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Breast cancer is characterized by cellular and molecular heterogeneity. Several molecular

events are involved in controlling malignant cell processes. In this sense, there is an

overriding importance to study the multiple cell alterations within this pathology. That

the immune response can vary depending on sex is a widely identified fact. Steroid

hormones and their receptors may regulate different functions and the responses of

several subpopulations of the immune system. Few reports are focused on the function

of estrogen receptors (ERs) on immune cells and their roles in different breast cancer

subtypes. Thus, the aim of this review is to investigate the immune infiltrating tumor

microenvironment and the prognosis conferred by it in different breast cancer subtypes,

to discuss the current knowledge and to point out the roles of estrogen and its receptors

on the infiltrating immune cells, as well as to identify how different immune subsets are

modulated after anti-hormonal treatments in breast cancer patients.

Keywords: immune infiltration, breast cancer, estrogen receptor, estrogen receptor inhibitors, tumor

microenvironment

INTRODUCTION

Breast Cancer and the Microenvironment of Infiltrated Immune
Cells
Breast cancer is the most frequently diagnosed malignancy in women worldwide, and it represents
the second most common cause of cancer deaths (1). Epidemiological studies have indicated
that steroid sexual hormones play important roles in the initiation and progression of breast
cancer. Other risk factors are also associated with this disease such as diet, ethnic differences, age,
early menarche, not bearing children, having a first pregnancy at over 30 years of age, obesity,
genetic mutations, exposure to oral contraceptives, consumption of alcohol or cigarettes, and
environmental contaminants, among others. It is estimated that more than 1,000,000 women are
diagnosed with breast cancer every year, and more than 410,000 will die from the disease (2, 3). The
above indicates that breast cancer represents an important worldwide health problem.

On the other hand, breast cancer is a heterogeneous disease, which is traditionally classified
into three phenotypes: luminal [estrogen receptor (ER) positive], human epidermal growth factor
receptor type 2 (HER2)-positive, and triple negative (ER-negative/HER2-negative) (4). Moreover,
breast cancer is characterized by a highly inflammatory microenvironment, which is supported by
the infiltrating immune cells, cytokines, and growth factors (5, 6). In addition, immune infiltration
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of breast tumors has been shown to be related to clinical outcome
through the modulation of treatment response. Breast tumors
with immune infiltration are associated with different patterns
based on ER presence; however, a common negative immune
feature is that regulatory T cells (T regs) are associated with poor
prognosis in both ER-positive and ER-negative breast tumors,
conferring an immunosuppresive environment (7, 8). Such a
feature is a characteristic that highlights the importance of the
immune tumor microenvironment in breast cancer.

With respect to other infiltrating immune cells in breast
cancer phenotypes, a strong proportion of natural killer cells
(NK) and neutrophils have been found in ER-positive breast
tumors, while cytotoxic T cells (TCD8+) as well as naïve and
memory T cells (TCD4+) are found in smaller proportions.
Interestingly, eosinophils and monocytes are associated with
a good response after chemotherapy, and B lymphocytes
are also associated with good prognosis in this phenotype.
Recently, activated mast cells have additionally been correlated
with good prognosis (9). However, the presence of this
population is still controversial (10).Moreover, in this phenotype,
tumor-associated macrophages (TAMs) 1 and 2 and T reg
lymphocytes displayed poor prognosis due to their inflammatory,
immunosuppressive, and pro-tumorigenic roles (11–14). In
ER-negative breast tumors, the major component of immune
infiltration cells are T regs, TAM2, and activated mast cells,
which are also associated with negative prognosis. In contrast,
TCD4+, TCD8+, B lymphocytes, and dendritic cells (DCs) are
related to better prognosis, but they are found in lower numbers
and can be associated with a favorable response to neoadjuvant
chemotherapy (7, 14–21). With respect to the HER2-positive
breast cancer type, there are not many reports about the
infiltrating immune mass. However, it is mainly represented by
DCs, mast cells, γδ T lymphocytes, T regs and neutrophils—
interestingly, all of them confer poor prognosis, disease relapse,
and metastasis in this phenotype (see Figure 1) (14, 22, 23).

This intra-tumoral immune pattern establishes a complex
relationship between the heterogeneity of immune infiltrating
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cells, the tumor phenotype, and the treatment response in
breast cancer.

ESTROGEN SIGNALING AND ESTROGEN
EFFECTS IN BREAST CANCER CELLS

Estradiol (17β-estra-1,3,5 (10)-triene-3,17-diol) E2 is a steroid
hormone produced by theca and a granulosa cell in the ovaries.
E2 regulates several physiological and pathological processes,
including cancer. Classical or genomic E2 signaling is mainly
mediated by two isotypes of the receptor: ERα and ERβ,
both of which are nuclear transcription factors that bind
to their specific ligand or several estrogens in general; and,
subsequently, they form homo- or heterodimers that bind to
estrogen response elements (EREs) contained in the promoter
region of specific genes in order to activate or suppress their
expression. These actions are mediated by the recruitment of
distinct co-activators or co-repressors or through the interaction
with other transcription factors (Figure 2) (24). E2 actions
are also mediated by other non-classical pathways, known as
ligand-independent ERα signaling, by a membrane-anchored
receptor called G protein-coupled estrogen receptor 1 (GPER1),
in which target gene transcription occurs through second
messengers and several transcription factors. Thus, GPER1
mediates the increase of different second messengers such as
cyclic adenosine monophosphate (cAMP) and diacilglycerol
(DAG) levels, mobilization of intracellular calcium (Ca2+), and
the activation of extracellular signal-regulated kinase (ERK)1/2
and the phosphoinositide 3-kinase (PI3K/AKT) pathways by the
trans-activation of the different growth factor receptors (GFRs).
Moreover, activation of GPER1 can induce the release of several
growth factor ligands such as heregulin, which results in a direct
activation of GFRs, depicted in Figure 2 (25–28). It is important
to mention that different antagonists or ER inhibitors, such as
ICI182,780 and tamoxifen, can mimic the effects of estradiol and
induce GPER1 activation.

In breast cancer, E2 can act in different ways. For instance,
in immortal cell lines of breast cancer, E2 via ERα signaling is
seen to stimulate proliferation, while ERβ activation inhibited
cell proliferation and promoted apoptosis (29, 30). Interestingly,
estrogen can also undergo several metabolic processes, and
its metabolites exert genotoxic effects that contribute to the
development of breast cancer through adduct DNA formation
(31–33). Many reports on the effects of E2 in breast cancer
cells have reported the transcriptional modulation of different
genes that are affected; among which are proliferation regulators,
growth factors, cell cycle, and apoptotic modulators (29, 34, 35).

Importantly, both classic and membrane ERs have been
implicated in several effects of immunity and autoimmunity (36,
37). It is known that the immune system shows remarkable sex-
differential responses; thus, this fact potentially suggests that sex
hormones such as estrogens address these events. Following this,
many reports mention that women respond more aggressively
to self-antigens, being more susceptible to autoimmune diseases
through of the activation of ER signaling (38). In general, ERs
participate in many immune system functions—ERα has been
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FIGURE 1 | Schematic representation of the main infiltrating immune cell pattern in different breast cancer subtypes. Each subtype has a different composition of

immune cells. Yellow frame represents strong presence of specific immune cells that confer good prognosis, red frame indicates that this infiltrating signature is

associated with poor prognosis, and blue frame corresponds to a lower proportion of immune cells, which is also associated with good prognosis.

related to spleen and thymus function while ERβ is important
for bone marrow functions (24). Both types of ERs are expressed
on innate and adaptive immune system cells, indicating an
important role for this hormone and its receptor signaling
regarding correct immune performance (39).

We describe below the modulation of the most common
tumor-infiltrating immune cells by estradiol action upon
binding to its receptors in these immune cells of the
tumor microenvironment.

ESTROGEN EFFECTS ON IMMUNE
SYSTEM CELLS

ER in Dendritic Cells (DCs)
DCs are involved in several processes such as immune tolerance,
autoimmunity, stimulation, and differentiation of naïve T cells.
They are considered as potent antigen presenting cells (APCs)

and are mainly activated by stress or damage signs from
pathogens that are recognized mainly by Toll-like receptors
(TLRs). Following their stimulation via TLRs, DCs secrete pro-
inflammatory cytokines to stimulate T lymphocytes and initiate
innate immune response. In this sense, ER participates in the
favoring of DC function. These cells contain the presence of
ERs; when its ligand binds to ERs in these cells it can trigger
migration and activation processes. In addition, in mouse in vitro
models of DCs, estrogen can induce differentiation, survival, and
increase the expression of co-stimulatory molecules (39). It has
been reported that pre-treatment of E2 in co-cultures of mature
DCs with T cells resulted in the stimulation of T cell proliferation
(40). Besides, E2 up-regulates the expression and secretion of
different pro-inflammatory cytokines and chemokines such as
tumor necrosis factor alpha (TNFα), interleukin (IL)-6, CXCL-
8 (IL-8), and monocyte chemo-attractant protein 1 (MCP-1)
(40). This concept can be directly related to the improvement
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FIGURE 2 | Estradiol signaling. Estradiol (E2) can bind to its different receptors to activate the genomic pathway or the non-genomic pathways. In the first one, E2

binding to ERα and ERβ, each complex is directed to the nucleus where it joins with EREs in the DNA, recruiting different transcription factors (TF), co-activators (CA),

or co-repressors (CR) in order to activate or suppress the transcription of target genes. In the non-genomic pathway, E2 binds to GPR30, triggering the activation of G

proteins. The above turns out in the increase of different second messengers (cAMP, Ca2+, DAG). Additionally, E2 can activate different growth factor receptor (GFR)

activity through the non-genomic pathway, which results in the activation of different downstream signaling pathways (MAPK and PI3K) and in the release of different

ligands of GFRs.

of DCs’ capability to mediate the presentation of self and
foreign antigens, and, potentially because of this, the immune
system response against tumors is better in early stages of the
disease. Nevertheless, the presentation process is disrupted by
E2, since after hormone exposure, production of INF-γ and IL-
2 is decremented in mature DCs (41). This suggests that the
effects of E2 in DCs depend on their maturation stage. Thus,
it would be interesting to determine the degree and phenotype
of DC maturation in tumors. In addition, differentiation of
functional DCs from bone marrow can also be modulated by this
hormone since it favors their migration to lymph nodes, an effect
that was reverted with the use of specific ERα antagonist (ICI
182,780) (42–44). Supporting this notion, E2 induces myeloid
DC differentiation through the activation of two inflammatory-
related proteins, the interferon regulatory transcription factor 4
(IRF4) and the participation of granulocyte macrophage colony
stimulating factor (GM-CSF). Interestingly, it was reported that
the exacerbated activation of these two factors by E2 at some
point can lead to a tolerogenic phenotype for DCs (45). The
association of ERα with other proteins such as thiolase and
glutathione S-transferase P (GSTP) is also linked with DC
differentiation. In addition to this, metabolic function, several
growth factors, and accessory proteins in bone marrow derived
from mice DCs are also affected. On the contrary, the absence
of GSTP enhanced DCs’ metabolism, their proliferative and
differentiation rates, and their effector functions (46). It is

important to note that not only does E2 have effects in DCs, an
estradiol metabolite, estriol also generated tolerogenic DCs in an
in vivomodel that protects against autoimmunity (47). The above
highlights the need to monitor the effects of ER inhibitors on
different immune cell functions, favoring not only the inhibition
of cancer cells but also the migration of the immune cells to
lymph organs or avoiding their anergic phenotype.

ER in Macrophages (Mø)
Macrophages are a fundamental part of the innate defense
mechanisms against foreign pathogens, and they can promote
specific immunity by inducing T cell recruitment and activation.
Their role is essential for triggering adaptive immune response.
Macrophages collaborate with T and B cells based on the release
of cytokines, chemokines, and reactive radicals, among other
proteins. Despite this fact, their presence within the tumor
microenvironment has been associated with enhanced tumor
progression and promotion of cancer cell growth, angiogenesis,
and immunosuppression (11, 48).

Several articles have reported the presence of ER in monocytes
and macrophage precursor cells (49, 50), that the expression of
this hormone receptor varies between stages of differentiation,
and that monocyte expresses ERβ while macrophages express
ERα (51). Recently, however, both receptors have been found
in macrophages (52). E2 treatment has been shown to modulate
different macrophage actions and their metabolism; for example,
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it is well-known that production of nitric oxide (NO) into the
macrophages allows them to exert antimicrobial and antitumor
actions (53). Related to this concept, hormone treatment
stimulated NO release in human peripheral monocytes and in
a murine macrophage cell line via GPER activation coupled
with intracellular calcium influx (54, 55). In line with this,
stimulation with LPS in isolated peritoneal macrophages from
young female rats resulted in elevated NO release; this effect
was not observed in macrophages derived from the middle-
aged animals, where circulating E2 levels were diminished
(56). Moreover, macrophages produce and use arachidonic
acid and its different metabolites for the recognition of
pathogens and to enhance or suppress inflammatory response
(57). E2 has been shown to modulate the lipid metabolism
of macrophages since it elicits an increase of arachidonic
acid release and prostaglandin E2 production (a derivative
of arachidonic acid) in human monocytic cell lines (58). In
addition, the phagocytic activity of macrophages is performed
in part by reactive oxygen species (ROS)—which cause DNA or
cell membrane damage—and the interplay between intracellular
ROS and antioxidant enzymes such as superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) is
important in the macrophage phagocytic function, activation,
differentiation, and recruitment process (59). In this context,
it has been reported that E2 administration in rats modulated
CAT activity in ex vivo macrophages (60). Part of the bacterial
killing mechanism of macrophages induced by LPS is the
activation of metalloproteinases (MMPs); gene expression of
MMP-9 especially was dramatically reduced after E2 treatment
in rat cell lines of macrophagic origin, and this effect was
blocked with ICI 182,720 treatment (61). This hormone also
modulates macrophage survival, and this effect was reported in
an in vitro culture of human macrophages where E2 treatment
induced the anti-apoptotic protein Bcl-2, action mediated by
the modulation of the intracellular Ca+2 concentration, the
activation of protein kinase C, and ERK phosphorylation (62,
63). Furthermore, macrophages can recognize distinct pathogen-
associated molecule patterns (PAMPs) which contributes to
activating several signaling cascades and diverse cytokines
and chemokines (64). E2 via ERα reduced gene and protein
expression of the pro-inflammatory IL-8 inmonocytes previously
challenged by LPS (65). The modulation of this chemokine
impacts not only the macrophage’s function but also the
neutrophil’s recruitment to inflammation sites, mediating
pathogen clearance (66). E2 can also modulate other functional
macrophage cytokines; its treatment decreased IL-6, TNF-α, and
IL-1β expression in whole blood cultures derived from healthy
postmenopausal women, in bone marrow cell cultures, and in
ex vivo rat macrophages (56, 67–70). The modulation of these
cytokines was confirmed to be an E2-dependent effect, according
to the opposite event found in these cells when they were treated
with ICI 182,780 (69). A similar result from E2 treatment related
to the decreased expression of the TNF-α gene was reported
in an ER-positive murine monocytic cell line through of the
down-regulation of Jun NH (2)-terminal kinase activity, with a
consequent decrease of AP-1 transcription factor, affecting TNF-
α transcription (71). In addition, E2 modulates the macrophage’s

activation (72), which is mainly classified into two categories:
classical activation (macrophages kill microbes and act as anti-
tumor effector cells), which is promoted by IFN-γ, TNF-α, and
TH2-related cytokines or alternative activation (macrophages
lay down extracellular matrix components to promote wound
healing, angiogenesis, and sustain tumor progression). This
type of macrophage activation is promoted by TH1 cytokines,
being an IL-4/IL-13-dependent mechanism (73). The effect of
this hormone in macrophage activation was clearly observed
in a murine wound healing model in ovariectomized mice. In
this sense, macrophages coming from ovariectomized animals
show preferentially a classical activation. In addition, the gene
expression of two alternative activation macrophages markers
(Fizz1 and Ym1) was reduced, and the ovariectomized mice
also presented a reduction in both macrophage numbers in the
wound area and the inflammatory environment through the
reduction of monocyte-associated TNF-α secretion as compared
with the intact group. In contrast, E2 supplementation in
ovariectomized mice restored the expression of both markers,
leading to alternative macrophage activation, wound repair,
remodeling, and angiogenesis (72). Furthermore, the alternative
macrophage activation promoted by E2 has been documented in
other assays. With respect to this notion, the gene expression of
arginase 1, another established alternative activation macrophage
marker, was up-regulated with ERα agonist treatment in an in
vitro culture of bone marrow-derived macrophages (74). This
work also evaluated the role of E2 in wildtype or in mice with
ERα and inflammatory gene deletion (LysM-ERα) subjected to
incisional wounds with a subsequent exogenous E2 replacement.
Of note, in the absence of the hormone, healing was delayed
(74) as has been previously reported in an ovariectomized
wildtype mouse model (72). However, the hormone treatment
revealed increased recovery in healing response, whereas in ERα

knockout mice it resulted in a marked healing delay. The above
highlights the role of estradiol-ERα action in the induction
of alternative macrophage activation (74). Additionally, the
role of E2 in favoring alternative macrophage activation was
corroborated in an in vitro and ex vivo study on human
blood-derived macrophages. In fact, classical lipopolysaccharide
(LPS)/IFN-γ stimulus on un-polarized macrophages induced
the down-regulation of two markers of alternative activation
(CD163 and CD206); these effects were avoided through
treatment via the modulation of NFκB transcription factor
(75). Interestingly, much evidence supports the notion that
macrophages, especially alternatively activated macrophages,
shape immune tumor infiltration and have influence in high
vascular grade associated with metastasis (76–79). In this
sense, breast cancer phenotype can also regulate the type
of infiltrating macrophage phenotype (80). Current evidence
suggests that this population of macrophages regulates at the
same time ERα expression in an epigenetic manner through the
modulation of a DNA hydroxymethylation marker, ten-eleven-
translocation 5-methylcytosine dioxygenase (TET1). The above
was demonstrated in co-cultures of endometrial cancer cells with
alternatively activated macrophages, with the results showing
that alternatively activated macrophages enhanced both E2-
driven endometrial cancer cell proliferation and up-regulation in
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ERα expression, a mechanism dependent on IL-17A expression
(81). The above highlights the importance of the interplay among
sex steroids, the immune system, and tumor progression.

ER in Mast Cells
Mast cells (MCs) are tissue-resident immune cells that form part
of the innate immune system. They are commonly associated
with allergic reactions and parasitic infections. These cells are
characterized by the presence of granules loaded with different
inflammatory mediators that they release depending on the time
and the type of stimulus (82). Additionally, secretion of serine
proteases such as tryptase or chymase define what phenotype of
the mast cell will be activated, which means that mucosal mast
cells produce tryptase and the connective tissue mast cells secrete
tryptase, chymase, and carboxypeptidases (83). These enzymes—
in conjunction with the release of IL-8, tumor growth factor beta
(TGF-β), and TNF-α–have been associated with angiogenesis
trough vascular endothelial growth factor (VEGF) and MMP
modulation in different breast cancer phenotypes (9, 84). Mast
cells can be activated by the direct recognition of pathogen-
associated molecular patterns (PAMPs) or by immunoglobulins
and immunoglobulin E receptor (Fcǫ RI) interaction; both cases
result in the release of different molecules from their granules,
recruiting different immune cells.

On the other hand, several studies have reported the
presence of ERα but not ERβ in mast cells; however, it was
recently described that these cells have the presence of both
nuclear receptors (85–88). In this sense, treatment of E2 or an
endocrine disrupting compound such as bisphenol A has been
demonstrated to induce the release of histamine (an important
biomolecule involved in allergic reactions) from rat mast cells in
a concentration-dependent manner (89). Of note, the histamine
release is also important in breast cancer promotion since this
protein or its receptors (H3R andH4R) have been associated with
the induction of breast cancer cell proliferation and migration.
Importantly, these molecules have been identified to a greater
extent in breast tumor samples as compared with non-tumor
samples (90). The above suggests that the inhibition of this
molecule could result in an interesting target in this disease.
E2 has an important role in inducing the release of asthma
mediators such as leukotriene and β-hexosaminidase in a rat
mast cell line. The release of β-hexosaminidase has also been
described in both the human mast cell line and in a primary
culture (non-transformed) of mast cells. This action was blocked
with the addition of tamoxifen or ICI 182,780, demonstrating
that ERα is responsible for these actions (89, 91, 92). In relation
to breast cancer progression, tryptase release from mast cells has
been closely associated with an increased number of carcinoma-
associated fibroblasts in breast tumor samples, favoring the
tissue remodeling and angiogenesis (93). Related to this, E2 up-
regulates tryptase secretion in the human mast cell line HMC-1
(88), assuming that it induces the degranulation of these cells. In
addition, E2 in an ex vivo model induces the expression of two
chemokine receptors (CCR4 and CCR5), which are implicated
in the migration of periphery mast cells to the uterus (88, 94).
The above highlights the effects of E2 in mast cell function with
the purpose of favoring breast cancer progression. On the other

hand, there are few reports with respect to E2 function by the
non-genomic pathway in mast cells. In this regard, it has been
shown that estradiol induces the release of intracellular calcium,
which is important for degranulation and leukotriene synthesis
in mast cells (95). Recently, the role of mast cells in breast cancer
has been largely studied (10); however, many of their functions
and components in their granules in relation with breast cancer
progression are still little addressed, and this makes them an
important population for study in the cancer microenvironment.

ER in Neutrophils
Neutrophils, which are other fundamental pathogen-fighting
immune cells, constitute the first line of host defense. They
can be recruited to infection sites and eliminate microbes by
classical phagocytosis or degranulation, and they also produce
ROS, release antimicrobial peptides, or expel their nuclear
content in order to form neutrophil extracellular traps (NETs)
(96, 97). Neutrophils collaborate with other immune cells
such as macrophages or DCs and secrete many chemokines
and cytokines that regulate the immune response (98). It has
been described that neutrophils as well as other immune cells
present both nuclear receptors (99). In this regard, E2 through
ERα binding has been shown to regulate neutrophil survival,
function, and number. E2 exposure delayed apoptosis in human
neutrophils, and this effect was correlated with a significant
decrease in active caspase 3 protein expression and was reverted
by ICI 182,780 treatment (100). This represents a possible
explanation of sexual dimorphism, being that neutrophil number
differs between men and women (101). One effect of E2 on
the function of neutrophils is that it enhances NO production
and nitric oxide synthase, demonstrated previously in human
neutrophils (102, 103). Additionally, neutrophils secrete several
serine proteases (NSPs), including neutrophil elastase (NE),
proteinase 3 (PR3), and cathepsin G (CG), which are essential
for the elimination of infectious agents and the modulation
of inflammation (104). Neutrophils derived from splenocytes
of mice administered with E2 showed incrementation of NE,
PR3, and CG in gene and protein expression as compared
with placebo-treated mice. Moreover, E2 administration in these
mice increased the number of neutrophils in different lymphoid
tissues (splenocytes, peripheral blood, and bone marrow) and
the gene and protein expression of myeloperosidase, a major
component of neutrophil granules (105). E2 via ERα modulated
inflammation, and the actions mentioned above were associated
with an autoimmune disease as an increase in neutrophil number
and NSPs were found in mice with lupus (105). Moreover, G1-
GPER1 activation also participates in neutrophil polarization
(analogous concept of macrophage activation) (106), promoting
the gene expression of the pro-inflammatory phenotype (N2)
and its lifespan, actions mediated by the activation of the
cAMP/PKA/CREB, MAPK, and p38 signaling pathways (107).
This work also shows that IL-1β, IL-8, the prostaglandin-
endoperoxide synthase (PTGS2), the suppressor of cytokine
signaling 3 (SOCS3), and granulocyte colony-stimulating factor
(G-CSF) gene expression, were enhanced after stimulation of G1-
GPER1 in a dose-dependent manner. Additionally, the release of
IL-8 was significantly increased as compared with non-treated
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human neutrophils and with neutrophils stimulated with LPS.
Furthermore, this hormone–receptor interaction up-regulated
the surface expression of two markers of neutrophil activation
(CD11b and CD62L) (107), supporting the notion that G1-
GPER1 interaction is responsible for IL-8 neutrophil release.
Other work proved that 17β-estradiol-ERα did not induce
the release of this chemokine; in fact, the estradiol treatment
had the opposite effect in the release of this chemokine in
human neutrophils pre-stimulated with LPS (108). In addition,
this classical activation may participate in the attenuation of
neutrophil activation. E2 reduced the shedding of a surface
adhesion neutrophil molecule (CD62L or selectin) (108), which
is normally implicated in diapedesis at sites of tissue injury
and inflammation (109). Also, E2 treatment blocked the
neutrophil chemotaxis promoted by IL-8, and the generation
of superoxide anion by neutrophils was diminished with this
hormone treatment (108, 110, 111), affecting their host defense
function (112).

It is well-known that a certain type of breast cancer
is dependent on E2 action; coupled with this notion, this
hormone can promote inflammation through the induction
of neutrophil infiltration and the expression of pro-tumoral
cytokines/chemokines and tissue-remodeling enzymes in
mammary neutrophils (113). In a mammary involution mice
model, E2 administration induced mammary neutrophil
infiltration and neutrophil pro-tumoral activity signature, as at
least 10 inflammatory genes were up-regulated in mammary
resident cells; interestingly, neutrophil depletion reversed the
expression pattern of these inflammatory genes. Moreover, in this
mammary involution mice model, the mice were administrated
with E2 and injected with a triple negative breast cell line (4T1).
Again, the hormone treatment induced mammary neutrophil
infiltration—however, neutrophil depletion with a specific
antibody resulted in the marked abolition of estrogen-induced
mammary tumor growth (113). The mammary neutrophil
recruitment induced by this hormone was observed in other in
vitro and in vivo breast cancer research, in which it promoted
N2-neutrophil polarization, correlated with the overexpression
of integrin LFA-1 and TGF-β, intra- and extravasation and
trans-endothelial breast cancer cell migration, and with major
breast tumor growth; this last effect was reversed by ICI 182,780
treatment. In fact, E2 treatment transformed a non-metastatic
breast cancer cell line into one that was metastatic-associated
in the presence of neutrophils (114). The previous observations
provide the presence of mammary neutrophils and its activity—
which are importantly regulated by E2—with a significance
regarding cancer progression.

ER in NK Cells
NK cells are central components of the innate immunity and
they participate in preventing and controlling infections, tumor
growth, and metastasis (115). Usually, in tumors there is a
downregulation of self-ligands and expression of stress-induced
ligands which can be recognized by NK cells (116). Their
activation also leads to secretion of stimulatory cytokines and
chemokines such as IFN-γ, TNF-α, GM-CSF, MIP1-α, and
RANTES, which participate in the stimulation of the adaptive

immune system. Moreover, their biological importance lies in
their ability to exert a cellular cytolytic effect through the
liberation of granzymes and perforin (117).

Since the 1990s, it has been known that E2 causes a
reduction in NK cell cytotoxic activity in mice models in a
dose-dependent manner (118, 119). This data was confirmed
when the hormone was administered in postmenopausal and
premenopausal women, resulting in a reduction in NK cell
activity (120). In fact, the use of oral contraceptives, which bind
to sex steroid receptors, has been associated with changes in
NK cytotoxic activity and with an increase in infections (121).
Interestingly, the suppressive effect of E2 on the NK cells was
attributed to the enhancement of metastasis in a fibrosarcoma
and melanoma cell model, where immunosuppressed mice
treated with this hormone also exhibited deficient NK cell activity
and increased susceptibility to develop metastasis of allogeneic
tumor cells (122). Additionally, synthetic non-steroidal estrogens
such as diethylstilbestrol showed the same effects regarding
inhibitory NK cell activity and the mice’s susceptibility to
generating tumors derived from this NK cellular inhibition. Of
note, NK inhibitory activity was dramatically affected with only
neonatal administration of diethylstilbestrol into the mice (123).
On the other hand, it has been described that E2 can induce
or suppress NK cell activity in mice, with the actions being
dependent on time. At short time intervals it acts in a stimulating
way, and at long time intervals it suppresses NK cell activity
(124). Estrogen can also inhibit NK cell-mediated apoptosis due
to the fact that this hormone induced a granzyme inhibitor,
named proteinase inhibitor 9 (PI-9) (125). Today, there are few
reports that evaluate the effects of E2 in NK cells. However, it
is known that the reduction of their activity is related to the
promotion of tumor growth (126); therefore, NK cells might be
considered as a target for immune therapies in order to avoid the
estrogen-mediated increase in breast tumor incidence.

ER in B Cells
B lymphocytes are part of the adaptive immune system that is
specialized in antibody production, which is part of humoral
immunity (127). It has been described that B lymphocytes
have the expression of both nuclear ERs in all B cell subsets
(39, 128). In this sense, E2 has stimulatory effects on B-
differentiated lymphocytes derived from human PBMCs. It
increased immunoglobulin (Ig)G and IgM production in a dose-
dependent manner, and this effect was enhanced by the addition
of IL-10, an anti-inflammatory cytokine, to B cells previously
treated with E2 (129), and the above becomes relevant in an
autoimmune context. The stimulatory effect of E2 on antibody
titers has been observed since the 1980s in in vitro studies and
in the serum of rats administered with this hormone, where an
increase in IgM antibodies was reported (130, 131). Of note,
it has been reported that IgMs have a direct cytotoxic effect
on transformed cells through the activation of the complement
pathway (132, 133). This is relevant since the increases on
IgMs levels due to E2 exposure are important for breast
cancer suppression. Besides, they also might serve as diagnostic
indicators of the phenotype or stage of this pathology due to
the fact that they are well-correlated with the clinical score and

Frontiers in Immunology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 348

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Segovia-Mendoza and Morales-Montor Estrogen on Immune Tumor Microenvironment

disease spread of breast cancer patients (134); however, more
studies are necessary to confirm this fact. Added to that, E2
through the ERα pathway also impacts the activation and survival
of B cells through the modulation of several genes. These effects
were observed in splenic B cells derived from ovariectomized
mice (or not) administered with it. Interestingly, these results
were reverted in mice treated with ICI 182,780 (128). Regarding
the effects of GPR30 on B lymphocytes, some reports have
mentioned that different chemokines can activate it, triggering
different roles of B subsets such as migration, chemotaxis,
proliferation, and apoptosis, among others. In fact, this receptor
has been correlated with different B cell malignancies such
as leukemia and lymphomas (135, 136). Nevertheless, more
information or mechanisms of action related to this topic would
be interesting in relation to the pathogenesis of breast cancer.

ER in TCD4+ and TCD8+ Cells
Lymphocytes have important roles in immune protection;
traditionally, these cells are divided into two subtypes, TCD4+

and TCD8+. The first subtype can help B cells to produce
antibodies, in order to induce immune response through
activation of macrophages and recruitment of different immune
cells to specific sites with inflammation. The second type
is important for defense against cellular pathogens, among
other functions. These immune populations can contribute
to attenuate inflammation, production of antibodies, and
protection of pathogens (137). Based on the different cytokine
secretion profiles, TCD4+ is divided into different subsets—
for instance, T helper (Th)1 and Th2. Th1 is characterized by
secretion of INF-γ, IL-2, IL-12, and TNFα, which are cytokines
that stimulate macrophages’ functions and cellular response;
meanwhile, Th2 cells secrete IL-4, IL-5, IL-6, and IL-10, which
are important cytokines for B cell antibody production and
humoral response.

It has been described that E2 affects the size, maturation,
and development of T cells, a process known as thymic atrophy
(37, 138), and this effect is mainly caused by ERα signaling
(139). Moreover, it can also influence the expression of the
phenotype of CD4+/CD8+ T cells and their subsets’ functions
(140), and it also contributes to the development of other T
cell subtypes from the lymph nodes, such as Th17 cells (141).
Interestingly, the proliferation and generation of active T cells
are governed by different metabolic glycolytic demands (142).
In this sense, the orphan nuclear hormone receptor, estrogen-
related receptor-α (ERRα), is a key regulator that supports T
cell functions, since the inhibition of ERRα decreased several
glycolytic genes implicated in inflammatory cytokine production
and T cell proliferation in an in vitro and in an experimental
autoimmune encephalomyelitis mouse model, and a similar
effect was found in ERRα-deficient T cells (143). Several studies
have demonstrated that E2modulates IFNγ-secretion of Th1 cells
in both human and mice cells, which is potentially mediated by
direct interaction of ER with its EREs in the promoter region
of the IFNγ gene (38, 144, 145). This cytokine has a pivotal
role against intracellular infections as well as autoimmune and
inflammatory disorders. Furthermore, E2 inhibits the production
of Th1 pro-inflammatory cytokines such as IL-2, IL-12, IFN-γ,

and TNFα (146). In accordance with this notion, the decline
of ovarian function related to menopausal state in women and
reduction in the production of this hormone have been associated
with an increment in pro-inflammatory cytokine production
(147). In line with that, Th1-related cytokine levels such as
IL-2 and IFN-γ were augmented in postmenopausal women,
and hormone replacement therapy in this population caused a
significant decrease of these cytokines (148). On the other hand,
the effects of E2 in Th2 cells are related to the increment of anti-
inflammatory cytokines such as IL-10, IL-4, and TGF-β (146,
149). In addition, IL-4 incrementation has been correlated with
the increase of an essential Th2 transcription factor (GATA-3)
(150). Interestingly, E2 administration in a mammary involution
mice model diminished CD4+ and CD8+ T cells in mammary
tissue, highlighting the effects of this hormone on the function of
these immune cells’ type (113).

ER in Regulatory T Cells (Tregs)
Tregs are involved in self-tolerance, suppression of immune
cell functions, down-regulation of self-reactive lymphocyte
action, and prevention of transplant rejection through activation
of a lineage-specific transcription factor that governs Treg
development, differentiation, maintenance, and function—
forkhead/winged helix transcription factor (FoxP3) (151). The T
regs’ immunosuppressive T cell inflammatory activity includes
IL-10 secretion and the induction of programmed cell death
1 receptor (PD-1) (137, 152). In breast cancer, these cells are
associated with a high rate of relapse and with favoring the tumor
microenvironment (7, 16).

E2 in vitro and in vivo mouse models have been shown to
induce the gene expression of FoxP3 and IL-10. These effects
were reversed with the treatment ICI 182,780 (153, 154). It
also modulates the Tregs’ inhibitory capacity, since estradiol
treatment increased intracellular PD-1 levels in Tregs coming
from splenocytes of wildtype mice, whereas an opposite effect
was seen in ER knockout mice (155). E2 treatment has also been
shown to promote the proliferation and the number of human
Tregs. In addition, it favors the change of CD4+, CD25− cells
to a CD4+, CD25+ Treg phenotype (156). Interestingly, a recent
work demonstrated that infiltrating Tregs derived from human
cervical cancer contain elevated levels of estrogen. Additionally,
E2 through ERα signaling binds in the EREs of the Tregs’
FoxP3 promoter. In this way, a loop is formed and leads to
the activation of FoxP3 activity (157). As in other works, ICI
182,780 treatment reverted effects of E2 in Tregs and resulted
in the ablation of FoxP3 protein expression and a decrease in
TGF-β secretion (157). Another study supports the notion that
in addition to ERα signaling, GPER with the estrogenic small
molecule (G-1) is critical for the expansion of Tregs and the
induction of the Foxp3 protein in ex vivo cultures of purified
TCD4+ mouse cells. In addition, G-1-GPER activation was able
to maintain the Tregs’ phenotype and to induce the expression of
two proteins implicated in the control of immune homeostasis,
PD-1, and cytotoxic T lymphocyte-associated protein 4 (CTLA-
4) in the presence of Th17 cytokine inflammatory polarization
conditions (158). It has been described that Tregs secrete
immunomodulatory cytokines such as TGF-β and IL-10 (159).
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FIGURE 3 | (A) Schematic representation of immune infiltrating tumor cells. (B) Genomic and non-genomic estrogen pathways on immune cells. Estrogen regulates

the physiological, functional, and secretion actions of different immune cells; these effects are mainly studied by the activation of genomic pathways such as ERα,

ERβ, or ERRα. In addition, little effects of Tregs (increase of Foxp3 expression), macrophages (NO production), neutrophils (neutrophil polarization and IL-8 secretion),

and mast cells (mobilization of intracellular calcium, favoring cell degranulation) have been described by the action of non-genomic pathway.

This cytokine secretion pattern was favored with E2 treatment
in Treg cells isolated from peripheral blood mononuclear cells
(PBMCs) of healthy women (160). The previous data highlight
the fundamental role of the estradiol-ERα / G1-GPER pathway
in Treg physiology.

The estrogen pathways on immune cells studied in the basal
condition described above are illustrated in Figure 3, which
highlights that few reports have evaluated the effects of Tregs,
macrophages, neutrophils, and mast cells mediated by non-
genomic pathways. It also aims to represent how immune
infiltration is found in breast cancer. In addition, Table 1

summarizes the effects of estrogen on the immune cells that we
described in the previous section.

REGULATION OF IMMUNE CELL
FUNCTIONS BY ER INHIBITORS
TREATMENT IN BREAST CANCER
PATIENTS

It is widely known and accepted that the use of inhibitors of ER
in the treatment of patients with estrogen-positive breast cancer
has offered high survival rates (161). However, their use in other
breast cancer phenotypes and their effects on the immune system
cells in clinical stages have not been addressed.

In the previous section, we described in vitro and in vivo
data that clearly show how the tumor infiltrating immune cells
could play an important role in the development, progression,

and response of breast cancer through ER signaling activation.
However, they also encourage focusing on the modulation of
their antitumor functions with ER inhibitors. In this regard, few
studies have reported the effect of ER inhibitors on immune
infiltrating breast tumor cell functions in clinical phases. As we
described previously, Tregs have been found to be up-modulated
in breast tumors, and a high number of these cells were present
in high-grade ER-negative breast cancer patients. Also, they
were associated with ER-positive breast tumors identified with
high-risk patients (7, 162). It is known that Tregs give valuable
information about breast cancer prognosis and progression,
since a high number of Tregs can identify patients at risk of
relapse after 5 years. Nevertheless, there was no relationship
between the number of Tregs and the type of therapy that
patients received (7). Interestingly, in 2009, Generali et al.
reported that the number of Tregs was significantly decreased
in patients who received an aromatase inhibitor treatment
alone (letrozole) and in combination with an antineoplastic
agent (letrozole + cyclophosphamide) (163). Another in vivo
model reported that ICI 182,780 could reverse the estradiol
actions for inducing Treg phenotype (154). These facts possibly
indicate that E2 inhibition is an important antitumor strategy for
manipulating the tumor microenvironment through inhibiting
the function and number of Tregs; additionally, letrozole might
also be useful in combination treatments in patients with ER-
negative tumors regardless of ER expression in the tumor
cells. Returning to the fact that this hormone can inhibit NK
activity, an interesting work reported that post-menopausal
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TABLE 1 | Estradiol effects of different immune cells.

Type of immune cells Modulation Reference

DCs Increase expression of co-stimulatory molecules such as INF-γ

Stimulation of T-cell proliferation and differentiation

Induction of pro-inflammatory cytokines and chemokines; TNFα, IL-2, IL-6, IL-10, IL-8, MCP-1

DCs migratory response to lymph nodes after LPS stimulation

Induction of DC differentiation via GM-CSF and the IRF4

Generation of tolerogenic DCs affecting their cell antigen presenting function

(39–47)

Macrophages Stimulate NO release

Modulate the lipid metabolism of macrophages through the release of arachidonic acid and prostaglandin E2

production

Modulate catalase CAT activity

Reduce MMP-9 expression

Increase macrophage survival through Bcl-2 activation

Reduce IL-8 expression

Decrease IL-6, TNF-α, IL-1β expression

Reduce TNF-α gene expression

Induce alternative macrophage activation through the modulation of activity and expression of several markers such as

Fizz1, Ym1 and arginase 1, CD163 and CD206

(49–81)

Mast cells Induction of histamine, leukotriene, β-hexosaminidase and tryptase release

Induction of chemokine receptors (CCR4 and CCR5)

Release of intracellular calcium favoring degranulation

(10, 85–94)

Neutrophils Enhance NO production and the neuronal nitric oxide synthase

Promote neutrophil pro-inflammatory phenotype through GPER- cAMP/PKA/CREB, MAPK activation

Increase IL-1β, IL-8, PTGS2, SOCS3, and G-CSF gene expression

Increase IL-8 release via G1/GPER

Up-regulation of two markers of neutrophil activation (CD11b and CD62L)

Reduce IL-8 neutrophil release and CD62L expression via ERα

Reduce neutrophil chemotaxis and superoxide anion production

Increase the number of neutrophils in different lymphoid tissues and the NSPs including NE, PR3, and CG

Increase MPO expression

(100–114)

NK cells Reduction of NK cells’ cytotoxic activity over long period of exposure

Enhancement of tumor susceptibility and metastasis

Stimulation of NK cell activity in short period of exposure

Induction of PI-9

(118–126)

B lymphocytes Enhancement of IgG and IgM production

Increase survival, proliferation, migration, and chemotaxis

(39, 128–136)

TCD4+ and TCD8+Th1Th2 Promotion of CD4+ /CD8+ T phenotype expression

Induction of glycolytic genes implicated in the inflammatory cytokine production and T cell proliferation via ERRα

Inhibition of pro-inflammatory cytokines IL-2, IL-12, IFN-γ, and TNF-α

Negative regulation of IFNγ promoter

Increment of IL-10, IL-4, and TGF-β

Induction of Th2 transcription factor GATA-3

(37, 38, 113)

Tregs Induction of FoxP3 and IL-10 gene expression

Maintenance of Tregs phenotype

Activation of FoxP3 activity via estradiol-ERα-EREs

Induction of FoxP3, PD-1, and CTLA-4 protein expression via GPER

Increase of immuno-modulatory cytokines such as TGF-β and IL-10

(153–160)

stage I breast cancer patients who received tamoxifen for 1
month showed a statistically significant increase in NK activity;
however, NK activity could not be related to ER expression in
breast tumors due to the limited number of patients included
(164). This fact correlates with mice models and estrogen
actions in NK cell activation (124). It is also important to
mention that some studies have reported a low proportion
of NK cells in late stages of breast tumors (165); therefore,
the work of Berry et al. suggests that in the early stages of
breast cancer, patients treated with tamoxifen could benefit from
the activation of NK cells instead of using this drug in the

late stages, concluding that these cells could be considered as
therapeutic targets.

With respect to E2 modulation on the TAMs’ function, there
are not any reports that have evaluated its inhibition effect in
clinical trials. We described before that E2 promotes alternative
macrophage activation (72, 74). Interestingly, Hollmén et al.
found that ER-positive and ER-negative tumors induced different
macrophage phenotypes with different biological functions,
morphology, and cytokine and chemokine secretion. In fact,
alternatively activated macrophages present in triple negative
breast cancer have a down-regulation in citrulline metabolism
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(80). From this concept, it would be interesting to study
the effects of this hormone on citrulline metabolism, since
it is known that nitric oxide synthase (iNOS) expression is
enhanced by E2 action (166) and, simultaneously, this enzyme is
associated with citrulline and arginine metabolism, determining
the macrophages’ activation phenotype in breast cancer (167).
The number of neutrophils in situ in breast tumors is positively
correlated with poor prognosis (102), so the modulation of
their number could be interesting for breast cancer patients. In
2017, Dai et al. clearly demonstrated that estradiol treatment
increased the number of neutrophils in the spleens of mice
(105). An increased neutrophil number was also found in
the complete blood of prostate cancer patients treated with
estramustine (168), an antineoplastic agent with ER affinity (169).
However, at present there are not any reports on neutrophil
modulation in breast cancer tumors by ER inhibitors. On the
other hand, it is known that in neutrophils, NETs formation is
relevant for pathogen death, and a selective estrogen receptor
modulator (SERM), raloxifene, inhibited NETs formation of
human neutrophils, interfering with bacteria clearance after
the treatment of the NET inducer phorbol 12-myristate 13-
acetate (PMA) (170). This was opposite to the effect that was
found with tamoxifen treatment (171). With respect to other
immune populations, there are not any reports regarding their
function modulation by ER inhibitors in breast cancer patients.
In addition to the data described above, our workgroup reported
that endocrine-disrupting compounds such as bisphenol A (BPA)
have a significant effect on themodulation of ERα expression in T
lymphocytes, macrophages, and NK cells of breast cancer tumors
as well as in tumor growth. Impressively, a single administration
of BPA in neonatal mice resulted in important changes in the
presence of Tregs infiltrated into breast tumors in the adult
stage (172). These facts provide new approaches to studying
the effect of various compounds with estrogenic activity on the
modulation of immune cells as well as in the selective inhibition
of ER.

On the other hand, although different immunohistochemical
studies as well as DNA sequencing data have given promising
landscapes of infiltrating immune cells in this neoplasm
for its therapy (13, 21), and despite the extraordinary
efforts to reach a consensus on the study of the invasive
population in breast cancer in daily histopathological
practice (173, 174), different techniques such as flow
cytometry must be applied in the clinic in order to guarantee
precise studies. This is because it has been described that,
according to the tumor area, the presence of infiltrating
lymphocytes can vary (175). The above would allow offering
personalized, predictive, and effective combined breast
cancer treatments.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The main aim of this paper is to stand out the components of
immune cells within the tumor microenvironment in different

phenotypes of breast cancer, and the participation of E2 and
its receptors in their function. As described above, E2 modifies
the functions of different immune populations. Although the
effects of this hormone were described in a particular way
in each immune lineage, it is known that all of them are
interconnected by cytokines, maintaining a dynamic interaction
in the tumor microenvironment. Several reports have mentioned
that immune infiltrating cells play a positive role in avoiding
the progression of breast cancer and have a significant clinical
impact on the response to treatment in a manner independent
of the cancer phenotype (176, 177). However, little is known
about their percentage and their grade of activation or anergy in
different advanced clinic stages of this pathology, which might
be modified due to the intratumoral E2 concentration. Based on
the role that E2 and its signaling have in different populations
of the immune system, we consider it important to evaluate
or measure the intratumoral levels of this hormone and/or
different compounds such as endocrine disruptors mainly in
the advanced stages of this disease, which could be associated
with their pro-anergic state. It has been documented that the
concentrations of E2 as well as the enzyme that produces it
(aromatase) are elevated inside the tumor (178, 179), affecting
not only epithelial cell growth but also the immune cell effects.
Taking into consideration the previous fact, we also regard the
use of intratumoral therapy using ER inhibitors in the different
types of breast cancer as an integral adjuvant approach for
heightening both other therapies and immune response. The
previous concept has taken on importance in cancer therapy;
indeed, new studies on this topic are being done with different
treatment schemes (180). Finally, the immune cells’ function
and their cytokines are key factors whose modulation should
be studied, and they should also be considered as predictive
markers and important therapy targets in different subtypes of
breast cancer.
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