human blood. Second, the model 
reflects a static assay that cannot be used to investigate 
the effects of blood flow or spatial heterogeneity on blood 
coagulation. Third, this is a thrombin generation model 
that does not account for other processes that contribute 
to thrombus formation, such as fibrin generation, fibrin 
polymerization, and fibrinolysis. Yet, the Hockin-Mann 
model, which reflects a frequently used in vitro setup and 
has been extensively validated, has demonstrated its abil-
ity to yield valuable mechanistic insights and informative 
predictions regarding thrombin generation kinetics.6,18,20,37 
Finally, our modeling strategy does not reproduce subtle 
but important phenomena associated with acidosis, such 
as the possible differences between specific acidosis-
inducing agents and insufficiency of physiological pH 
restoration to fully reverse the negative impact of acido-
sis on blood clotting.30,38 These questions call for separate, 
focused investigations and motivate the development of 
computational models of blood coagulation processes 
beyond thrombin generation.

Computational kinetic modeling has recently been 
described as a “thinking tool” in blood coagulation 
research.39 The value of this tool lies in its capacity to estab-
lish a connection between our mechanistic understanding 
of thrombus formation and relevant end points that may 

reflect pathological conditions. Here, we applied this tool 
to obtain insights into the effects of acidosis on thrombin 
generation kinetics in a large group of (virtual) subjects. 
Our study revealed well-defined patterns that can be tested 
experimentally. Such experiments will facilitate evaluation 
of the existing understanding of acidosis and its impact on 
blood coagulation. The resulting knowledge will contribute 
to future efforts aimed at therapeutic reversal of the conse-
quences of traumatic coagulopathy.
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