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Establishment of 2.5D organoid 
culture model using 3D bladder 
cancer organoid culture
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Kimika Hayashi1, Takashi Mori4,5, Tsuyoshi Uchide6, Daigo Azakami7, Ryuji Fukushima8, 
Toshinori Yoshida9, Makoto Shibutani9, Risako Yamashita9, Mio Kobayashi9, 
Hideyuki Yamawaki10, Yuta Shinohara1,11, Masahiro Kaneda12, Tatsuya Usui1 ✉ & 
Kazuaki Sasaki1

Three-dimensional (3D) organoid culture holds great promises in cancer precision medicine. However, 
Matrigel and stem cell-stimulating supplements are necessary for culturing 3D organoid cells. It costs 
a lot of money and consumes more time and effort compared with 2D cultured cells. Therefore, the 
establishment of cheaper and Matrigel-free organoid culture that can maintain the characteristics of a 
part of 3D organoids is demanded. In the previous study, we established a dog bladder cancer (BC) 3D 
organoid culture system by using their urine samples. Here, we successfully isolated cells named “2.5D 
organoid” from multiple strains of dog BC 3D organoids using 2.5 organoid media. The cell proliferation 
speed of 2.5D organoids was faster than parental 3D organoid cells. The expression pattern of stem 
cell markers was close to 3D organoids. Injection of 2.5D organoid cells into immunodeficient mice 
formed tumors and showed the histopathological characteristics of urothelial carcinoma similar to the 
injection of dog BC 3D organoids. The 2.5D organoids had a similar sensitivity profile for anti-cancer 
drug treatment to their parental 3D organoids. These data suggest that our established 2.5D organoid 
culture method might become a reasonable and useful tool instead of 3D organoids in dog BC research 
and therapy.

Bladder cancer (BC), also known as transitional cell carcinoma (TCC) or urothelial carcinoma, is the most fre-
quent form of urinary BC in dogs, affecting thousands of dogs annually worldwide1. It constitutes approximately 
1–2% of all naturally occurring cancers in dogs, a nearly similar rate to humans2,3. The majority of dog BC is high 
grade invasive urothelial carcinoma2,4,5. In addition to the late diagnosis of dog BC, it is very difficult to treat 
them6,7. Although several experimental models of BC by using mouse and rat were developed8–10, they hardly 
reflect the characteristics of invasive or metastatic human BC11 and the mechanism of its arising and development 
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still remains obscure. Interestingly, the naturally arising dog BC closely mimics invasive BC in human in the cel-
lular and molecular features like histopathological architecture, local invasion, distant metastases, chemotherapy 
response, and prognosis7, suggesting that dog BC might be a pertinent model of invasive BC in human.

Three-dimensional (3D) organoid culture is derived from self-renewing stem cells that typically recapitulate 
the in vivo architecture, functions, and genetic and molecular imprints of their original tissues. It holds great 
promise for use in medical research for establishing novel personalized therapies, especially cancer12,13.

In the previous study, we established the 3D culture method of dog BC organoids using the urine samples 
from BC diseased dogs14. The organoids recapitulated the tumor microenvironment of their parental tumor tis-
sues and showed tumorigenesis in vivo. Furthermore, it could be used to investigate the sensitivity of anti-cancer 
drugs and their combinations. However, using the 3D organoid culture method for experiments costs a lot of 
money due to the expensive gel and the stem cell-stimulating supplements contained in the culture media. It also 
needs a long time because of the complicated handling (dissolving and solidifying gel) and the slow growth speed 
of the organoid cells compared with 2D cell lines. Although there is a need to establish a cheaper and easier-to-use 
organoid culture method, an alternative to the 3D organoid culture method has not been fully developed.

In the present study, we hypothesized that some media components enable patient-derived 3D organoid cells 
to culture in Matrigel-free 2D culture conditions without losing their characteristics such as marker expression, 
stemness, and drug sensitivity of their original 3D organoids (we named the cells 2.5D organoids). Here, we iden-
tified the suitable media components for culturing 2.5D organoids and established a new culture method of dog 
BC 2.5D organoids from different strains of dog BC 3D organoids. Since these 2.5D organoids partially exhibited 
similar characteristics to their parental 3D organoids, we expect that they could be useful as a new experimental 
tool not only in dogs but also in human BC research.

Materials and Methods
Materials.  To isolate 2.5D organoids from 3D organoids, we used a special 2.5D organoid media. The com-
ponents were as follows: Advanced Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 (Thermo Fisher Scientific 
Inc., Waltham, MA, USA) supplemented with 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES;WAKO, Osaka, Japan), 1% GlutaMax (Thermo Fisher Scientific Inc), 10 mM Nicotinamide (Sigma-
Aldrich, St. Louis, MO, USA), 1 mM N-acetyl-L-cysteine (Sigma-Aldrich), 0.5 μM A83-01 (Adooq Bioscience, 
Irvine, CA, USA), 1% penicillin-streptomycin (PS; WAKO), and 5% fetal bovine serum (FBS; Thermo Fisher 
Scientific Inc.). The difference of culture supplements between 2.5D and 3D organoid was shown in Table 1. 
Anti-cancer drugs were as follows: vinblastine, mitoxantrone (Cayman, Ann Arbor, MI, USA), and carboplatin 
(WAKO). The used antibodies were as follows: CK5 (GeneTex, Inc., Irvine, CA, USA), CK7 (Novus, Centennial, 
CO, USA); CK20 and UPK3A (Bioss, Woburn, MA, USA). Fluorescent secondary antibodies were as follows: 
Alexa Fluor 488 goat anti-rabbit IgG; Alexa Fluor 488 goat anti-mouse IgG; (Thermo Fisher Scientific Inc.). 
Dog urothelial carcinoma cell lines were purchased from COSMO BIO CO., Ltd (Tokyo, Japan), and cultured 
in DMEM containing 10% FBS (Thermo Fisher Scientific Inc.) and 1% Penicillin-Streptomycin (PS) (WAKO).

Generation of dog BC 2.5D organoids.  In the previous study, we generated urine sample-derived dog 
BC 3D organoids14. Using our established 3 strains of BC organoids (Table 2), we generated 2.5D organoids in the 
present study. Each dog 3D organoid cell was treated with 2.5D organoid media and cultured for 3–7 days. After 
the migrated cells from organoids attached the bottom of the plate, Matrigel containing organoids was stripped 
and 500 µL of 5 mM ethylenediaminetetraacetic acid (EDTA)/ Phosphate Buffered Saline (PBS) was added per 

Supplement 2.5D organoid 3D organoid

Wnt, Noggin and R-Spondin − +

FBS + −

EGF + +

GlutaMax + +

N-Acetyl-l-cysteine + +

Nicotinamide + +

A83-01 + +

HEPES + +

Antibiotics + +

Table 1.  The difference of media components between 2.5D and 3D organoid culture.

Case ID
Age
(year old) Breed Sex Sample Date

BC18004 (used 
as BC1) 12 Miniature Dachshund Female (spayed) 2018/5/2

BC18005 (used 
as BC2) 11 Mix Female (spayed) 2018/5/11

BC19004 (used 
as BC3) 11 Maltese Female (not spayed) 2019/8/2

Table 2.  Sample information.
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well for 10 min at 37 °C in a CO2 incubator. The EDTA solution in each well was collected in a 15 ml tube and cen-
trifuged at 600 g for 5 min. After the cell pellet was trypsinized for 3 min, they were seeded in 6 cm dishes with our 
prepared 2.5D organoid media. Media were changed three times a week. The present study was conducted under 
the institutional Animal Care and Use Committee of Tokyo University of Agriculture and Technology approval 
(Approval number: 0016012).

Passaging of dog BC 2.5D organoids.  After 70–80% confluent conditions, 2.5D organoid cells were pas-
saged into a new 6 cm dish at a ratio of 1:3–4. To collect cells, 1 mL of 5 mM EDTA/PBS was added, and the culture 
dish was placed at CO2 incubator at 37 °C for 10 min. Thereafter, the EDTA solution was collected. Subsequently, 
1 mL TrypLE Express solution (Thermo Fisher Scientific Inc.) was added to the cell pellets and they were incu-
bated at 37 °C for 3–5 min. The trypsinized cell suspension was vigorously pipetted and collected into a 15 mL 
tube containing 100 μl FBS and then centrifuged at 600 g for 3 min. Cell pellets were mixed with new 2.5D orga-
noid media and seeded into a 6 cm dish. We defined the passaged cells as early (4–8) and late passage (15–20) 
cells.

Comparison of culture efficiency between 2.5D organoid media and 2D cell line media.  After 
the isolated 2.5D organoid cells were seeded into 6 cm dishes, they were cultured with 2.5D organoid media or 
2D cell line media (DMEM containing 10% FBS and 1% PS) to compare the efficiency of cell attachment and 
proliferation after passaging. The bright-field images were obtained using a light microscope (BX-52; Olympus, 
Tokyo, Japan).

Immunofluorescence staining of 2.5D organoids.  Immunofluorescence staining of BC 2.5D organoids 
was performed as described before14,15. Briefly, the 2.5D cells (2 × 105/well) were seeded on a coverslip in a 6-well 
plate. After 70% confluent conditions, the cells were fixed with 4% paraformaldehyde (PFA) solution for 10 min. 
Later, the cells were exposed to 0.2% Triton X/PBS for a few seconds. Blocking was done using 3% skimmed milk/
PBS for 1 h. Subsequently, cells were treated with the primary antibodies (CK5; 1:200, CK7;1:50, CK20;1:200, 
and UPK3A;1:200) and kept at 4 °C overnight. After they were treated with the secondary antibodies and DAPI 
solution (1:1000) for 1 h at room temperature, the expressions were examined using a confocal microscope (LSM 
800; ZEISS, Copenhagen, Germany).

Cell proliferation assay.  After an equal number of 2.5D organoid cells at early and late passages and 3D 
organoid cells were seeded in 96-well plate at a density of 2×103 cells/well, each cell was cultured for 5 days. The 
number of living cells at day 1, 3 and 5 was evaluated by using a Prestoblue kit (Thermo Fisher Scientific Inc.). 
The fluorescence intensity was measured by a microplate reader (TECAN, Seestrasse, Switzerland) at an emission 
wavelength of 585 nm.

Quantitative real-time PCR.  Quantitative real-time PCR was performed as described previously14. Total 
RNA was extracted from 2 × 105 of 2.5D organoid cells at early and late passage, 3D organoids, and urothe-
lial carcinoma cell lines by using a NucleoSpin kit (Takara Bio Inc., Shiga, Japan) following the manufactur-
er’s protocol. First-strand cDNA was prepared using a QuantiTect Reverse Transcription Kit (TOYOBO, Tokyo, 
Japan). Quantitative real-time PCR was done using a QuantiTect SYBR I Kit (QIAGEN, Hilden, Germany) and a 
StepOnePlus Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). The ΔΔCq method was used 
for quantification. Specific primers used for dog BC stem cell markers, SOX2, CD44, and GAPDH were designed 
and are shown in Table 3.

Mouse xenograft assay.  Mouse xenograft assay of 2.5D organoids was carried out as previously 
described14,15. Four NSG male immunodeficient mice (6 weeks old) were obtained from Japan SLC (Shizuoka, 
Japan). They were housed under strict pathogen-free conditions. Here, 1×106 2.5D organoid cells were subcuta-
neously injected into the back of mice. Six weeks later, the 2.5D organoid-derived tumors were dissected under 
isoflurane anesthesia and used for H&E and immunofluorescence staining. All animal experiments in the pres-
ent study were performed following the Guide to Animal Use and Care of Tokyo University of Agriculture and 
Technology and approved by the ethics committee (Approval number: 29–92).

H&E staining of xenografted tumor tissues.  H&E staining of 2.5D organoid-derived tumor tissues 
was performed as described previously14,15. After the isolated tumor tissues were fixed with 4% PFA for 24 h, they 

Gene 
name Primer Sequence

SOX2
Forward 5′-GCCCTGCAGTACAACTCCAT-3′

Reverse 5′-GGAGTGGGAGGAGGAGGTAA-3′

CD44
Forward 5′-CCAAGACAGTTCCAGGGTGT-3′

Reverse 5′-TTGAGGTTTCCGCATAGGAC-3′

GAPDH
Forward 5′-AACTCCCTCAAGATTGTCAGCAA-3′

Reverse 5′-CATGGATGACTTTGGCTAGAGGA-3′

Table 3.  Primers for real-time quantitative PCR analysis.
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were embedded in paraffin. After deparaffinization, 4 µm-thick sections were stained with H&E. The images were 
obtained using a light microscope (BX-52; Olympus).

Sensitivity of 2.5D organoids to anti-cancer drugs.  Cell viability assay of the 2.5D organoid cells at 
early and late passages compared with their original 3D organoid ones was carried out as described before14. 
Briefly, 1 × 103 cells of each 2.5D cells or 2 × 103 of their 3D organoid single cells were seeded in 96-well culture 
plates and incubated in a CO2 incubator at 37 °C for 24 h. The cells were treated with anti-cancer drugs including 
a microtubule inhibitor, vinblastine (0.01–10 nM), a topoisomerase inhibitor, mitoxantrone (0.1–100 ng/mL), or 
a DNA-damaging agent, carboplatin (0.1–100 µg/mL) for 72 h. Cell viabilities of the 3D and 2.5D organoid cells 
were examined in the same way as in the cell proliferation assay.

Statistical analysis.  The obtained data were presented as means ± SEM. Statistical assessments were carried 
out using the one-way analysis of variance (ANOVA) method followed by Bonferroni’s test. Statistical significance 
was considered when P-values ≤ 0.05.

Results
Generation of dog bladder cancer (BC) 2.5D organoids.  In the previous study, we established a novel 
method of 3D organoid culture from BC diseased dogs using their urine samples14. Our established BC 3D orga-
noids expressed urothelial markers (CK7, CK20, and UPK3A), showed the response to anti-cancer drugs, and 
exhibited tumorigenesis. In the present study, we hypothesized that some media components enable 3D organoid 
cells to culture in gel-free 2D culture conditions without losing their characteristics such as marker expression, 
stemness, and drug sensitivity. To prove the hypothesis, we made original media and checked whether the media 
efficiently generates 3D organoid-derived 2D cells (2.5D organoid) and can keep the characteristics (Fig. 1A). 
After treating 3D organoid cells with the media for a few days, cells gradually migrated from organoids and 
adhered to the bottom of the plate (Fig. 1B). We purely isolated the adhered cells and cultured them in 2.5D orga-
noid media. The 2.5D organoid cells were successfully passaged and propagated over passage 10 (Fig. 1B). We 
also confirmed that 2.5D organoids can be isolated from different strains of dog BC 3D organoids (Fig. 1C). The 
cells have a cobblestone- and fibroblast-like appearance (Fig. 1C), similarly to urothelial carcinoma cell lines16. To 
prove the utility of 2.5D organoid media, we compared the cell attachment and growth between 2.5D organoid 
and normal cell line media (Fig. 1D). The isolated 2.5D organoid cells cultured in 2.5D organoid media showed a 
better cell attachment and proliferation than normal cell line media (Fig. 1D). Further, we tried to generate 2.5D 
organoids directly from urine samples without going through 3D organoids. However, the cells did not proliferate 
well (data not shown), suggesting that the generation of 3D organoids at first is a necessary step for generating 
2.5D ones.

Expression of urothelial markers in BC 2.5D organoids.  To identify the characterization of BC 2.5D 
organoid cells, we investigated the expression of urothelial markers (CK7, CK20, and UPK3A). The 2.5D organoid 
cells (both early and late passages) expressed urothelial cell markers, CK7, CK20, and UPK3A (Fig. 2A) similar 
to the original BC 3D organoids14.

Cell proliferation speed in BC 2.5D organoids.  After seeding equal numbers of 2.5D organoid cells at 
early and late passages as well as their original 3D organoids, living cell number was evaluated by Prestoblue assay. 
The 2.5D organoid cells at early and late passages showed a significantly accelerated proliferation rate at day 5 
compared with their original 3D organoids (Fig. 2B).

Expression of basal cell marker in BC 2.5D organoids.  To check whether a basal cell marker was 
expressed in 2.5D organoids, we investigated the expression of a basal marker, CK5. The 2.5D organoid cells 
expressed CK5 similarly to the parental 3D organoids (Fig. 2C).

Plasticity of BC 2.5D organoids.  To check whether 2.5D organoids can revert to 3D organoids, we col-
lected the generated 2.5D organoid cells and embedded them into Matrigel again. The 2.5D organoid cells were 
successfully reverted to 3D organoids (Fig. 2D), which were continually expanded after passaging, indicating that 
2.5D organoid cells maintain the stemness property and possess the plasticity.

Expression pattern of cancer stem cell markers, SOX2 and CD44 in BC 2.5D organoids.  Since 
3D organoids contain many stem cells compared with 2D cultured cells, we investigated whether BC 2.5D orga-
noids maintain the expression level of stem cell markers as an indicator of stemness. Among 3D organoid, 2.5D 
early passage organoid, 2.5D late passage organoid, and urothelial carcinoma cell line, mRNA expression level 
of SOX2 was the highest in 3D organoid (Fig. 3A). In both 2.5D early passage and 2.5D late passage organoids, 
mRNA expression of SOX2 was a little bit lower compared with 3D organoids but much higher than cell lines 
(Fig. 3A). Interestingly, mRNA expression level of CD44 was the highest in cell line. In both early and late passages 
of BC 2.5D organoids, expression level of CD44 was quite lower similar to the parental 3D organoid (Fig. 3A). In 
another strain of BC organoid, we confirmed that stem cell marker expression showed the similar trend (Fig. 3B). 
These results suggest that 2.5D organoids could keep the characteristic of stemness in 3D organoids.

Tumorigenesis induced by BC 2.5D organoids.  In the previous study, we demonstrated that urine 
sample-derived BC organoids formed a tumor in vivo14. We therefore checked the tumorigenesis of the 2.5D 
organoids in vivo. After subcutaneous injection of the 2.5D cells into the back of immunodeficient mice, tumors 
of less than 1 cm in diameter were successfully formed after 6 weeks (Fig. 4A). Additionally, H&E staining of the 
formed tumors showed the histopathology of typical urothelial carcinoma (Fig. 4B). To characterize the cellular 
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components of the isolated tumor tissues, immunofluorescence staining was carried out and expression of CK7, 
CK20, and UPK3A was observed in the tumor tissues (Fig. 4C). These findings suggest that BC 2.5D organoids 
maintained the ability to form tumors in vivo similar to BC 3D organoids.

Figure 1.  Generation of dog bladder cancer (BC) 2.5D organoids. Schematic experimental design of a 
procedure for isolation of 2.5D organoid cells from 3D organoids and the analysis overview (A). Representative 
bright-field images of the process of generation of 2.5D organoids from 3D ones and serially passaged cells 
(B). Scale bar: 500 μm. Representative images and enlarged ones (Scale bar: 200 μm) for three different strains 
of 2.5D organoid cells and their parental 3D organoids (C). Comparison of cell attachment and proliferation 
between the 2.5D organoid media and 2D cell line media (D). Representative images at passage 0 and 1 and 
enlarged ones at passage 1 were shown. Scale bar: 500 μm.

https://doi.org/10.1038/s41598-020-66229-w
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Figure 2.  Characterization of BC 2.5D organoids. Expression of urothelial cell markers, CK7, CK20, and UPK3A 
in 2.5D organoid cells at early (4–8) and late passages (15–20) (A, n = 4). Scale bar: 50 μm. Comparison of cell 
proliferation at day 1, 3, and 5 between 2.5D organoid at the early and late passage and their original 3D organoid. 
Cell proliferation was assayed by Prestoblue cell viability reagent and shown as fold increase relative to day 1 (B, 
n = 6). Results were expressed as mean ± S.E.M. *P < 0.05 vs. 3D organoid. Expression of a basal cell marker, CK5 
in the 2.5D organoid cells and parental 3D organoids (C, n = 4). Scale bar: 50 μm. Plasticity of BC 2.5D organoids. 
Representative bright-field images of the reverted 3D organoids from 2.5D ones (D). Scale bar: 200 μm.

https://doi.org/10.1038/s41598-020-66229-w
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Response to anti-cancer drugs in BC 2.5D organoids.  Since it was shown that dog BC 3D organoids 
can apply the anti-cancer drug sensitivity test in our previous study14, we compare the response to anti-cancer 
drugs between 2.5D organoids and their original 3D organoids. After 72 h treatment with different concentrations 
of a microtubule inhibitor, vinblastine, a topoisomerase inhibitor, mitoxantrone, and a DNA-damaging agent, car-
boplatin, the cell viability of 2.5D organoid cells at early and late passages decreased in a dose-dependent manner 
and showed a similar responsive profile to their original 3D organoids (Fig. 5A,B), suggesting that our established 
2.5D organoids maintain the anti-cancer drug response profiles of their original 3D organoids and could be used 
for anti-cancer drug sensitivity test.

Figure 3.  Comparison of cancer stem cell markers, SOX2 and CD44 between BC 2.5D organoid at the early 
and late passage and their original BC 3D organoids. Dog urothelial carcinoma cells were used as 2D cell lines. 
Expression level of SOX2 and CD44 in 3D and 2.5D organoids from different strains (BC1; A and BC2; B) and 
2D cell lines was analyzed by quantitative real-time PCR (n = 4) and quantified based on the ratio of expression 
level to GAPDH. Data were expressed as mean ± SEM. *P < 0.05 vs. 3D organoid.

https://doi.org/10.1038/s41598-020-66229-w
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Discussion
In the current study, we for the first time established a new culture method of dog BC 2.5D organoids. These 
2.5D organoids at even early and late passage maintained several characteristics of their parental 3D organoids. 
The main findings of the current study are as follows: (1) 2.5D organoid cells were successfully isolated from 
the different strains of 3D organoids by using our identified 2.5D organoid media (Fig. 1). (2) 2.5D organoids 
maintained the expression of urothelial cells markers, CK7, CK20, and UPK3A (Fig. 2A) and their proliferation 
speed was significantly higher than their parental 3D organoids (Fig. 2B). (3) Expression level of a cancer stem cell 
marker, SOX2 in 2.5D organoids was lower than 3D organoids but much higher than 2D urothelial carcinoma cell 
lines (Fig. 3). (4) Injection of 2.5D organoid cells into NSG mice successfully generated tumors (Fig. 4). (5) 2.5D 
organoids showed a similar response to anti-cancer drugs compared with their parental 3D organoids (Fig. 5). 
Collectively, our data indicate that dog BC 2.5D organoids could be useful to investigate the mechanisms of dog 
BC and provide new insights for dog BC therapy.

Figure 4.  Tumorigenesis induced by BC 2.5D organoids. The trypsinized 2.5D cells (1×106) were 
subcutaneously injected into the back of NSG mice (n = 4). Six weeks later, the formed tumors were isolated 
and sectioned for H&E and immunofluorescence staining. Representative image of the formed tumors and their 
sizes (A). Representative images of H&E staining of the tumor tissue sections. The enlarged image is shown on 
the right. Scale bar: 500 and 100 μm (B). Characterization of the cellular components of the formed tumors. 
Expression of CK7, CK20, and UPK3A in the tumor tissues (C). Representative photomicrographs were shown. 
Scale bar: 50 μm.

https://doi.org/10.1038/s41598-020-66229-w
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The 3D organoid culture models have become charming stuff for assaying cancer cell proliferation, differen-
tiation, metabolism, tumor-stroma crosstalk, invasion, metastasis, and drug sensitivity screening17–21. The 3D 
culture system has thus gotten more attention as a tool to overcome the drawbacks of the 2D culture system for 
predicting the in vivo activities and by recapitulating the tumor microenvironment22. Although the 3D culture 
method has had a strong impact on the in vitro study of tumor biology and its therapeutic potential, it meets 
significant challenges. The Matrigel used in organoid culture is derived from animals with undefined hydrogel 
matrix compositions and has limited broad applications for the 3D organoid culture system in mechanistic and 
clinic-related studies besides its expensive cost and the long time it takes for seeding and growing the orga-
noids. To overcome some of these limitations, researchers have focused back on 2D monolayer culture systems. 
Recently, Puca et al., named the cells derived from 3D prostate organoids as 2D organoids because the cells main-
tained the purity and genomic profile of their parental 3D organoids and also the original tumor tissues at serial 
timepoints with a concordant genome-wide copy number alteration23. In addition, in the previous published 
2.5D organoid paper24, the cells were grown on top of a thick layer of ECM proteins such as Matrigel that allowed 
for tissue-specific differentiation of a variety of cells. Nevertheless, the culture system could not perfectly model 
the in vivo environment. Despite these limitations, 2.5D organoid assays are experimentally convenient and can 
induce cells to form a more physiological tissue architecture than conventional 2D cell culture systems. In the 
present study, we for the first time established a new gel-free culture method of dog BC cells, namely 2.5D orga-
noid culture, that is considered as a phase between 2D and 3D. The cells were originally derived from their paren-
tal 3D organoids, cultured in special media that differ from organoid media, and grown rapidly and efficiently 
for several passages (Fig. 1). Since our established gel-free 2.5D organoid could recapitulate most of the char-
acteristics of their parental 3D organoids, it is clearly different from previous models. Furthermore, our newly 

Figure 5.  Comparison of the anti-cancer drug sensitivity between BC 2.5D organoids at the early and late 
passage and their original 3D organoids. After the 2.5D organoids were trypsinized and seeded into 96 well 
plates, they were treated with vinblastine, mitoxantrone, and carboplatin for 72 h. Representative phase-contrast 
images of the treated 2.5D organoid cells at early passage were shown (A). Scale bar: 500 μm. Cell viability was 
assayed by the Prestoblue cell viability kit and 100% represents the cell viability of each control (B, n = 6). Data 
were presented as mean ± S.E.M.
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established method overcame the issues of high cost and long handling time of organoids. Therefore, we believe 
that our established method becomes a promising research model for studying patient-derived cancer cells.

The difference of the media components between the 2.5D and 3D BC organoids was presented in Table 1. The 
presence of 5% FBS and EGF in the 2.5D media promoted cell growth, migration, differentiation, and attachment 
to the bottom of culture dish25–27. Further, a TGF-β inhibitor, A83-01, was added to prevent fibroblast prolifera-
tion. Additionally, the 2.5D organoid culture media do not contain the strong stemness-supporting supplements, 
such as Wnt, Noggin, and R-spondin contained in the 3D organoids culture media. Other supplements such as 
nicotinamide and N-acetyl-L-cysteine were used to maintain the stemness. We suppose that these components 
are important for generating 2.5D BC organoid cells.

Characterization of the normal and neoplastic epithelium of the urinary bladder has been performed mainly 
using cytokeratins (especially CK7 and CK20) and UPK3A antibodies in human28 and dogs29. They are useful 
as diagnostic aids in carcinoma of the bladder and their co-existent metastasis14,29–31. Jiang et al. examined the 
expression of CK7 and CK20 in 26 primary and metastatic BC and found that all the samples were positive to CK7 
while 46% showed positive reactivity to CK2032. In other studies, the expression of CK20 in urothelial carcinomas 
was 29%33, 83%34, 89%,35, and 97%28. Interestingly, the urine RT-PCR assay of CK20 showed higher sensitivity and 
specificity for urothelial carcinoma36. UPK3A could be a highly specific marker for urothelial tumors in human 
primary and metastatic urothelial carcinomas37,38 as well as dog urothelial tumors29. Ramos-Vara et al. confirmed 
the expression of CK7, CK20, and UPK3A in normal dog urinary bladder and 72 dog BC and found that UPK3A 
is a highly specific and sensitive marker for dog BC, detecting 91% of the examined cases29. In our previous study, 
these three markers were clearly expressed in several BC 3D organoids of dogs and their xenograft-derived tumor 
tissues14. In the present study, they were expressed in 2.5D organoid cells (Fig. 2A) and xenografted tumor tissues 
(Fig. 4C), indicating that our established method could maintain the urothelial cellular components of their 
parental 3D organoids and that 2.5D organoid cells mainly consist of urothelial carcinoma cells.

The aggressiveness and prognosis of tumors mainly depend on the population of cancer stem cells (CSCs), the 
self-renewing and differentiating cells that mediate resistance to chemotherapy39–45. CSCs are heterogeneous and 
composed of several phenotypes with different markers, which renders it extremely difficult to target in an indi-
vidual patient. Therefore, identifying CSC-specific markers in each tumor is required for the establishment of tai-
lored therapies46. Several CSC markers such as CD44, CD133, ALDH1, SOX2, EZH1, PD-L1, CD67LR, BCMab1, 
BMI1, MAGE-A3, and YAP144,47–49 were known to be expressed in BC. The transcription factor, SOX2 was found 
to be a CSC marker for both human and mouse BC and was absent in normal urothelial cells50. Additionally, 
SOX2 is associated with tumor progression and prognosis in urothelial carcinoma51,52. On the other hand, Chan 
et al. showed that 40% of more than 300 BC samples contained CD44+ cells and were able to form tumors in vivo 
10–200 times than CD44- cells in mice53. On the contrary, the CD44+/CD24– cells were associated with a bet-
ter prognosis, indicating that this phenotype is not suitable for detecting CSCs in dog mammary carcinomas54. 
Nevertheless, there is no data showing the expression of CD44 or SOX2 mediates the tumor progression in dog 
urothelial carcinoma. In the present study, SOX2 was upregulated while CD44 was downregulated in dog BC 3D 
and 2.5D organoids compared with the 2D urothelial carcinoma cell lines (Fig. 3), suggesting that SOX2 is impli-
cated in the progression and proliferation of BC in dogs by increasing the stemness and could be considered as a 
novel and reliable CSC marker in dog urothelial carcinoma.

The difference in the drug sensitivities between 2D and 3D culture conditions has been reported in different 
cancers55,56, probably due to higher stemness and expression of multidrug resistance (MDR) proteins in the 3D 
conditions. In breast cancer, Imamura et al. assessed the difference in drug response between 2D and 3D culture 
of several breast cancer cell lines and primary cultured cells from a patient-derived xenograft and the patient’s 
original tumor tissues. They found higher resistance to paclitaxel and doxorubicin in the 3D cultured cells com-
pared with the 2D cultured ones, probably due to the decreased expression of cleaved-PARP, cleaved-caspase-3, 
and Ki-67, greater G0-dormant subpopulation, and hypoxic condition57. In BC, Myeong et al. showed that the 
effect of rapamycin and Bacillus Calmette-Guérin (BCG) was more exaggerated in the 2D cell culture than that 
in the 3D cell culture environment58. Additionally, RT4 cells, a BC cell line cultured under 3D conditions also 
showed higher resistance to doxorubicin compared with 2D cultures59. On the other hand, our established 2.5D 
organoids showed similar responses to anti-cancer drug treatment compared with 3D organoids. Since the trend 
of stem cell marker expressions in 2.5D organoid cells is more close to 3D organoid ones compared with 2D cell 
lines as shown in Fig. 3, it might cause the similar response to anti-cancer drugs. Nevertheless, further research is 
necessary for using 2.5D organoid cells instead of 3D organoids.

Conclusion
We for the first-time generated BC 2.5D organoids from 3D organoids. These 2.5D organoids showed con-
stant passages and higher proliferation speed than their parental 3D organoids. The 2.5D organoids demon-
strated the tumorigenesis in vivo and maintained the expression pattern of urothelial and bladder CSC markers. 
Furthermore, the 2.5D organoids showed a similar response to anti-cancer drugs with their parental 3D orga-
noids. These results suggest that our established gel-free 2.5D culture method can be used as a cheaper and less 
time-consumed research model instead of 3D organoid studies to investigate the mechanisms of BC diseased 
dogs. It also provides new insights into the development of dog BC therapy.

Data availability
The authors declare that all data supporting the findings of this study are available within the article.
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