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Interactions between two brains constitute the essence of social communication. Daily
movements are commonly executed during social interactions and are determined
by different mental states that may express different positive or negative behavioral
intent. In this context, the effective recognition of festive or violent intent before the
action execution remains crucial for survival. Here, we hypothesize that the EEG signals
contain the distinctive features characterizing movement intent already expressed before
movement execution and that such distinctive information can be identified by state-of-
the-art classification algorithms based on Riemannian geometry. We demonstrated for
the first time that a classifier based on covariance matrices and Riemannian geometry
can effectively discriminate between neutral, festive, and violent mental states only on
the basis of non-invasive EEG signals in both the actor and observer participants. These
results pave the way for new electrophysiological discrimination of mental states based
on non-invasive EEG recordings and cutting-edge machine learning techniques.

Keywords: EEG, mental state, classification, machine learning, Riemannian geometry

INTRODUCTION

Hyperscanning refers to the technique of simultaneous scanning, initially performed using fMRI,
of participants’ brains who mutually interact in a controlled setting (Montague et al., 2002). The
underlying neural basis is a consistent dynamical relationship between the interacting brains,
which constitutes the essence of social interaction. Despite fMRI allowing high spatial resolution,
this imaging technique cannot be employed during regular movements executed during social
interaction in daily life. Hyperscanning EEG offers direct access to global electrical neural activity
with an excellent temporal resolution that is necessary for assessing the brain dynamics of the
interacting participants (Babiloni et al., 2006; Dumas et al., 2010; Barraza et al., 2019; Balconi et al.,
2020). Moreover, EEG may characterize brain functions and states (Buzsáki and Draguhn, 2004).
Hyperscanning EEG has been used in four specific domains of social interactions, joint action,
shared attention, decision making, and affective communication (Liu et al., 2018). Although what
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is perceived as violent varies among societies and throughout
human history (Elias, 1997), the effective recognition of festive or
violent intent before the action execution remains advantageous
for survival. When a violent intent emerges, individuals
cognitively mobilize a particular mental state. In order to trace
neural signals related to this mental state, we designed an
experiment during which individuals perform the same kind of
gesture—tossing a ball—but in a festive way and in a violent way.

Here, we present an experimental design in which two persons
(one acting and the other observing) facing each other execute
and observe, respectively, real movements with either festive,
neutral, and violent intent. Both participants’ EEG, kinematics,
and electromyographic signals were simultaneously recorded.
Hyperscanning EEG during an actor-observer in a real face-
to-face paradigm of social interaction coupled with kinematics
has been previously introduced and investigated (Ménoret et al.,
2014), showing that modulation of beta EEG oscillations in
brain motor areas depended on the context (interaction vs.
observation) and the role assignment (actor vs. observer). Also,
EEG temporal dynamics have provided preliminary evidence
of the ability to distinguish between the perception of kind,
hostile, and non-interactive social intent inferred through visual
scenarios on TV (Decety and Cacioppo, 2012; Wang et al.,
2015) supporting that intentionality is the first input to moral
computations (Decety and Cacioppo, 2012). In the last decade,
new classification methods have been developed and applied
mostly on brain-derived signals such as EEG (Wu et al., 2017;
Lotte et al., 2018) and MEG (Fatima and Kamboh, 2017). The
major area of interest was related to BCI application and less
often to behavioral states identification, although previous work
studied mental states directly linked to emotions (Kim et al., 2013;
Schindler and Bublatzky, 2020) and social interactions (Kinreich
et al., 2017; Liu et al., 2018; Czeszumski et al., 2020).

In this work, we used a classification algorithm on raw
EEG trials of 10 couples of participants performing a repetition
of festive, neutral, and violent throws. We hypothesized that
EEG signals contain the distinctive information characterizing
movement intent already before movement execution and that
such distinctive information can be identified by state-of-
the-art classification algorithms, among them one based on
Riemannian geometry. Riemannian geometry classifiers have
received growing attention in the last few years (Lotte et al.,
2018), particularly due to their performance in international
Brain–Computer Interface (BCI) competitions.

Here, we first illustrated the face-to-face hyperscanning
condition before and during the execution of movement. Then,
we justified the reason why the classification pipelines were
applied on EEG periods occurring 1 s before the onset of
movement. Then, we introduced the preprocessing algorithms
and classification pipelines as well as the advantages of using
Riemannian metrics when manipulating covariance matrices.
The final classification results were then illustrated using a
boxplot summarizing the performances of the classification
pipelines applied on the EEG data from each of the 10 couples
(actors and observers separately). We demonstrated that state-
of-the-art classification pipelines can effectively discriminate
between neutral, festive, and violent mental states using EEG

signals from both the actors and observers. These results pave the
way for new electrophysiological discrimination of mental states
based on non-invasive EEG recordings.

MATERIALS AND METHODS

Participants
The data were collected from 20 healthy right-handed
[determined by the Handedness inventory (Oldfield, 1971)]
male volunteers (24.5 ± 4.5 years old). Each participant gave
informed consent to the experimental procedures, all of which
were in accordance with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards.

Experimental Design
This study has been inspired by the paradigm of Chartier
et al. (2017) concerning the performance and perception of
transitions from festive to violent gestures between two persons.
The experiments were performed in the Jacques Lecoq theater
school in Paris (Prof. Jos Huben). The gesture that was chosen
was the simulation of the throwing of a ball to a partner. In
this previous study, the actor’s gestures were analyzed when the
throw was made in a neutral, festive, and progressively more
and more violent mode. In these conditions, the main kinematic
characteristics of the three categories of gestures were measured.
In addition, from the recorded movie pictures of the throws,
it was demonstrated that the intent behind actor’s gestures can
be recognized by an observer even with morphing of the face
taking away any possibility to recognize the emotional valence
by the face expression. It has also been well demonstrated that
bodily expression of emotions are well perceived without facial
expression (de Gelder, 2016).

Here, we present a modification of this initial paradigm. In this
new experimental protocol, two persons (one acting, the “actor,”
and the other observing the “observer”) facing each other execute
and observe, respectively, real movements with either festive,
neutral, and violent intent.

Each couple of participants stood in an upright position facing
each other and being separated by a distance of 4 m. The arms
were at their sides. The actor held a foam ball (7 cm diameter)
with the right hand. A LED light was fixed on the forehead of
the observer. The verbal instructions to the actors were given in
French to perform the following four tasks: resting, festive ball
throw, violent ball throw, and neutral ball throw. The turn-on
of the LED light placed on the observer’s forehead was the “go”
signal administered in the four kinds of tasks:

• In the resting task, both participants remained standing at
rest facing each other for 5 s during which the LED light
on the observer’s forehead was turned on. This task was
repeated 10 times.
• In the festive ball throw task, the actor was asked to perform

30 festive ball throws with the right upper limb aiming the
LED light when it turned on and with increasing intensity of
festivity following the indications of “execute a festive ball
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throw (10 times), a more festive ball throw (10 times) and
an even more festive ball throw (10 times).”
• In the violent ball throw task, the actor was asked to

perform 30 violent ball throws aiming the LED light when
it turned on with increasing intensity of violence following
the indications of “execute a violent ball throw (10 times), a
more violent ball throw (10 times) and an even more violent
ball throw (10 times).”
• In the neutral ball throw task, the actor was asked to

perform 30 ball throws at slow (10 times), rapid (10 times),
and as fast as possible (10 times) velocities and aiming the
LED light when it turned on without any specific intent.
This task was included in order to care about a possible
velocity effect in the previous conditions.

The festive and violent increasing gradation used was inspired
by Gregory Bateson’s analyses (Bateson, 1955). The actor was
asked to keep the same “type” of movement during the different
trials and tasks (Figure 1). He tried all the tasks for familiarization
before starting recordings. The observer was asked to not react
to the foam ball throws in any condition. In order to facilitate
the establishment of the different mental states, blocks of a same
movement type were performed instead of intermixing trials of
the different conditions.

During this procedure, the mental states of both participants
were modified. For each of the three tasks, an instruction was
given to the actor (neutral, festive, violent gesture) but the
observer could hear the instruction and was, therefore aware of
the mental state of the actor. Then, the successive repetitions
of the same type of action reinforced, on one hand, the actor’s
mental state related to his action by a modification of the motor

networks from frontal and prefrontal cortex to supplementary
motor (Scangos et al., 2013) and sensory-motor areas and more
subcortical structures involvement, and, on the other hand, by
the emergence of a “perceptual resonance” (Schütz-Bosbach and
Prinz, 2007). For the observer, the repetition of the actor’s gesture
induced, on one hand, an activation of the motor simulation
(or “motor resonance”) networks involving the “mirror system”
(Rizzolatti and Sinigaglia, 2007; Rizzolatti et al., 2014) and, on the
other hand, an activation of the perceptual and motor imagery
networks (Thirioux et al., 2010). Furthermore, a possible fatigue
effect was avoided by the introduction of pauses between the
different conditions.

EEG Recordings
Both participants’ EEG, kinematics, and electromyographic
signals were simultaneously recorded.

EEG data of the actors were recorded with 128 channels (ANT
neuro system) at a sampling frequency of 2,048 Hz and with
a resolution of 71.5 nV per bit. An active-shield cap using 128
Ag/AgCl sintered ring electrodes and shielded co-axial cables (5–
10 electrode system placements) was comfortably adjusted to the
participant’s head. In addition, electro-oculograms (EOG) (for
horizontal and vertical eye movements) were recorded. EEG data
of the observers were recorded with 32 channels (Brain Products
Brainamp DC with actiCAP) with a resolution of 0.1 µV per bit
at a sampling rate of 1,000 Hz. Common average reference was
used for both recording systems.

Kinematics recordings were performed simultaneously
(Figure 2) on both participants with VICON Motion Capture
System with 10 cameras at 100 Hz sampling frequency. Passive
infrared reflective markers were placed on the skin over nasion,

FIGURE 1 | Actor’s stick diagram and 3D trajectory of the right head of ulna marker represented by the X (left and right), Y (forward and backward), and Z (up and
down) coordinate components during the first ball throws of the neutral, festive, and violent tasks. All upper trace deviations correspond to the left, forward, and up
directions, respectively. The observer stood facing the actor.
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FIGURE 2 | Simultaneously recorded biological signals for a representative
couple during the first ball throw of the neutral task. The raw EEG signals of
the electrodes selected for the classification are illustrated for both the actor
(upper) and the observer (bottom). The position of the right head of ulna and
the related raw EMG signals (from top to bottom: the anterior and posterior
deltoids, posterior descending part of upper trapezius, short biceps,
brachio-radial, pronator-teres, extensor carpi ulnaris, long head triceps brachii)
are illustrated for the actor. Note that the rectangles colored in red
contain the EEG signals’ epoch (of 1,000 ms preceding the LED light
stimulus onset) provided to the classifier. The head of ulna 3D positions
are represented by their X, Y, and Z coordinate components as
in Figure 1.

tragus, acromion, lateral epicondyle of the right and left elbow,
along an imaginary line between acromion and epicondyle on
the right and left arms, over the head of right and left ulna,
along an imaginary line between epicondyle and head of ulna on
the right and left forearms, over the third metacarpal head on the
right and left hands, right and left anterior superior iliac spines,
right and left greater trochanter, right and left lateral epicondyle
of the knees, along an imaginary line between greater trochanter
and epicondyle of the knee on the right and left shanks, lateral
malleolus, along an imaginary line between epicondyle of the
knee and lateral malleolus over right and left legs, and over the
second right and left metatarsal heads.

Electromyography (EMG) was also simultaneously recorded
(Figure 2) with a sampling frequency rate of 1,000 Hz (Delsys
Trigno Wireless System) on both participants with surface
electrodes over the belly of the anterior and posterior deltoids,
posterior descending part of upper trapezius, short biceps,
brachio-radial, pronator-teres, extensor carpi ulnaris, and long
head triceps brachii.

The four recording systems (ANT neuro systems, Brain
Products, Vicon Motion Capture, and Delsys Trigno Wireless
system) were synchronized with a common external TTL square
signal delivered by an external signal generator to each recording
system. This signal presented three rising and three falling edges
at 1 Hz delivered at the beginning and the end of every task.

EEG Data Treatment
The first offline data treatment consisted in eliminating the
respective data portions recorded before the corresponding
system received the first rectangular pulse of the
synchronization signal.

Offline EEG data treatment was performed using the EEGLAB
software (Delorme and Makeig, 2004). Initially, a 200 Hz low-
pass filter, a 512 Hz resampling, and a 3 Hz high-pass filter
were applied. Synchronous or partially synchronous artifactual
activity (mostly blinks) was detected and rejected by independent
component analysis (ICA). Baseline-corrected epochs were
extracted from−1 to 3 s of the LED light turning on, i.e., the “go”
signal. The signal-to-noise ratio (SNR) was computed on each
electrode following Möcks et al. (1984), Turetsky et al. (1988), and
Cheron et al. (2014). Formally, let M be the number of trials, N
be the number of samples in a trial, and X̄ denote the averaged
signal over all trials; the total noise power σ2

noise and the total
signal power σ2

sig can be defined as:

σ2
noise =

1
N (M − 1)

M∑
m=1

( N∑
n=1

(
Xm (n)− X̄ (n)

)2
)

(1)

σ2
sig =

1
N

N∑
n=1

X̄2 (n)−
1
M

σ2
noise (2)

and the SNR can eventually be estimated by:

SNR =
σ2

sig

σ2
noise

(3)
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For the following classification methodology, from all the
biological signals of the actors and the observers, we selected
epochs of EEG signals from −1 s to 0 s before the “go”
indication and thus before movement preparation and execution
(the selected epoch of a representative trial was represented by a
red rectangle on the actor and observer’s EEG data in Figure 2).

Classification Methodology
In order to verify that the classification was not based on the
introduction of additional artifactual noise in one condition with
respect to the others, we first built a naive classifier (Logistic
Regression) solely based on SNR features.

Subsequently, in order to validate the possibility of effectively
discriminating between different mental states, we applied two
different state-of-the-art classification approaches. The first one
used the Common Spatial Pattern algorithm (CSP) (Koles, 1991)
improved with the robust estimation of covariance matrices
manipulated with Riemannian geometry (Barachant et al.,
2010a). For a binary classification task, the CSP algorithm
optimizes spatial filters in a supervised way in order to maximize
the variance of the filtered signals for one class and minimize
their variance for the other class. Formally, let E ∈ N be the
number of electrodes, N ∈ N be the number of time samples,
J ∈ N be the number of spatial filters, W ∈ RE×J be the spatial
filtering matrix used by the CSP algorithm, Xy ∈ RE×N be the
matrix representation of an epoch from class y, 6(y) ∈ RE×E be
the mean covariance matrix of class y, and WTXy be the spatially
filtered signal from class y. Given a binary classification task, the
CSP algorithm first determines discriminative spatial filters W by
the joint diagonalization of the two covariance matrices6(1) and
6(2) as follows (Blankertz et al., 2008; Barachant et al., 2010a):

WT6(1)W = D1

WT6(2)W = D2

D1
+ D2

= I
(4)

Subsequently, the n most discriminative spatial filters (n being a
parameter of the algorithm) determined on the training set are
applied on EEG signals, and the variance of the resulting signal
is then estimated. Since the variance of a signal band-pass filtered
between the cutoff frequencies fL and fH is equal to the power of
that signal in the [fL − fH] frequency range, the CSP algorithm
actually optimizes spatial filters in order to produce maximal
power difference between the two classes. The output vector of
the CSP algorithm is composed of the n variance estimations
and will constitute the input of a classification algorithm such as
a Logistic Regression. The multiclass generalization of the CSP
algorithm is given by Grosse-Wentrup and Buss (2008).

The second approach using covariance matrices manipulated
with Riemannian geometry have notably received growing
attention in the last few years (Lotte et al., 2018), particularly due
to their first-class performance in international BCI competitions
(Congedo et al., 2017). In the present study, we used Riemannian
geometry to manipulate covariance matrices of the filtered
EEG signal, which is hypothesized to contain a simplified
but discriminative representation of a mental state. Covariance
matrices are symmetric positive definite (SPD) and do not lie in

a vector space but in a convex cone (Moakher, 2005) called the
Riemannian manifold. Thus, Riemannian metrics, i.e., distance
and mean, should be preferred in order to manipulate these
matrices accurately.

The Riemannian distance and mean are defined by Eqs (5)
and (6), respectively:

δR (61, 62) =‖ log(6−1/2
1 626

−1/2
1 ) ‖F (5)

ζ (61, . . . , 6I) = argmin
6εP(n)

I∑
i=1

δ2
R (6,6i) (6)

where δR, 6 ∈ RE×E, ‖ . ‖F , and P(n) denote the Riemannian
distance, a covariance matrix estimated from E electrodes, the
Frobenius norm, and the variety of symmetric positive definite
matrices, respectively.

Additionally, for each point of the manifold, there is an
associated tangent space where a scalar product is defined, and
Barachant et al. (2013) showed that the Euclidean distance in
the tangent space is a good approximation of the Riemannian
distance on the manifold itself. This important finding means that
tools and classification algorithms based on Euclidean geometry
can be directly used in the tangent space without substantial
loss in performance.

The projection operator from the Riemannian manifold to the
tangent space at a reference point6ref is defined by Eq. (7):

φ (6) = Log6ref
(6) = 6

1/2
ref logm

(
6
−1/2
ref 66

−1/2
ref

)
6

1/2
ref (7)

where Log6ref
(6) denotes the logarithmic map (Barachant et al.,

2013) of 6 with respect to 6ref and logm denotes the logarithm
of a matrix. A good choice of6ref is proposed by Barachant et al.
(2013) to be the geometric mean of the whole set of covariance
matrices and motivated by the observation from Tuzel et al.
(2008) that the geometric mean is the point where the mapping
on the tangent space leads to the best local approximation
of the manifold.

Classification Pipeline
High-density EEG typically records brain activity from at least
64 electrodes. However, from our own finding, manipulating
covariance matrices estimated from a large number of electrodes
might induce numerical errors that break their SPD property.
Moreover, by using such large covariance matrices, the
dimensionality of the feature space becomes significantly higher
than the number of training data and thus increases overfitting
and reduces the generalization accuracy of the classification
algorithm (i.e., the curse of dimensionality). In such a situation,
a common practice is a features selection procedure to reduce
the number of features (in this case, the number of electrodes)
in order to improve classification performances. In order to avoid
biasing the classification results, the electrode selection procedure
was applied using separate EEG recordings performed during
the training period of the first couple preceding the effective
hyperscanning performance during which the subjects executed
a series of 30 throws in each condition. The same subsets of
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electrodes related to the actors and observers were subsequently
used for the classification tasks of all 10 couples.

Firstly, we used separate data from the training period
to empirically select electrodes that maximized the distance
between class-conditional mean covariance matrices using a
backward elimination method introduced in Barachant and
Bonnet (2011). For this, we computed the average cross-validated
binary classification accuracy with respect to the number of
electrodes using the training data filtered with an IIR bandpass
filter with cutoff frequencies at 1 and 20 Hz. This feature
selection procedure resulted in a physiologically plausible choice
of electrodes, namely, a common occipito-parietal subset (O1,
O2, Pz, P3, and P4) for both the actors and observers and two
different subsets, a centro-parietal subset (CP1, Cpz, CP3, PO3,
and PO5) for the actors and a centro-frontal subset (C3, C4, F3,
F4, and Fz), for the observers. Visual inspection of the selected
electrode signals confirmed that no EMG contamination was
present. We acknowledge that such feature selection procedure
based on distances between class-conditional covariance matrices
may slightly favor classification pipelines based on covariance
matrices. Nevertheless, this potential bias is limited since the
selected electrodes were well representative of the behavioral
context linked to the task for both the actors and the observers.
Moreover, such possible bias did not impact the main objective of
this work, i.e., to demonstrate that state-of-the-art classification
algorithm can effectively discriminate between neutral, festive,
and violent mental states.

Subsequent to the electrodes selection procedure described
here above, the EEG data files from the 10 couples were imported
using the MNE 0.17 Python library (Gramfort et al., 2014).
A zero-phase IIR bandpass filter with cutoff frequencies at 1 and
20 Hz was applied and epochs from −1,000 to 0 ms (0 ms being
the “go” signal indicated by the LED lighting up) were extracted.
In order to verify that the throw movement was not initiated
before this “go” signal, the kinematic recording of the acting arm
was visually inspected. At this stage, the dataset of each couple
was composed of 180 matrices (30 for each class and for each role)
of shape: 10 electrodes × 512 samples. The covariance matrix
from each epoch is then estimated using the well-conditioned
Ledoit-Wolf estimator (Ledoit and Wolf, 2004).

The following classification pipelines were then applied using
the same subsets of electrodes:

• SNR with logistic regression: the SNR with logistic
regression (SNR-LR) pipeline first estimates the SNR
defined by Eq. (3) on each electrode. A logistic regression
(LR) classifier is subsequently trained on the SNR values.
• Power spectrum density with logistic regression: the

power spectrum density with logistic regression (PSD-
LR) pipeline represents a simplistic approach that does
just capture a part of the problem complexity and is
not expected to yield state-of-the-art results. Nevertheless,
this approach will serve as a robust baseline from which
to evaluate more complex models. The power spectrum
density (PSD) computes the log 10 of the average power
in specific frequency bands (delta, theta, alpha, beta,
and low-gamma) estimated using Welch’s method (Welch,

1967) on the epoch of EEG signal. The combined binned
spectrograms from each electrode are flattened into a one-
dimensional array of size 5 frequency bands × electrodes
that represents an input to a LR classification algorithm.
• Common Spatial Pattern with logistic regression: the

Common Spatial Pattern with logistic regression (CSP-LR)
pipeline first applies the CSP algorithm on the raw EEG
signals in order to optimize n spatial filters (in this work,
we used n = 4). The covariance matrices used internally by
the CSP algorithm are estimated using the well-conditioned
Ledoit-Wolf estimator (Ledoit and Wolf, 2004). A LR
classifier is subsequently trained on the resulting features
of the CSP algorithm.
• Covariance matrices with Minimum Distance to Mean:

the covariance matrices with Minimum Distance to Mean
(MDM) pipeline first estimates, for each epoch of EEG
signal the corresponding covariance matrix using the
well-conditioned Ledoit-Wolf estimator (Ledoit and Wolf,
2004). Subsequently, the Minimum Distance to Mean
algorithm classifies covariance matrices directly on the
Riemannian manifold.
• Geodesic filtering and covariance matrices with Minimum

Distance to Mean: the geodesic filtering and covariance
matrices with Minimum Distance to Mean (MDM-
GF) pipeline first applies a geodesic filtering (Barachant
et al., 2010b) in order to reduce the negative impact of
noise on the distances between two covariance matrices.
Subsequently, the MDM pipeline is applied on the output
of the geodesic filtering.
• Projection on the tangent space and logistic regression:

the projection on the tangent space and logistic regression
(PTS-LR) pipeline first estimates, for each epoch of EEG
signal, the corresponding covariance matrix using the
well-conditioned Ledoit-Wolf estimator (Ledoit and Wolf,
2004). Then, each covariance matrix is projected on the
tangent space of the Riemannian manifold using the
projection operator defined by Eq. (7) and a LR classifier is
subsequently trained on the projected covariance matrices.

The classification pipelines were implemented in the Python
3.6 programming language and use the NumPy (van der Walt
et al., 2011), SciPy (Jones et al., 2001), scikit-learn (Pedregosa
et al., 2012), and pyRiemann (Barachant and King, 2015)
Python libraries.

RESULTS

First and foremost, it is important to highlight the fact
that the classification pipelines were only applied on EEG
signals occurring 1 s before the movement onset (see the red
rectangle in Figure 2) in order to avoid the contamination
of the EEG signals by muscular artifacts that would bias the
classification performances.

SNR Analysis
As a preliminary result, we verified that any specific changes
in electrical potential (µV) was not obvious by simple visual
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inspection in any condition. For the 10 couples of subjects, the
30 trials of every condition (neutral, festive and violent) were
plotted side by side separately for actor and observer. Figure 3
illustrates, for one representative couple, that the variation of
electrical potential (µV) for every single EEG trial corresponding
to every single epoch (1 s before the LED light turned on)
before the throws for one representative electrode (CP3) cannot
be visually discriminated. This first visual impression was then
confirmed by a classifier based on SNR features that was not able
to discriminate between the different mental states above chance
level (see Figure 4).

On the basis of the unsuccessful results of SNR classification,
we turned to state-of-the-art classification pipelines (Figure 5)
using CSP filtering and covariance matrices with Riemannian
geometry.

Benefits of Applying Riemannian Metrics
In order to graphically illustrate the benefits of using Riemannian
metrics and the projection on the tangent space when
manipulating covariance matrices (estimated from the 10 selected
EEG electrodes), we applied one procedure using the EEG
data of one representative participant (the actor of the first
couple). This procedure, called “distance to mean,” initially

FIGURE 3 | Variations of potential (µV) on CP3 channel during the selected
epoch of 1,000 ms (preceding the LED light stimulus onset) provided to the
classifier for the actor and the observer and for all the trials (30 throws per
condition) of the neutral, festive, and violent conditions in one representative
couple. Note that at first glance, there is not any consistent variation of
potential for a condition.

computed the mean covariance matrix of each class and
subsequently represented the covariance matrix of an epoch on
a graph by a single point whose coordinates corresponded to
the distances between that covariance matrix and each mean
covariance matrix. Figure 6 illustrates the benefits of using
the Riemannian metrics to compute the distances between
covariance matrices corresponding to the violent and festive
EEG data set recorded from the actor of the first couple. In
the Euclidean space, the experimental points associated with
the two classes are overlapping (Figures 6A,C). In contrast, in
the Riemannian space, the violent and festive data are better
separable (Figures 6B,D).

Classification Results
The boxplots of Figure 4 summarize the comparative analysis
of all classification pipelines with respect to the mental state
combinations. The datasets of all mental states and participants
are perfectly balanced and the classification results for all
pipelines were computed using a 10-fold cross-validation.
We observed that statistically significant differences with a
p-value < 0.05 computed using the Wilcoxon signed-rank test
were found between the SNR-LR and all the other classification
pipelines, regardless of the mental states or the conditions. This
result combined with the SNR-LR classification accuracy under
chance level confirmed our first impression that SNR features
do not contain enough information to effectively discriminate
between different mental states.

The PSD-LR results were also significantly lower than all the
other classification pipelines in the Actor condition regardless of
the mental states. In the Observer condition, the PSD-LR results
were significantly lower than all the other pipelines except for
the MDM in the Festive vs. Violent mental state (Figure 4B)
and for the MDM and the CSP-LR pipelines in the Festive vs.
Neutral mental state (Figure 4D). Even though there are few
statistically significant differences between the CSP-LR and the
Riemannian classification pipelines (MDM, MDM-GF, and TS-
LR), the mean accuracies of the latter are slightly higher than the
ones of the CSP-LR.

DISCUSSION

Understanding action intent of others involves matching the
observed action to the internal representation of such an
action built on one’s own multi-sensory-motor experience
(Rizzolatti and Sinigaglia, 2007). Previously, hemodynamic-
based neuroimaging brain studies have shown that the activated
brain areas are different when understanding and judging
a negative intent, which included the right amygdala, the
temporoparietal junction, and hypothalamus (Sinke et al.,
2010), compared to a positive intent, which included the right
temporoparietal junction and the right dorsolateral prefrontal
cortex (Yoder and Decety, 2014). In addition, fMRI (Vuilleumier
and Pourtois, 2007; Bachmann et al., 2018; Engelen et al.,
2018; Schönfeld and Wojtecki, 2019) and TMS (Borgomaneri
et al., 2015; Engelen et al., 2015, 2018) studies demonstrated
the existence of dynamical interactions between the amygdala,
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FIGURE 4 | Boxplots illustrating the binary/multi-class classification accuracy (True Positives vs. All) of the SNR-LR, PSD-LR, CSP-LR, MDM, MDM-GF, and PTS-LR
classification pipelines for the Festive vs. Violent, Festive vs. Neutral, Violent vs. Neutral, and Violent vs. Festive vs. Neutral mental states with regard to the
participant conditions [Actor (A,C,E,G) and Observer (B,D,F,H)]. The horizontal dashed lines indicate the chance level. The blue hexagons indicate the mean
classification accuracy values. Statistically significant differences between pairwise performances of two classification pipelines are represented using one or two
asterisks when the p-value of the Wilcoxon signed-rank test is strictly below 0.05 or 0.01, respectively.
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FIGURE 5 | Illustrative summary of the classification pipelines. Each path from “EEG dataset” to “Mental state identification” represents a single and independent
classification pipeline.

the inferior parietal lobule, and the ventral premotor cortex
involved in the perception of emotions and the preparation of
an action. The functional dynamical mechanisms underlying
communication between brain areas have been approached with
EEG, which, in this case, is particularly appropriate because
it captures electrical brain oscillations that assess direct brain
function with a millisecond precision. EEG recordings, while
observing an intent inference task displayed on a screen, have
shown that moral cognition processes occur as soon as at 200 ms
where kind intent featured larger peak N2 amplitude component
supported by left cingulate gyrus activity. Hostile intent featured
later a larger peak P3 amplitude component supported by the left
anterior cingulate cortex activity (Wang et al., 2015).

In this work, we propose a more realistic protocol where
both the observer and the actor (of the violent, festive, and
neutral ball throws) are real persons standing up and facing
each other. This protocol allows access to the synchronized EEG
dynamics, kinematics, and electromyographic activity of both
participants. Although further investigation will be needed with
a larger population to understand and characterize such EEG
dynamics, kinematics, and muscular activity before, during, and
after the movement, we demonstrated here that even without
knowing the underlying dynamical mechanisms, classification
algorithms can effectively discriminate between neutral, festive,
and violent mental states. These successful classification results
were obtained in both the actors’ and observers’ EEG signals of
10 couples during 1 s before the action, suggesting that festive and
violent intent can be detected before the action. These results pave
the way for new electrophysiological discrimination of mental
states based on non-invasive EEG recordings.

Design Considerations
The terms “festive” and “violent” can be understood differently
depending on the context and interpretational meaning. The
debate on whether and how linguistic data are a part of a complex
interpretational structure and how they can be implemented in

the mind of the participants remain largely unknown (Hagoort,
2020; Martin and Baggio, 2020). In this perspective, we propose a
protocol inspired by Gregory Bateson’s analysis of double framing
(Bateson, 1955). Bateson studied monkeys who were play-
fighting and observed that this situation relied on two frames:
the frame of the battle and the frame of the play. In the present
design, the two participants are in the second frame of meta-
communication since both the actor and the observer are aware
of the general state imposed by the experimenter. This means that
not only the posture and the gesture of the participant but also the
imposed meta-cognitive communication may greatly contribute
to the establishment of the required mental state. The fact that
significant classification performances were obtained for the 10
couples of participants may indicate that the interpretational
meaning of the “festive” vs. “violent” vs. “neutral” conditions were
relatively well understood by all participants.

One of the major difficulties was to establish an experimental
design able to provide a clear relationship between the intentional
context, the mental states, and the behavioral output (Isoda,
2016). For this, we have approached the mental state by means of
high-density EEG and the motor output by means of kinematics
and EMG recordings. As it was reported that movement and
EMG contamination of the EEG remain not satisfactorily solved
(Castermans et al., 2014), we have focused the present mental
state identification only during the epoch of 1 s before movement
identification. During this preparatory period, the EMG artifact
contaminations were not visible on the FFT spectrum and not
identified with a classifier based on the SNR. In addition, no
specific changes in electrical potential was detected by simple
visual inspection. We may thus conclude that the present mental
state classification was not based on EMG contamination.

The Different Classification Methods and
the Advantages of the Present One
The use of Riemannian geometry may at first be considered
a mere mathematical sophistication. However, we here
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FIGURE 6 | Distance to mean representation of the EEG data from the actor of the same representative couple as in Figure 3 using Euclidean (A) and Riemannian
(B) distances and from the same representative observer using Euclidean (C) and Riemannian (D) distances. The Riemannian distance δR is defined in Eq. 5 and the
Euclidean distance δE is defined as the Frobenius norm of the difference between the two covariance matrices. The horizontal (vertical) axis represents the distance
δ
(
6i, 6

F) (δ
(
6i, 6

V)) between a covariance matrix 6i and the mean covariance matrix of the festive (violent) class 6F (6V). The straight dashed line represents the
function δ

(
6i, 6

F)
= δ

(
6i, 6

V). Unlike Euclidean metrics, Riemannian metrics were able to convincingly separate the violent and festive classes.

demonstrated that it has a profound impact on class separability
and thus classification accuracy. This result strengthens evidence
of the Riemannian geometry efficiency already reported
in different scientific fields such as radar signal processing
(Arnaudon et al., 2013), image classification (Tuzel et al., 2008),
thermodynamics (Mausbach et al., 2018), morphogenesis (Hu
et al., 2018), graph theory (Bakker et al., 2018) and BCI (Mayaud
et al., 2016; Han et al., 2019; Rodrigues et al., 2019).

In order to verify our working hypothesis that the EEG signals
characterized distinctively the festive, violent, and neutral mental
states, we have systematically compared different classification
methods currently used in the field and appropriate to the first
explorative experiment carried out on a pair of synchronized
EEG recordings of 10 observers and 10 actors. Our results
demonstrate that state-of-the-art classification algorithms based
on Riemannian geometry (MDM, MDM-GF, and PTS-LR)
or Common Spatial Pattern (CSP-LR) are able to effectively

discriminate between mental states (reaching a cross-validated
classification accuracy of 0.88 for the Festive vs. Violent states)
and provide significantly better performance with respect to
classifiers based only on SNR or PSD. We showed that the
use of the variance–covariance alone was unable to effectively
discriminate between the three mental states, which indicates
that the Riemannian geometry is crucial for neural signal
discrimination based on covariance matrices. Although classifiers
based on the CSP algorithm perform slightly worse than
the Riemannian methods in international BCI competitions
(Lotte et al., 2018), the CSP-based classifier has here produced
comparable performances. It is also interesting to mention that,
in spite of the fact that both participants are aware of the Festive
or Violent required condition, EEG classification performances
were better for the Actor, which may indicate that the motor-
action preparatory processes propagate to the EEG signals and
thus play a role in the identification of the mental state.
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The assumption that the EEG signal observed prior to the
action is necessarily a sign of intent must be met with some
caution, as there could be other equally plausible explanations,
such as the prediction of an incoming “known” stimulus, which
cannot be excluded in the absence of “blinding.” Further studies
could potentially provide further evidence for or against the
specific mechanism proposed in this work.

Interestingly, state-of-the-art classifiers used in this study
were able to achieve significant discriminability using a limited
number of trials. Such desirable characteristics is paramount
to avoiding side effects such as fatigue, habituation, or loss of
awareness induced by too much repetition of the same behavior
and related mental state induction. Nevertheless, these results
are also relevant for future BCI applications where limited
signal acquisition is a major constraint to train a functional
classification algorithm.
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