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Abstract

The decision process in choice reaction time data is traditionally described in detail with diffusion models. However, the
total reaction time is assumed to consist of the sum of a decision time (as modeled by the diffusion process) and the time
devoted to nondecision processes (e.g., perceptual and motor processes). It has become standard practice to assume that the
nondecision time is uniformly distributed. However, a misspecification of the nondecision time distribution introduces bias
in the parameter estimates for the decision model. Recently, a new method has been proposed (called the DM method)
that allows the estimation of the decision model parameters, while leaving the nondecision time distribution unspecified.
In a second step, a nonparametric estimate of the nondecision time distribution may be retrieved. In this paper, we present
an R package that estimates parameters of several diffusion models via the DM method. Moreover, it is shown in a series
of extensive simulation studies that the parameters of the decision model and the nondecision distributions are correctly

retrieved.

Keywords Choice response time - Diffusion models - D*M

Introduction

Decision making is actively studied in both psychology
and neuroscience. Many studies attempt to gain insight into
decision processes via a combination of two-choice reaction
time experiments and mathematical modeling. A number
of mathematical models, collectively known as sequential
sampling models, have been developed in the past decen-
nia (see Ratcliff et al. 2016). A common assumption to all
these models is that noisy evidence is accumulated (or inte-
grated) over time to arrive at a decision. The most used and
successful model from this class is the Ratcliff diffusion
model (DDM; Ratcliff 1978). Following the presentation
of a stimulus, a participant is accumulating information
for either one of two possible responses. Once the level
of accumulated information exceeds a certain boundary,
the participant makes the corresponding response. The dif-
fusion process is illustrated in Fig. 1. In the DDM, the
evidence criteria are relative: If the accumulated evidence
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for one option goes up, the evidence decreases by the same
amount for the other option. For easy stimuli, the evidence
accumulates quickly to the corresponding boundary (lead-
ing to quick and accurate responses) while the opposite
happens for difficult stimuli.

More formally, the DDM has a starting point £* and two
boundaries a and 0 (corresponding to the decision criteria).
The speed at which the level of information evolves is called
the drift rate and is denoted p (if > 0. The process tends
to drift off towards the upper boundary, and vice versa). If
the starting point £* lies in the middle of the boundary a
and 0, a participant’s decision is seen as a priori unbiased
for the two response options. Usually, the starting point
is expressed as a proportion of the boundary (§ = £*/a)
to facilitate interpretation. The information accumulation
process is noisy, and the size of the noise is regulated by a
standard deviation s (it describes how the drift rate varies
within a trial). However, s is fixed to 1 for identification
purposes.

If the same stimulus is given to the same participant
repeatedly, some of the parameters will vary across these
occasions; this is trial-to-trial variability. Thus, the starting
point £ is not a constant but can vary over trials and is
therefore modeled as a uniform distribution centered at z
with width sz. Similarly, the drift rate i can vary over trials
and is modeled as a normal distribution with mean drift rate
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Fig.1 Graphical representation of a diffusion model. At the beginning
of a trial, a participant’s level of information starts at &*. Over time,
the level of information accumulates until it reaches either boundary
a or 0. The rate of information accumulation is the drift rate . After
a decision boundary is reached, the participant makes a response. The
gray lines represent information accumulation processes for five trials
with different drift rates

v and variance sv?. For more information on the Ratcliff
model, see Ratcliff and Tuerlinckx (2002).

The DDM describes in detail what happens during the
decision process. However, the total reaction time is not
uniquely the result of the decision process. There are also
nondecision processes playing a role and they entail every-
thing that does not contribute to the decision making but
does take up time, from the encoding of visual informa-
tion to the neural representation of stimuli to eliciting a
motor response (Wagenmakers, 2009). In early applications
of diffusion models, the nondecision processes are modeled
by a constant. Extensions of these models also estimate the
variance of nondecision processes. As a consequence, these
models impose a distribution on the nondecision processes.
Commonly, the nondecision distribution is assumed to be
uniform. However, if this assumption is violated, then bias is
introduced in the parameter estimates of the decision model
(Ratcliff, 2013). To circumvent specifying a distribution for
the nondecision processes, a new method has been pro-
posed, called DxM (Verdonck & Tuerlinckx, 2016). Until
now, no publicly available software application capable of
doing a DxM analysis existed. Therefore we developed the
R package DstarM and provide a thorough quality check
of its performance.

This paper is structured as follows. First, we provide
a brief summary of the DxM method and the Ratcliff
diffusion model. Next, we provide a tutorial on how to run
a D«M analysis in R using DstarM by analyzing data from
an empirical study (Wagenmakers et al., 2008). Then, we
validate the performance of our implementation in DstarM
via simulation studies and compare the results to those of
traditional analyses. Finally, we discuss some theoretical
limitations of the D+M method and some practical issues
with traditional analyses.

@ Springer

The DM method

Assume we have data from a reaction time (RT) task with
two conditions (e.g., a speed—accuracy manipulation) and
two responses (e.g., correct and error). Observed RTs are
(positive) random variables that can be seen as the sum
of two random variables: the time spent on the decision
process and the residual or nondecision time. At the level of
densities, this assumption implies that the total RT density
is a convolution of the nondecision time density and the
decision time density:

f@)=m=xr)) = /Oom(t —x)r(x) dx, (1)
0

where f(¢) denotes the total RT probability density function
(pdf), m(t) denotes the decision time pdf, r(¢) denotes
the nondecision time pdf, and * denotes the convolution
operator. All pdfs are a function of time ¢ but we omit this
in further equations for simplicity. Generally, in choice RT
experiments, there are two densities for a given condition
c(c=1,...,C) fi for the correct and fo. for the error
response. Both are degenerate densities, which means that
they do not integrate to one but to the probability of a
correct and an error response for condition c, respectively.
A further simplification of notation is achieved by denoting
a unique condition-response pair (c, x) by a single index p
(p=1,...,P).

Many methods exist to estimate the parameters of f),
(with p = 1, ..., P). Most commonly, a discrepancy mea-
sure between data and model is defined and this is directly
minimized as a function of the model parameters. Such
a procedure requires the specification of the nondecision
distribution. The most popular software packages to esti-
mate the diffusion model assume a uniform nondecision
distribution, which has two parameters: the center and the
range. However, as mentioned above, the results of such an
approach may depend strongly on the specific assumption.

In contrast, the D«M method (Verdonck & Tuerlinckx,
2016) circumvents the problem of specifying a nondecision
distribution via a simple identity based on the commu-
tative property of convolutions. Considering two distinct
condition-response pairs p and p’ for which the same but
unknown nondecision time distribution can be assumed.
Then it holds that:

(by definition)
(follows trivially)

fp =mpxr
Mp*r = mp*xr

Mp % T *Mp = Mp*F %Ny (convolution with m )
Mp*TF %My = My *T %My (convolution is commutative)
fpxmy = fyxm, (by definition) )

Equation 2 is the foundation of the DxM: An expression
is obtained that only depends on the total RT density pairs
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p and p’ and the decision densities for these pairs but
not on the nondecision time distribution. When we replace
fp and f, by their observed counterparts ( f » and f o
respectively), the identity will not hold anymore. However,
the parameters of the decision pdf can then be estimated by
minimizing the discrepancy between the left- and right-hand
side (simultaneously for multiple of such pairs):

foxmp = fpxmp

where fp is the observed RT distribution for condition-
response pair p.

As a discrepancy, we choose to use the following Chi-
square discrepancy:

[ la@) — b))
D(a,b)_/o —a(t)+b(t) dr. 3)

This difference can be summed for every unique com-
bination of condition-response pairs which results in the
objective function T to be minimized as a function of the
parameter vector 9:

P p—1
TO)=Y Y D(fprmpy. frsmy). (4)
p=2p'=1
In words, T(f) is a function of the model parameters
describing the decision distribution that calculates the sum
of the difference between the left-hand side and right-hand
side of Eq. 2 for all unique combinations of condition-
response pairs.

One restriction must be imposed on the estimation
procedure. The variance of the model distribution must be
smaller than or equal to the variance of the data distribution.
If we assume that the decision model and the nondecision
model are independent, then the sum of their variances is
equal to the variance of the data distributions. Equivalently,
the variance of the nondecision distribution is equal to the
variance of the total distribution minus the variance of the
decision distribution. Since the variance of the nondecision
distribution cannot be negative, this implies the restriction:
the variance of the total distribution must be larger than
or equal to the variance of the decision distribution. By
enforcing that the variance of the nondecision distribution
is non-negative, the procedures ensures that a nondecision
distribution exists.

In the previous equations, it is assumed that all condition-
response pairs have the same nondecision distribution.
However, it may be the case that it is hypothesized that
one set of condition-response pairs shares the same non-
decision distribution, and a second set another nondecision
distribution. To estimate parameters of conditions with dif-
ferent nondecision distributions, we calculate the objective
function separately for every set with the same nondecision
distribution and sum the outcome. In the most unrestricted

estimation scenario, this implies that only reaction times for
responses A and responses B within the same condition have
an identical nondecision distribution, an assumption made
by most other estimation software.

After obtaining the decision distributions, the nonde-
cision distribution can be estimated by minimizing the
following function:

D(f, m@) 7). ©)

where the average data distribution f and average decision

distribution m(é) are the sum of the data distributions and
decision distributions divided by the number of condition-
response pairs that go into them, respectively. Again, the
sum only refers to condition-response pairs that were
assumed to have the same nondecision distribution when
estimating the parameters of the decision model. This
procedure is akin to a deconvolution.

For traditional DDM analyses, we obtain parameter
estimates by directly minimizing the Chi-square difference
between the observed data distribution and the model
distribution, for each condition-response pair.

P
T)=)_ D(fp.mp) (6)
p=1
This approach is equivalent to the Chi-square approach used
in Ratcliff and Tuerlinckx (2002).

Numerical procedures in DstarM The D«M procedure has
been implemented in the R package DstarM. Before
explaining how to use DstarM (see the next section), we
discuss some technical details first. When dealing with
data distributions (i.e., f ), we use a kernel-based approach
(with a uniform kernel of bandwidth equal to 1) to derive
them from the raw reaction times. The same kernel is
subsequently used to smooth the average estimated decision
distribution (to avoid bias). It is possible to change the
default bandwidth of 1.1

Model distributions of the DDM are obtained via a
numerical procedure (Voss & Voss, 2008) as implemented
in the R-package rtdists (Singmann et al., 2016).

In DstarM, all minimizations are done using Differ-
ential Evolution, implemented in the R package DEoptim
(Ardia et al., 2015; Mullen et al., 2011). To ensure full user
customization, all arguments of Differential Evolution can
be changed in DstarM and users can run the estimation in
parallel. It is strongly advised to run the Differential Evolu-
tion procedure several times again (we settled at five) and
then choose the analysis with the lowest objective function

'Whenever a uniform kernel does not suffice, a custom density
estimate can be used via the argument mg of estDstarM.
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value (and hopefully there are several equal results). This is
done to avoid potential convergence issues that may arise.
For a more detailed explanation of the DxM method, see
Verdonck and Tuerlinckx (2016).

A tutorial on DstarM with an empirical
example

We provide a tutorial on DstarM by analyzing data
from a lexical decision making task (Experiment 1 of
Wagenmakers et al. 2008). These data are available in the
rtdists package under the name speed_acc. Our main
goal is to demonstrate how DxM analyses can be carried
out in R; we will not carry out a detailed comparison
of our results with the ones obtained by (Wagenmakers
et al.,, 2008); Verdonck and Tuerlinckx (2016) present
three case studies with an in-depth comparison between
the traditional DDM and the DM analyses (although
not for the data we analyze here). We only analyze data
from the first participant in the dataset to avoid needless
computational complexity that does not contribute this
tutorial. Furthermore, we carry out both a D+M analysis and
a traditional analysis to contrast these methods.

In this experiment, participants (N = 17) had to decide
if a stimulus was a word or a nonword. Responses were
manipulated by instructing the participants to respond either
as fast as possible or as accurately as possible. A second
manipulation was induced by presenting four different
populations of stimuli: high-frequency words (HF), low-
frequency words (LF), very low frequency words (VLF),
and nonwords (NW). As observed in prior research, the
first manipulation (speed/accuracy instructions) is believed
to only influence the boundary parameter of the DDM.
The second manipulation (word frequency) is intended to
make trials harder, which is believed to influence the drift
parameter of the DDM (Ratcliff et al., 2004).

Analysis of the data from a single participant

After having installed and loaded the package (with
the usual install.packages() and library ()
functions) the next step when using DstarM is to import
the data. The data passed on to the functions of DstarM
should have a structure like that in Table 1, where the first
six observations of the empirical data set are shown. The
data set should be a data frame (called dat in the remainder
of this section) with three columns: rt containing reaction
times, condition determining condition membership,
and response determining response decision. Note that
recoding a decision to upper or lower is arbitrary.
Inverting this will only change the sign of the estimated drift
speed change and flip the relative bias. In our analysis, we
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let upper represent 'word’ choices and 1ower represent
nonword choices. Table 1 can be reproduced with the
following code.

# get complete dataset

data(’speed acc’, package = ‘rtdists’)

# get the first six observations of these
columns

df <- head(speed_acc[, c(’rt’, ’‘condition’,
'response’)])

# convert ’‘word’ to ‘upper’ and ’‘nonword’

to ’lower’

dfSresponse <- ifelse(dfSresponse == ’‘word’,
‘upper’, ’‘lower’)
print (df)

Ideally, a visual and numerical exploration of the data
should be carried out before moving to more complicated
analyses, but we skip that step for reasons of brevity (a
more detailed description of the data can be found in
(Wagenmakers et al., 2008) and code for preprocessing
the raw data can be found in the rtdists package;
see ?speed.acc). In order to prepare for the DstarM
analyses, the analyst should provide a time grid and decide
on the parameter restrictions that specify the model. First,
we look into the time grid, which is usually an evenly spaced
grid. We recommend a time grid from O to 5 in steps of
0.01 (i.e., a hundredths of a second or a centisecond). Using
this grid as a standard could blur subtleties present in one-
thousandths of a second, but it is unlikely that many studies
hypothesize about effects that small let alone have the power
to detect them. The code for defining the time grid is as
follows:

# define a time grid
tt <- seqg(0, 5, .01)

Second, we need to specify the model by applying an
appropriate set of restrictions over the parameters of
different conditions (or indicating that no restrictions are
needed). This is done by specifying the restriction matrix
using integer values from O up to the number of uniquely
estimated parameters. All parameters with the same integer
value will be restricted to be equal. An example for the

Table 1 A snapshot of the first six observations for the first participant
of the empirical data set to show the required structure of a data set
when using DstarM

rt Condition Response
0.70 Speed Lower
0.39 Speed Lower
0.46 Speed Lower
0.46 Speed Upper
0.50 Speed Lower
0.77 Speed Lower
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experiment of Wagenmakers et al. (2008) can be found
in Table 2. The code to specify this restriction matrix in
DstarMis as follows:

# restriction matrix with all parameters
equal across conditions

restr <- matrix(0:4, 5, 8)

# release boundary and starting point across
accuracy conditions

5:8] <- 5:6

# different drifts per word frequency

7:9)

restr[c (1, 3),

restr[2, ] <- c(1,

Once the time grid and the parameters restrictions are
specified, the DDM parameters can be estimated via the
DM method using the following code:

# estimate decision model

resD <- estDstarM(dat = dat, tt = tt, restr
= restr)

# estimate nondecision distribution

resND <- estND(res = resD)

# estimate total distribution

resObs <- estObserved (resDecision = resD,
resND = resND, data = dat)

The function estDstarM can also run a traditional DDM
analysis where the nondecision distribution is modeled as
a uniform distribution by adding the argument DstarM
= FALSE. Both resD and resND are S3 class objects
with custom print and plot methods. From resD, a vector
containing the best parameter estimates of the decision
model can be obtained by indexing with $Bestvals.
The estimated nondecision distribution(s) can be obtained
by running resNDSr.hat. Both resD and resND can
be indexed with $GlobalOptimizer to look up details
about the Differential Evolution estimation procedure.

The function estDstarM can also run a traditional DDM
analysis where the nondecision distribution is modeled as
a uniform distribution. The model then contains two more
parameters: the mean and width of the uniform distribution.

Table2 An example of a parameter restriction matrix in DstarM

a 0 0 0 0 5 5 5 5
v 1 7 8 9 1 7 8 9
b4 2 2 2 2 6 6 6 6
¥4 3 3 3 3 3 3 3 3
sV 4 4 4 4 4 4 4 4

Columns represent different conditions of the experiment and rows
represent parameters. The first four columns represent the speed
condition, the last four columns represent the accuracy condition.
The four columns within both speed and accuracy represent word
frequency conditions. Identical values in the cells indicate that these
parameters will be restricted across conditions

This must be incorporated in the restriction matrix. The code
then looks as follows:

# adjust restriction matrix
restr <- matrix(0:6, 7, 8)
5:8] <- 7:8
9:11)

restr[c(l, 4),
restr[2, ] <- c(1,
# estimate model

resT <- estDstarM(dat = dat, tt = tt, restr

= restr, DstarM = FALSE)

Parameter estimates of both models are shown in Table 3.
The differences in parameter estimates between the speed
and accuracy manipulations are comparable between the
two analyses. All ordinal relations between conditions with
respect to a and v are the same for the traditional model,
DxM model and the original analyses done in Wagenmakers
et al. (2008). A difference between the traditional model
and the D«M model is present in the variance parameters.
It appears that the DM estimates attribute more variance
to intertrial variability (sv) whereas the tradition model
attributes this to variance in the nondecision distribution.
Next, we can compare the performance of both models.
This can be done visually, as done in Fig. 2 or by comparing
the x? goodness of fit value. For a traditional analysis, the
x? goodness of fit is the same as the objective function.
For a D«M analysis, this has to be recalculated, which is
done automatically in the function estObserved. In each
case, the fit is first calculated separately for each condition-
response pair. Subsequently, each individual fit is multiplied
by the proportion of observations in that condition-response
pair and then summed, to obtain a weighted fit measure.

Table 3 Parameter estimates of the traditional model and the DxM

DstarM Traditional

Qace 1.223 1.107

Aspa 1.036 0.838

VHF 3.848 5.249

VL 2471 2.976

VWLF 1.351 1.660

vNw —2.407 —2.555

Zace 0.486 0.463

Zspd 0.443 0.464

57 0.011 0.011

sV 0.588 4280 % 10793
T,, 0.360 0.393

or, 5.501 % 10~ 4.353 %1079

er

The effect of the speed accuracy manipulation is similar in the
parameter estimates of both models. Note that T, and o7, represent
the mean and variance of the nondecision distribution. Parameters of
the uniform nondecision distribution obtained by the traditional model
are U(a = 0.2791, b = 0.5077)
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Fig. 2 Observed quantiles (x-axes) vs. estimated quantiles (y-axes)
for both the traditional model (red) and the D«M model (green). The
title of each plot indicates the condition-response pair. The abbrevia-
tions Spd, Acc, HF, LF, NW, VLF, respectively, mean speed, accuracy,

The resulting fit of the DM model was 7.638 compared to
8.030 for the traditional model.

In Fig. 2 and Table 4, it can be seen that a D«M analysis
performs somewhat better than a traditional DDM analysis.
This is likely caused by the additional freedom in the shape
of the nondecision distribution. The overall misfit in both
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high-frequency, low-frequency, very low frequency, and nonword. The
sample sizes of each observed condition-response pair are shown in
brackets

analyses may be caused by the many parameter restrictions
and the small sample size for many condition-response
pairs. The complete script for carrying out the analyses can
be found at https://osf.io/ypcqn/.

To summarize, a D*M analysis can be carried out as
follows. Before the analysis, one could get an overview
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Table 4 A x? for all condition-response pairs

0.0001 0.1365 0.0049 0.1141
—0.0386 0.0037 0.0149 0.2172
—0.0010 —0.2350 —0.0018 —0.1459
—0.2241 —0.0253 —0.0144 —0.1975

Each value of the 4 — x — 4 table below corresponds to the fit of one
of the plots of Fig. 2. Ax? is defined as XLZ)*M — X%radilional' Since a
lower Chi-square difference indicates better fit, negative values for the
Ax? indicate that the DM model fits better. Note that x 2 values are
weighted by sample size and therefore they cannot be compared across
condition-response pairs

of the data using rtDescriptives. This returns the
observed proportions of each condition-response pair and
plots density estimates for each condition-response pair.

Next, to execute the analysis, the following functions
are called in order. First estDstarM, to estimate the
decision model, then estND, to estimate the nondecision
model, and finally estObserved, to combine the decision
and nondecision model and to obtain the model implied
distribution. In principle, if a researcher is interested only
in the decision model, then there is no need to estimate
the nondecision model. However, this means that model fit
cannot be examined (e.g., Table 4 and Fig. 2 can not be
obtained).

After running the analyses, a number of convenience
functions allow a user to inspect the results. For instance,
the call plotObserved can be used to quickly mimic
Fig. 2. This function either produces QQ-plots or histograms
of the data overlayed with the model-implied density. To
obtain Chi-square goodness-of-fit measures (e.g., to create
Table 4), the function chisgFit can be used. This returns
a list containing the goodness of fit for each condition
response pair (weighted by the number of observations) and
the sum of the fit.

Simulation study
Setup of the simulation study

To validate our software tool, an extensive recovery
simulation study was carried out. In the recovery study, we
simulated 600 data sets, each consisting of two experimental
conditions. Between these conditions, the decision model
parameter values and the nondecision distributions could
vary.

Our data simulation procedure worked as follows. First,
we created 100 sets of parameter values by drawing each
parameter from an appropriate uniform distributions on
the parameter space (see Table 5 for the lower and upper

Table 5 Parameter ranges of the uniform distribution used to draw
parameter values in the recovery study

Parameter Lower bound Upper bound
aj 0.5 2.0
V1 -5.0 5.0
21 0.2 0.8
ap 0.5 2.0
v -5.0 5.0
22 0.2 0.8
sz 0.1 0.9
sV 0.1 5.0

bounds). This resulted in 100 different parameter sets that
varied widely. Next, we randomly selected a manipulation
(including no manipulations) in parameters a, v, and/or z
(e.g., if only parameter a was selected to be affected by
manipulation, then a new a was drawn while the other
parameters were kept constant). Then we selected for each
condition one of three nondecision distributions (uniform,
skewed, multimodal) at random (see Fig. 3 for details). This
resulted in 100 unique sets of parameter configurations. For
each of these configurations, we simulated six data sets with
100, 250, 2500, 10,000, 250,000 and an infinite number? of
observations per condition. All simulated datasets and the
code to generate them can be found at https://osf.io/ypcqn/.

The data were analyzed with the traditional DDM
(assuming a uniform nondecision distribution) and with
DxM, both using the DstarM package. As mentioned
above, we analyzed every data set five times with DstarM
(both for DDM and DxM) and selected the analyses with
the lowest objective function value to use in the results.
This was done to avoid potential convergence issues in the
Differential Evolution algorithm. For the D«M analyses,
the nondecision distributions were estimated in a next
step using the best model parameters from the previous
step.

Results

This section consists of two parts. The first part reports
the parameter estimates for the decision distributions.
The second part shows the retrieval of the nondecision
distributions.

2 An infinite number observations means that we supply the algorithm
with the true densities used to simulate data, instead of the actual
data (where the algorithm then estimates a density from). Because our
estimation procedure makes use of a distance between (empirical or
theoretical) densities, it is possible to evaluate the performance of the
procedure when the true densities are supplied.
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Fig.3 Plot of nondecision distributions used to simulate data in the recovery study. The blue line represents a Beta(o = 10, f = 30) distribution.
The red line represents U (a = .4, b = .8) distribution. The green line represents a multimodal distribution obtained from the following mixture:
iBeta(e = 20, p = 20) + yBeta(e = 100, B = 4) + U(a = 0.6, b = 0.7) + JU(a = 0.2, b = 0.75)]. Here; Beta and U refer to the beta

distribution and uniform distribution, respectively

Parameter estimates: Correlations with the true values
and biases

Results of the simulation study are shown separately for the
traditional (i.e., standard DDM with uniform nondecision
distribution) and DxM analyses in Tables 6 and 7, respec-
tively. The left subtables contain correlations between the
true and estimated parameters; the right subtables contain
mean absolute relative differences between estimated and
true parameters (i.e., 100 - % vazl |‘9i9;i9i D.

Evaluating Table 6, it can be seen that in general for
sufficiently large sample sizes, the parameters estimated
using the standard DDM analysis correlate well with their
true counterparts. There are, however, important qualifica-
tions to make. First, the drift rate and boundary separation
have in general higher correlations, even for small sam-
ples. Second, and to be expected, correlations are largest
for the condition of a uniform nondecision distribution.

@ Springer

Third, the multimodal nondecision distribution lowers the
correlations, specifically for the trial-to-trial variability
parameters.

Relative biases in Table 6 are in general quite consid-
erable for the DDM analyses and they do not disappear
completely with a large number of observations. The drift
rates show more bias than boundary separation or start-
ing point. The trial-to-trial variabilities show most bias. It
may appear surprising that results from traditional analy-
ses on datasets with uniform nondecision distributions are
not unbiased as the sample size grows to infinity. This
bias appears because each table describes all datasets for
which at least one of the nondecision distributions used
has the mentioned shape. Since parameters are restricted
across conditions, this biases the results. Appendix A con-
tains tables with parameter estimates split up per unique
combination of nondecision distributions. It can be seen that
the bias in parameter estimates of the traditional model for
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Table 6 Tables containing information on the recovery of the parameter values from the traditional DDM analyses)

Beta distribution

Correlations Relative difference (%)

1 25 2.5 10 250 00 1 25 2.5 10 250 00
a .49 .70 94 .98 .99 .99 30.9 22.3 12.0 7.41 4.45 3.95
v 92 .94 97 98 .99 99 86.5 38.4 289 21.2 16.5 14.3
z .83 .88 .96 97 97 97 24.1 15.5 9.33 8.45 8.80 7.18
k¥4 .09 —.02 48 57 .39 43 114 117 55.9 53.6 51.7 41.6
SV 48 23 73 .82 .84 91 89.0 92.6 66.2 51.0 33.0 28.2
Uniform distribution

.1 25 2.5 10 250 o0 .1 25 2.5 10 250 o0
a .52 .54 93 98 1.0 1.0 29.0 27.6 12.5 7.04 2.12 1.63
v .87 91 .97 .99 1.0 1.0 301 69.1 30.1 22.5 10.7 8.44
b4 .68 .89 98 .99 1.0 1.0 38.7 22.2 6.32 4.17 2.46 2.18
sz —.18 —-.23 .36 .52 .54 .61 155 166 57.6 58.0 474 43.8
K 43 .34 .89 .94 .94 95 91.7 90.2 63.3 41.8 18.3 14.7
Multimodal distribution

.1 25 2.5 10 250 o0 .1 25 2.5 10 250 o0
a .49 52 .87 97 .99 99 33.9 29.4 15.5 9.21 5.46 4.89
v .84 91 94 97 .98 98 459 354 87.1 41.7 34.5 36.8
z 71 .89 94 .96 .96 .97 50.9 23.3 139 12.4 11.8 9.53
Sz —.17 —.12 —.00 .08 .02 .05 143 173 67.2 73.3 72.4 67.4
SV 44 .34 14 77 78 .85 102 88.7 74.5 59.2 39.8 32.6

The left table shows correlations between estimated and true parameter values; the right table shows the mean of the absolute relative differences
between estimated and true parameter values. The column headings contain the sample sizes divided by 1000 (so, the first column refers to a
sample size of 0.1 x 1000 = 100

Table 7 Tables containing information on the recovery of the parameter values from D<M analyses

Beta distribution

Correlations Relative difference (%)

1 25 2.5 10 250 00 1 25 2.5 10 250 00
a .80 94 97 98 99 1.0 16.5 9.79 6.01 4.50 2.38 .005
v 91 94 97 97 97 1.0 46.1 38.6 21.3 20.9 15.3 .045
z .86 92 97 .98 97 1.0 18.9 13.3 7.05 541 3.10 .051
R¥4 .16 34 44 .61 .84 1.0 92.4 80.1 69.2 59.9 30.1 2.14
sV .39 47 12 75 .68 1.0 95.2 69.9 44.2 60.4 63.2 .063

Uniform distribution

.1 25 2.5 10 250 [ee) .1 25 2.5 10 250 )
a 78 .87 95 95 .98 .99 17.3 15.0 9.61 7.60 3.12 .625
v .87 .89 95 .96 99 1.0 57.8 68.9 30.1 26.3 12.7 2.12
z .84 .90 .95 97 .99 1.0 17.5 13.7 8.76 6.18 3.27 325
sz 17 .16 24 .35 71 98 89.4 102 95.2 86.2 53.0 2.14
SV .26 43 .59 .69 .86 93 70.9 73.1 54.3 49.7 29.6 14.1
Multimodal distribution

1 25 2.5 10 250 [ee) .1 25 2.5 10 250 o0
a 75 .82 .94 95 .98 .99 22.6 19.2 11.6 8.56 3.06 528
v .84 .88 92 95 .96 1.0 74.4 53.5 40.7 40.5 23.6 1.66
Z .83 78 95 97 .98 1.0 23.6 21.3 12.8 8.68 4.60 263
sz —.02 .28 37 48 78 .98 124 103 90.7 78.3 45.8 3.47
SV 25 .34 .59 .56 .66 95 104 82.0 64.6 71.5 70.7 11.9

The left table shows correlations between estimated and true parameter values; the right table shows the mean of the absolute relative differences
between estimated and true parameter values. The column headings contain the sample sizes divided by 1000 (so, the first column refers to a
sample size of 0.1 x 1000 = 100
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Fig. 4 Plot of nondecision distributions estimated from data sets with 100 observations (top three graphs) and with 250,000 observations per
condition (bottom three graphs). The black line represents the mean of the estimates and the gray area represents a 95% confidence interval.
Confidence intervals were constructed via bootstrapping. The true distributions are plotted on top of the estimates

datasets with a uniform distribution disappears for larger
sample sizes.

From Table 7, it can be seen that the DxM analyses
properly retrieve parameters regardless of the nondecision
distribution and this is shown in relatively large correlations
even for small samples (with the exception of the trial-to-
trial variability parameters). The relative biases for the DxM
analyses are much smaller than for the traditional DDM
analyses and they quickly become small with increasing
sample size (again with the exception of the variabilities).
It is striking that DM analyses perform also better than
traditional analyses with lower sample sizes, even when
the nondecision distribution is indeed uniform. We refer to
Appendix B for additional scatterplots of estimated and true
parameter values.
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The estimated nondecision distribution

Figure 4 shows the (average) retrieved nondecision distribu-
tions for two sample sizes 100 and 250,000. From this plot,
it can be concluded that the general shape of the nondecision
distribution can be retrieved on average, even for 100 obser-
vations. Recovery is much better for 250,000 observations.
Of course, it should also be remarked that a proper retrieval
of the nondecision distribution depends foremost on proper
estimation of the decision distribution. The smooth right-
skewed beta distribution is most easy to estimate, while the
procedure has most difficulties with the discontinuities and
sharp corners of the two other nondecision distributions.
Appendix C contains these plots for data sets with sample
sizes not shown here.
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Fig. 5 Estimated means of the nondecision distributions versus true means. The x-axis represents the sample sizes divided by 1000. The gold
crosses represent the medians of the estimates and the colored dashed lines represent the true values. Jitter was added to the x-coordinates to

improve readability

In Figs. 5 and 6, we show the implied estimates of the
mean and variance of the nondecision distributions versus
their true mean and variance. It can be seen that increasing
the sample size leads to a convergence of the estimated
mean and variance to their true values.

Discussion

In this paper, we have introduced the R package DstarM to
estimate the diffusion model without the need to assume a
specific nondecision distribution. In an extensive simulation
study, we have shown the package performs as intended. In
the following sections, we discuss some limitations of the
Dx*M method and of traditional analyses. We also provide
some design advice for researchers interested in using the
Dx*M method. It is worthwhile to emphasize that the D«M
is not specific to DDM analyses, but could be used with any
decision model (e.g., ballistic accumulator models).

Consequences of bias in traditional analyses due to a mis-
specified nondecision distribution Results from traditional
analyses may correlate highly with true values but can
be severely biased as well, depending on the underly-
ing nondecision distribution. As a consequence, conditions
with misspecified and different nondecision distributions
can no longer be compared meaningfully. Potential differ-
ences between conditions could be negated or increased
through bias introduced by misspecification of the non-
decision distributions. Effectively, results from traditional
analyses should not be compared across conditions with
different nondecision distributions.

Limitations of the DM method It is theoretically possible
that the (observed) data distributions of condition-response
pair p and condition-response pair p’ are equal. DxM builds
on the difference between these (observed) distributions
(see Eq. 2). Hence, in this scenario, the D*M method
will likely encounter convergence issues or return improper
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parameter estimates. Of course, these situations are rare and
imply thatin Eq. 2 f, equals f,» with as a consequence that
the models m, and m, can have any parameters as long
as their distributions are equal. This is mainly a theoretical
problem and is unlikely to occur in practice.

D#M is does not use an explicit likelihood function.
Therefore, obtaining standard errors can only be done via
bootstrapping. Furthermore, it is not straightforward to
employ the method in a Bayesian paradigm.

DM currently introduces a large number of parameters
for the nondecision distributions. It is important to realize
that the additional parameters do not impact the estimation
of the decision model parameter, because the decision and
non-decision processes are separated.

The idea behind D«M may be compared to the simple
paired sample design in which for a number of persons two
measurements are made. Let us denote an observation from
person i in group j (with j = 1,2) as y;;. To account
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for individual differences, a person-specific parameter t;
is added to the model formulation of both measurements:
yij = o + 1 + €, where «; is the condition effect
and ¢; (with ¢; N(O, 0'52)’ independently of 1;) is
the error term. Usually we are interested in the difference
between the condition effects o> —a1. A simple way to make
inferences about this quantity is by analyzing the person-
specific differences y;» — y;;. By doing so, we remove
the person-specific t;’s from the equation, as well as any
information about their distribution.

For model selection, we advise using cross validation
techniques, to avoid confusion about the status of the
added non-decision parameters when calculating typical
information criteria like AIC.

Estimation of the trial-to-trial variability parameters The
variance parameters sz and sv can only reliably estimated
with very high sample sizes. This issue is not inherent
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to the D+M method but to the Ratcliff model since the
same problem was encountered for traditional analyses.
This has also been observed in reports on other estimation
methods (Voss & Voss, 2007; Ratcliff & Tuerlinckx, 2002).
Therefore, we discourage interpreting these parameters.

Comparison to other estimation methods Our implementa-
tion differs from other software used to estimate diffusion
models in two aspects (aside from using a different the-
oretical framework). The first most notable difference is
that most other software applications obtain parameter esti-
mates by minimizing a difference between observed data
statistics (e.g., the quantiles of the observed data) and their
model counterparts (e.g., quantiles of the model distribu-
tion). In contrast, Dst arM minimizes a Chi-square distance
between (convolutions of) observed data distributions and
model distributions. This Chi-square distance can roughly
be interpreted as the difference between two distributions in
terms of all moments.

A second difference is the optimizer used; DstarM uses
a global optimization algorithm (Differential Evolution)
which should make it more robust to local optima than
software applications that use local search algorithms.

Design Advice The D«M method performs best when there
are multiple conditions that share one nondecision distribu-
tion. Obtaining conditions with quasi-identical nondecision
distributions can be realized via experimental design. If an

experiment consists of some conditions that only differ in
stimulus difficulty then the expected effect in parameter
estimates should only be present in the drift rate v of the
Ratcliff diffusion model (Ratcliff et al., 2004). In a similar
fashion, giving participants a speed or accuracy instruction
is believed to only result in a change in boundary a of the
Ratcliff diffusion model (Ratcliff & McKoon, 2008).

Conclusions

To summarize, we have made DxM analyses more
accessible with the R package DstarM; a new method
for diffusion model analyses which circumvents specifying
a distribution for the nondecision processes. In simulation
studies, we have shown that it performs well at retrieving
parameters of a decision model and also properly estimates
nondecision distributions.

Open Practices Statement The complete script for carrying out the
analyses, as well as the simulated data sets, can be found at https://
osf.io/ypcqn/. The source code of the R package DstarM can be
downloaded from https://CRAN.R-project.org/package=DstarM.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix A: Parameter estimates for every unique combination of nondecision distributions

Table 8 Tables containing information on the recovery of the parameter values from traditional analyses

Correlations Relative difference (%)
1 25 2.5 10 250 o0 .1 25 2.5 10 250 o0
Uniform - uniform
a 73 .76 96 .99 1.0 1.0 24.6 20.3 9.65 5.07 .631 .000
v .93 91 98 1.0 1.0 1.0 614 64.6 33.9 21.5 3.44 .000
b4 91 94 99 .99 1.0 1.0 20.3 21.0 5.87 4.44 .582 .000
R¥4 -.37 —.08 71 .90 1.0 1.0 156 101 39.9 294 4.36 .000
sv .06 .02 .89 .99 1.0 1.0 92.3 92.3 58.8 374 5.35 .000
Uniform — multimodal
a 45 .50 .88 98 1.0 1.0 344 32.8 14.5 8.56 3.40 3.20
v .85 91 95 98 .99 99 178 73.1 29.5 25.3 14.6 13.7
z .65 .87 94 97 .98 98 50.1 24.3 8.24 5.77 4.51 4.19
R¥4 —.11 —.38 24 .04 27 43 169 248 67.8 85.9 90.5 89.5
sv A7 33 92 92 92 93 93.1 88.7 70.5 49.4 27.2 24.3
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Table 8 (continued)

Correlations Relative difference (%)
.1 25 2.5 10 250 oo .1 25 2.5 10 250 00
Beta - beta
a 46 .85 95 .99 .99 .99 34.1 15.4 9.59 6.87 5.24 4.64
v .96 .96 .98 .99 .99 .99 49.0 29.4 26.9 214 17.9 16.6
z 78 .89 .95 97 .96 .96 16.5 11.5 7.29 7.43 8.05 8.01
R¥4 18 22 .69 .73 42 .56 112 88.5 57.5 54.0 61.7 45.6
sV .29 —.00 .85 .90 .87 .89 96.1 94.6 69.6 56.6 38.6 34.8
Uniform - beta
a 43 52 .93 98 1.0 .99 329 28.4 133 7.11 2.85 2.52
v .86 91 .99 .99 1.0 1.0 142 57.0 29.6 18.4 10.5 8.92
Z 75 .81 .96 98 .98 .98 32.1 222 6.50 441 4.61 4.43
sz —-.23 —.11 18 .62 45 .50 140 127 59.7 493 33.0 29.4
sv A48 41 .93 .96 .98 .98 89.7 90.3 58.9 37.0 18.5 15.8
Beta - multimodal
a .69 .61 92 98 .99 .99 259 27.4 14.8 8.79 5.17 4.59
v .88 91 95 97 .98 .99 117 53.7 36.5 27.0 222 18.4
z .82 93 97 98 .98 .98 39.8 16.6 16.1 14.5 13.6 8.88
sz .23 —.16 37 24 35 .19 88.9 143 49.7 57.4 58.3 50.6
sv .56 15 52 .68 73 .88 79.1 92.3 69.6 58.6 41.1 339
Multimodal - multimodal
a 52 57 .87 97 .98 .99 33.6 26.0 154 9.62 6.50 5.61
v .85 .93 .94 .96 .98 97 915 762 160 63.2 58.1 71.4
b4 .66 .93 94 95 .95 .96 54.9 24.0 14.6 14.3 14.5 12.9
sz —-41 15 —-.22 21 —.09 —.10 159 135 78.4 74.2 67.9 59.9
sV .39 45 .82 .81 .81 .85 123 86.2 80.9 67.2 48.6 39.3
The table is identical to Tables 6 and 7, except that subtables are now shown for every unique combination of nondecision distributions
Table 9 Tables containing information on the recovery of the parameter values from D<M analyses
Correlations Relative difference (%)
.1 25 2.5 10 250 00 1 .25 2.5 10 250 00
Uniform - uniform
a .88 .90 98 1.0 1.0 1.0 18.0 14.4 7.18 2.94 1.04 .002
v .85 .85 .99 1.0 1.0 1.0 753 105 21.2 18.7 7.59 138
z .90 91 98 .99 1.0 1.0 19.5 17.5 9.85 5.59 3.77 .003
sz —.08 .61 .68 25 .70 1.0 92.4 66.6 55.1 63.4 339 462
sV .35 .76 .81 91 .99 1.0 56.1 72.7 29.2 26.5 7.71 113
Uniform - multimodal
a .76 81 93 92 97 98 232 22.6 153 13.4 5.37 1.62
v .86 .88 91 94 .99 99 51.1 59.5 42.1 35.7 18.9 5.20
Z .81 .87 93 95 .98 99 18.5 15.0 9.91 7.91 4.03 762
sz 48 —.10 .05 22 .66 92 86.2 153 140 116 75.9 4.95
sV .20 .50 .53 57 74 .84 86.2 85.9 84.5 79.1 57.2 36.7
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Table 9 (continued)

Correlations Relative difference (%)
.1 25 2.5 10 250 00 .1 25 2.5 10 250 00
Beta - beta

a .86 97 .99 .99 1.0 1.0 14.6 7.44 5.16 3.81 1.44 .000
v .95 .95 .99 .99 1.0 1.0 38.5 36.5 18.5 13.9 3.13 .000
b4 91 91 97 .99 1.0 1.0 13.9 12.0 5.35 4.35 758 .000
sz 42 .54 .54 .56 97 1.0 72.9 69.3 64.4 54.5 17.0 .000
sV .33 .61 .86 92 .99 1.0 78.4 68.9 46.6 339 13.0 .000

Uniform - beta

a 12 92 .96 97 1.0 1.0 16.0 10.8 7.44 5.71 2.40 .012
v .90 .95 97 .95 .99 1.0 49.9 44.7 26.9 26.4 8.44 .031
Z .80 93 98 98 .99 1.0 17.1 9.91 6.11 4.76 2.69 .092
sz .09 .20 31 .62 18 1.0 90.4 74.6 76.3 70.7 42.4 .329
sv .29 29 .60 18 92 1.0 65.5 59.4 40.4 352 16.1 .081

Beta - multimodal

a .63 .85 .96 .96 98 1.0 22.1 14.4 8.10 7.13 3.58 .006
v .83 91 .96 97 .89 1.0 51.7 42.5 21.8 25.4 39.0 138
Z .90 94 97 98 .95 1.0 243 19.5 11.0 8.32 6.38 .066
¥4 —-.25 17 .38 .64 .80 98 120 99.8 67.9 55.8 34.1 7.36
sV 45 49 15 .56 27 1.0 148 82.3 45.0 121 178 133

Multimodal - multimodal

a .89 .88 97 .99 1.0 1.0 16.6 15.4 7.93 3.14 815 .006
v .86 .88 .92 .96 1.0 1.0 109 56.3 48.0 50.3 17.3 .017
z .81 .62 .95 97 1.0 1.0 27.5 26.3 16.1 8.93 3.53 .005
sz —.21 .60 .57 .60 .89 1.0 156 65.8 68.0 64.0 30.4 .009
sV 04 -.07 .54 .57 97 1.0 87.6 79.0 62.3 324 9.66 .045

The table is identical to Tables 6 and 7, except that subtables are now shown for every unique combination of nondecision distributions
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Appendix B: Plots of estimated parameters
vs. true parameters for all sample sizes
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Fig. 7 Parameter estimates of traditional analyses (red triangles) and DstarM analyses (green circles) where the nondecision time followed a
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Fig. 9 Parameter estimates of traditional analyses (red triangles) and
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a bimodal distribution. Columns from left to right show results for
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Appendix C: Estimated nondecision
distributions for all sample sizes
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Fig. 10 Estimated nondecision distributions for 250 observations per condition. Colored lines represent the true distribution
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Fig. 11 Estimated nondecision distributions for 2500 observations per condition. Colored lines represent the true distribution
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Fig. 12 Estimated nondecision distributions for 10,000 observations per condition. Colored lines represent the true distribution
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