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GSK3 has diverse functions, including an important role in brain pathology. In this paper, we address the primary functions
of GSK3 in development and neuroplasticity, which appear to be interrelated and to mediate age-associated neurological
diseases. Specifically, GSK3 plays a pivotal role in controlling neuronal progenitor proliferation and establishment of neuronal
polarity during development, and the upstream and downstream signals modulating neuronal GSK3 function affect cytoskeletal
reorganization and neuroplasticity throughout the lifespan. Modulation of GSK3 in brain areas subserving cognitive function has
become a major focus for treating neuropsychiatric and neurodegenerative diseases. As a crucial node that mediates a variety of
neuronal processes, GSK3 is proposed to be a therapeutic target for restoration of synaptic functioning and cognition, particularly

in Alzheimer’s disease.

1. GSK3 Signaling Pathway

Many diseases of the central nervous system are characterized
by changes in the structural organization of neuronal
networks, developmental abnormalities, or dysregulation
of signaling pathways, leading to altered brain plasticity
and, ultimately, neurodegeneration. The proline-directed
serine/threonine kinase, glycogen synthase kinase 3 (GSK3),
has been suspected to be a contributing factor in psychiatric
illness and age-associated neurodegenerative diseases for
some time [1]. The involvement of GSK3 misregulation
in a variety of brain abnormalities strongly supports its
pivotal role as a metabolic crossroads for controlling basic
mechanisms of neuronal function from brain bioenerget-
ics to establishment of neuronal circuits, modulation of
neuronal polarity, migration, neuronal proliferation, and
survival [2]. In particular, the role of GSK3 in phosphory-
lation of cytoskeletal proteins impacts neuronal plasticity,
as cytoskeletal constituents are involved in the development
and maintenance of neurites, and changes in the rate
of stabilization/destabilization of microtubules (MT) could

influence major cellular compartments of neurons, such as
dendrites, spines, axons, and synapses.

The metabolic function of GSK3 was first described
in glycogen metabolism, as GSK3 phosphorylates glycogen
synthase in response to insulin [3]. Since then, research has
identified a multitude of substrates and functions for this
enzyme. GSK3 exists in cells as two distinct gene products, «
and f3, which exhibit high homology in the catalytic domain
but differ in the N- and C-terminal sequences [4]. GSK3 is
ubiquitous throughout the animal kingdom [5] and is widely
expressed in all tissues with particularly abundant levels in
the brain [4], where the neuron-specific isoform GSK3p2 is
found [6].

GSK3 is unique because it is constitutively active, and
upstream signals downregulate its activity by phosphory-
lation at specific residues. The most important phospho-
residues are serine (Ser) 21 for GSK3a and Ser9 for
GSK3p, which inhibit its kinase activity [2, 7-10], while
phosphorylation on tyrosine (Tyr) residues (Tyr 216/279
for GSK3p and GSK3a, resp.), is required for its activation
[11-13]. The latter kind of phosphorylation is mediated by
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FiGure 1: Modulation of GSK3 activity by phosphorylation. Protein phosphatases 1 and 2A activate GSK3 by removing Ser9/21
phosphorylation. It has also been reported that phosphorylation in tyrosine residues by members of the receptor tyrosine kinase family
of cell surface receptors (RTKs) or by autophosphorylation may activate GSK3. On the other hand, signaling networks activate several
protein kinases, which may bring about phosphorylation of different residues and inhibition of GSK3.

diverse tyrosine kinases [14] or by autophosphorylation [15]
(Figure 1).

Multiple kinases can phosphorylate Ser21/9, including
Akt, protein kinases A and C, p70S6K, and p90RSK [16].
In contrast, protein phosphatases 1 (PP1) and 2A (PP2A)
dephosphorylate the inhibitory site of GSK3, resulting in
activation of the enzyme. In addition to the inhibitory
phosphorylation of GSK3f described above, an additional
inhibitory site at Ser389 has been detected in the brain, which
is phosphorylated by p38 mitogen-activated protein kinase
(MAPK) [17].

In addition to its phosphorylation state, GSK3 activity
may be regulated by proteolysis through disruption of the
axin-f-catenin complex [18] or N-terminal cleavage by the
calcium-dependent protease calpain [19]. GSK3 activity also
depends on its cellular localization. Although GSK3 is pre-
dominantly located in the cytosol, it is also present in nuclei
and mitochondria, where it is highly activated compared
with the cytosolic pool [20]. Nuclear GSK3 regulates the
expression of diverse genes via various transcription factors,
such as Ap-1, $-catenin, c-myc, and p53 [16]. Subtle control
of GSK3-mediated activation and inhibition is required
to ensure a proper balance among cell morphoregulation,
proliferation, and growth. Thus, prolonged inhibition of
GSK3 is associated with hypertrophic cell growth [21], while
sustained activation is associated with neurodegeneration
[22]. Unlike other kinases, the majority of GSK3 substrates
require a “priming” phosphorylation on Ser/Thr residues,
which is catalyzed by a protein kinase other than GSK3
[2, 10, 16)].

2. Implications of GSK3 Activity in Brain

In adulthood, both GSK3« and GSK3p are expressed in mice
adult brain and are particularly enriched in hippocampus,
neocortex, and cerebellum [23]. In rodent adult hippocam-
pus GSK3p is more abundant than GSK3« [24], and in aged
hippocampus GSK3p is elevated, but not GSK3« [25]. Two
splice variants of the GSK3f gene are found in neurons
from mouse, rat, and human: GSK381 and GSK3p2, the

latter being highly expressed during brain development
and specific to neurons [6, 26-28]. The two isoforms
are differentially involved in phosphorylation of different
substrates [29] and establishment of neuronal polarity and
axon guidance [2, 30-32].

The importance of GSK3 in brain function has been
established by several studies in transgenic mice, which
have shown different neurological defects depending of the
specific GSK3 isoform involved. While deletion of GSK3p is
lethal, heterozygote mice survive and present increased anx-
iety and reduced exploration [33-35]. Conversely, knockout
GSK3a mice are quite normal [36], although neuron-specific
knockout of GSK3« results in reduced anxiety, locomotor
activity, and aggression [37]. Overexpression of an inhibitory
phosphorylation-resistant form of GSK3 results in increased
locomotor activity and has been proposed as a model
of manic illness [38]. Moreover, overexpressed GSK3p in
dentate gyrus results in tau-dependent neurodegeneration of
this region [39]. In the brain, GSK3 regulates developmental
processes, including neurogenesis, migration, axon growth
and guidance, and synaptic plasticity [40], and its activity
is controlled through several signaling pathways activated by
growth factors, wingless (Wnt) proteins, G-protein-coupled
receptors (GPCR), -arrestin, among other proteins [41].

Abnormal activation of GSK3 has been associated
with several neurological and psychiatric disorders that
share developmental abnormalities and altered neurocir-
cuitry maintenance, such as schizophrenia, bipolar disorder,
autism, and Alzheimer’s disease (AD) [42—46]. GSK3 is
indeed a common therapeutic target for neuropsychiatric
drugs [41, 47].

3. Signaling Pathways Involved in
GSK3 Activity in Brain

GSK3 is a downstream component of several signaling
pathways in the brain. One of the most studied is the
phosphoinositide-3-OH kinase (PI3K)/Akt pathway, which
plays a crucial role in differentiation and survival of neuronal
and glial cells [48]. Growth signals, Ras proteins [49],
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FIGUrk 2: Canonical Wnt signaling and GSK3 regulation. Wnt activation trough Frizzled receptor (FzR) induces destabilization of the
protein complex composed of axin, adenomatous polyposis coli (APC) protein, -catenin, casein kinase (Ck1), and GSK3, which results in
GSK3 inhibition leading to the induction of 3-catenin/TCF target gene expression. When Wnt signalling is off the GSK3/axin complex is not
inhibited and f3-catenin phosphorylated and is degraded by the proteasome machinery.

or diminished phosphatase and tensin homolog (PTEN)
all activate the catalytic subunit of PI3K, which phos-
phorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to
phosphatidylinositol-3,4,5-trisphosphate (PIP3) and acti-
vates phosphoinositide-dependent protein kinase-1 (PDK-
1). Meanwhile, signaling proteins with pleckstrin homology
(PH) domains accumulate at sites of PI3K activation on the
inner surface of the plasma membrane through interactions
between their PH domains and the phospholipid products of
PI3K. Next, the serine-threonine kinase Akt/protein kinase B
is recruited and phosphorylated by PDK-1, which stimulates
the catalytic activity of Akt, in turn phosphorylating GSK3 to
downregulate its activity.

The canonical Wnt pathway is also classically involved
in negative regulation of GSK3. Although the role of Wnt
proteins in mature neurons remains largely unexplored,
recent data indicate that Wnts are important mediators of
neuronal function, neuronal morphology, neurogenesis, and
synaptic plasticity [50-52]. Interestingly, Wnt signaling has
also been implicated in neurological disorders associated
with developmental abnormalities, such as schizophrenia
[53], as well as in chronic neurodegenerative diseases, such
as AD [54]. Extracellular secreted Wnt proteins activate
Frizzled receptor and/or the low-density lipoprotein-related
protein 5 and 6 (LRP5/6) receptors, leading to the char-
acteristic activation of the Wnt canonical pathway [55].

Due to Frizzled activation, the Dishevelled mammalian
homolog Dvl1 is recruited, inducing destabilization of the
protein complex composed of axin, adenomatous polyposis
coli (APC) protein, -catenin, and GSK3p, which results
in GSK3p inactivation [56]. Inhibition of GSK3p favors
an increase in unphosphorylated S-catenin levels, allowing
interaction with members of the lymphoid enhancer factor/
T-cell factor (LEF/TCF) family of transcription factors and,
as a consequence, promoting the expression of cell survival
genes [57]. Although the molecular mechanism of GSK3
inhibition is not completely understood, Wnt signaling has
recently been reported to trigger the sequestration of GSK3
from the cytosol to multivesicular organelles, preventing its
interaction with cytoplasmic substrates [58] (Figure 2).

The outcome is different in the absence of the Wnt
stimulation, which may occur due to lack of Wnt ligands
or the presence of Wnt negative modulators, such as the
extracellular protein Dickkopf-1 (DKK1), which regulates
the canonical Wnt signaling, or the secreted Frizzled-related
protein, which modulates both canonical and noncanonical
Wnt signaling [59]. Under these circumstances, GSK3
is activated and able to phosphorylate its target proteins.
Several regulators also target [-catenin/GSK3f signaling.
For example, the product of disrupted in schizophrenia
1 (DISC1) gene inhibits GSK38 activity through a direct
physical interaction, causing stabilization of f-catenins.



DISCI1 loss-of-function in the dentate gyrus has been shown
to result in reduced neural progenitor proliferation and to
elicit hyperactive and depressive behaviors in mice [60], sug-
gesting the involvement of GSK3p overactivation in mental
illnesses, such as depression and schizophrenia. Moreover,
DISC1 function seems to be essential for neural progenitor
proliferation in embryonic brains and in the dentate gyrus
of adult brains through its ability to control GSK3 activity
and to maintain -catenin levels, which ultimately impacts
the neural circuitry [60].

GSK3p is also a downstream mediator of dopamine
signaling via the dopamine D2 receptor/f-arrestin 2/PP2A
complex. In this signaling pathway, Akt activates neuregulin-
1 signaling leading to inhibition of GSK3p activity [61].
Interestingly, neuregulin-1 has been also implicated as
schizophrenia risk factor [62].

In addition to the described role of GSK3 in neurodevel-
opment, it has been recently found the potentiation of Notch
signalling by PI3K through GSK3p inhibition [63]. The
Notch pathway has been implicated in controlling cell fate,
differentiation, development as well as synaptic plasticity,
learning and memory [64].

4. GSK3: A Switch for Cytoskeletal
Reorganization and Synaptic Plasticity

Changes in neuronal morphology and plasticity are affected
by GSK3-induced phosphorylation of proteins involved in
the modulation of MT and neurofilament stabilization,
which affect the cytoskeleton [65]. Among these proteins are
tau, microtubule-associated protein 2 (MAP2), microtubule-
associated protein 1B (MAP1B), collapsin response mediator
protein 2, APC, axin, neurofilaments, kinesin light chain, and
cytoplasmic linker protein [9, 16, 30, 31, 40, 53, 66—70].

The induction of polarity during neuronal development
is essential for the establishment of circuits that support
complex functioning [71, 72]. Subcellular location of the
inactive form of GSK3pf varies depending on the state
of neuronal polarization, as it moves from nonpolarized
neurites to the neurite tip that will form the axon at the
beginning of the differentiation process. Local inactivation
of GSK3 is important to allow axonal growth concurrent
with its activation in dendrites [73—76]. These mechanisms
support the establishment of neuronal polarity, which is
dependent on the stability and dynamism of the MT in each
neuronal compartment [40, 53]. The relationship between
GSK3f and the microtubule stabilizing protein complex
APC-mPar3, which are both present at the tip of the actively
growing nascent axon, is important for the establishment of
neuronal polarity. Shi and colleagues [74] have demonstrated
that spatially regulated GSK3 activity in hippocampal neu-
rons during development leads to axonal generation [74].
The inactivation of GSK3 at the nascent axon is required
for mPar3 targeting through APC and kinesin-mediated
transport at the plus end of the axonal MT [74].

Two further studies showed that GSK3p inhibition in
hippocampal neurons induces formation of multiple axons
[75, 76]. However, the role of GSK3 in neurodevelopment
remains only partially understood due to contradictory data;

International Journal of Alzheimer’s Disease

other studies have found that GSK3 inhibition induces
axonal spreading, reduces axonal elongation, and increases
growth cone size, but it does not induce the formation of
multiple axons [66, 68, 77-79].

One mechanism related to both synaptic reorganization
and MT dynamics is Wnt signaling [80-82], which directs
the growing axon towards the synaptic terminal. This process
involves the reduction of axonal growth speed and the
extension of axonal distal portions at the growth cone [83]
until arborization forms functional synaptic endings where
the presynaptic apparatus can be assembled. Transmembrane
proteins, such as neuroligin/neurexin and cadherins, are also
involved in this process and serve to regulate assembly on
both sides of the synapse [52, 84]. Wnt proteins have a
fundamental role in synapse formation, acting as retrograde
signals that regulate assembly of the presynaptic apparatus
[84]. Specifically, Wnt7a has a dual function in synaptic
differentiation, promoting axon remodeling and increasing
incorporation of synaptic proteins [66, 84]. These effects
are linked to changes in the reorganization and dynamics
(stabilization-destabilization) of MT, which are achieved
through the canonical Wnt signaling, independent of the
transcription pathway, in which GSK3p activity is inhibited,
and, consequently, the phosphorylation state of the axonal
MAPIB is reduced [84-86]. The addition of Wnt7a to
neuronal cultures reduces MAP1B phosphorylation and
induces MT depolymerization from growing areas of the
axon, promoting axonal growth cone enlargement and
axonal spread [51, 66, 87]. The classical inhibition of GSK3p
by lithium chloride (LiCl) reproduces the effects of Wnt7a,
inducing axonal arborization and widening and enlargement
of the growth cone through remodeling of axonal MT during
postnatal development of cerebellar cells [52, 87, 88]. On
the other hand, it has been shown that Wnt7a increases the
level of Synapsin I (Synl), which is known to be involved
in synapse formation, as well as in the maturation and
transport of synaptic vesicles in areas of growth [87, 89, 90].
Accumulation of Synl promotes both axonal remodeling and
synaptogenesis during cerebellar development [87] and is
mimicked by LiCl treatment [66, 88, 91].

GSK3 is also present in mature synapses [92], where its
activity, along with that of cyclin-dependent kinase (Cdk5),
participates in the recovery of synaptic vesicles during high
neuronal activity. During this process, Cdk5 phosphorylates
the GTPase dynamin I, and then GSK3p phosphorylates
the same dynamin I [93]. Both phosphorylation events are
necessary and sufficient to trigger and maintain activity-
dependent bulk endocytosis of vesicles [94].

As a result of controlling different morphofunctional
aspects of adult brain plasticity, GSK3 also plays a role
in long-term potentiation (LTP) [95, 96] and long-term
depression (LTD). LTP might be considered the electro-
physiological correlate of learning based on its synaptic
mechanisms and long-lasting experience-dependent cortical
circuits [97-99]. On the other hand, LTD has been suggested
as a mechanism to enhance the signal-to-noise ratio of
sensory input from stored memories [97]. Some studies have
shown that GSK3p inhibition upregulates and maintains LTP
[24, 50, 91, 100-102], while GSK3f remains active during
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LTD [101]. In rat hippocampus, GSK3[ overactivation
has been shown to impede LTP and affect synapses by
decreasing both synaptic transmission and release of the
presynaptic neurotransmitter glutamate [91]. This is reg-
ulated by proteins associated with synaptic vesicles, such
as Synl [103-108], which is considered to be a synaptic
plasticity marker [109, 110]. GSK3p activation inhibits SynI
expression after LTP induction and simultaneously disrupts
Synl clustering, which results from elevated neuronal activity
[91].

An other evidence that underscores the importance
of GSK3 in brain plasticity is derived from experiments
conducted in rat hippocampus by Gémez de Barreda and
colleagues. The authors found that inhibitory phospho-
rylation of GSK3 at Ser9 increased at the time of LTP
induction was maintained for up to one hour in vivo and
was significantly higher in the hippocampal CA1 and dentate
gyrus subregions, which are involved in learning and mem-
ory acquisition [39]. Transgenic mice overexpressing GSK3
showed reduced LTP induction [100]. These data confirm
the significant participation of GSK3 in LTP regulation by
enabling LTP when its catalytic activity is inhibited and
preventing LTP when it is overactive. The inhibition of the
two main signaling pathways (insulin/PI3K and Wnt) which
induced an activation of GSK3 also prevents the induction of
LTP [50, 64, 111-113].

GSK3 has been shown to induce LTD through presynap-
tic and postsynaptic mechanisms. In the presynaptic neuron,
upregulation of GSK3 decreases the expression of Synl [91],
which has been linked to a decrease in glutamate release
[103]. In the postsynaptic neuron, GSK3 activation causes
changes in levels of synapse-associated proteins [114, 115],
evident as downregulation of the NR2A/B subunits of
NMDA receptors and of the scaffolding protein postsynaptic
density 93 (PSD93) [24, 91]. In addition, a transient activa-
tion of NMDA receptors and endocytosis of AMPA receptors
occurs [116, 117], leading to the loss of GSK3 inhibition due
to insufficient Ca?* entry. This GSK3 inhibition is mediated
by NMDA-PI3K-Akt signaling [112, 118]. Over-activity of
GSK3 may also induce MT destabilization in dendrites and
axons [80, 86, 119] (Figure 3).

Overexpression of GSK3 in mice prevents the induction
of LTP [100] and causes spatial memory deficits [120]. These
data suggest that GSK3f plays an essential role in memory
formation through three general processes: (i) phosphoryla-
tion of substrates involved in synaptic remodeling, necessary
for the establishment of new connections, (ii) turnover
of cytoskeletal proteins such as MAPs, actin, and tubulin,
promoting disassembly, a condition required for a proper
synaptic reorganization, and (iii) involvement in the two
major forms of synaptic plasticity in the brain, LTP, and
LTD [121].

In summary, the functional consequence of GSK3 over-
activation in mature neurons is inhibition of LTP and
induction of ITD [101, 121], which could be linked to
deficiencies of memory and learning characteristic of some
neurological diseases, such as AD.

5. GSK3 and Alzheimer’s Disease

AD represents a serious epidemiological problem, as it is now
recognized as the most common age-related neurodegenera-
tive disease. Evidence supports a role for GSK3 in producing
some of the characteristic hallmarks of AD: extracellular
accumulation of amyloid-f protein (Af) and intraneuronal
neurofibrillary tangles (NFTs) composed of hyperphospho-
rylated forms of tau and inflammatory markers [122]. All
of these effects contribute to synaptic and neuronal loss and
memory decline [123, 124].

It has been proposed that overactivation of GSK3 in
AD leads to inhibition of LTP and may partially explain
the learning and memory deficits present early in this
neurodegenerative disorder. On the other hand, changes in
GSK3 activity may be a molecular link between the two
main histopathological markers: A overproduction and tau
hyperphosphorylation [39, 46, 125, 126].

The NFTs that accumulate in AD are anomalous filamen-
tous structures composed mainly of abnormal, hyperphos-
phorylated forms of tau protein [127]. Hence, numerous
studies have focused on identification of the protein kinases
and phosphatases regulating tau phosphorylation in vivo.
GSK3p was recognized as a primary kinase involved in
tau phosphorylation, as was apparent from the first studies
that termed it tau protein kinase-I [128]. Thus, GSK3p
has been identified as one of the major enzymes mediating
tau hyperphosphorylation at the residues implicated in
neurodegenerative tauopathies, including AD [129].

Normally, tau protein contains a total of 85 phosphory-
lable sites: 45 Ser, 35 Thr, and 5 Tyr. Of these, 40 have been
identified as phosphorylated in insoluble tau in AD brain: 28
Ser, 10 Thr, and 2 Tyr, and GSK3p can phosphorylate 23 of
these sites [130]. Although GSK3/5 commonly needs priming
phosphorylation of tau, three sites were recently found that
can be phosphorylated by GSK3f alone, without priming:
Ser396, Ser400, and Ser404 [131]. Furthermore, initial
phosphorylation of the Ser214 by cAMP-dependent protein
kinase was shown to lead to the rapid modification of four
additional sites by GSK3f [131]. Studies in transgenic mouse
models have shown that overexpression of GSK3p results
in neurodegeneration and have unequivocally demonstrated
that GSK3f phosphorylates tau in AD-related phospho-
epitopes in vivo [93, 132, 133]. Moreover, co-overexpression
of tau and GSK3p synergistically increased tau phosphoryla-
tion and induced neuronal death in a transgenic model in
Drosophila [134] while GSK3 inhibition reduces the phos-
phorylation and aggregation of tau [135, 136]. Similarly, tau
hyperphosphorylation and neurodegeneration after GSK3
overexpression are exacerbated by co-overexpression of tau
with mutations characteristic of frontotemporal dementia
with parkinsonism, associated with chromosome 17 (FDTP-
17). This study also showed that tauopathy progression could
be prevented by administration of a GSK3f inhibitor at the
first signs of pathology [133]. Tau knockout mice overex-
pressing GSK3f3 show reduced hippocampal degeneration,
indicating that tau partially contributes to the pathology
observed in mouse brain [39]. Finally, GSK3f inhibitors
decrease tau phosphorylation and amyloid deposition in
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a double transgenic mouse model coexpressing human
mutant amyloid precursor protein (APP) and tau [137].
In brains of AD patients, GSK3f colocalizes with NFT
[138], and active GSK3 is present in neuronal cytoplasm
of neurons with tangle-like inclusions when abnormal tau
hyperphosphorylation begins [139]. In fact, polymorphisms
in GSK3 were recently reported to be risk factors for late-
onset AD [140, 141].

Evidence suggests that GSK3 regulates APP processing
[126, 142], leading to increased production of ASS. Neuronal
exposure to Af increases GSK3p activity through PI3K inhi-
bition [143], causing a positive feedback loop. Af peptide
can regulate GSK3 activity, acting as an insulin receptor
antagonist and preventing activation of PI3K and Akt. In
turn, the absence of activated Akt prevents the inhibitory

phosphorylation of GSK3, increasing its activity [144]. Af
seems to interfere with the Wnt canonical pathway as well,
leading to increased GSK3 activity [145]. Thus, deregulation
of GSK3 in AD might be due, in part, to alterations in insulin
and Wnt signaling. In the canonical Wnt signaling pathway;,
the gene for LRP6 coreceptor has been identified as a risk
factor for late-onset AD in ApoE4-negative individuals [146].
Interestingly, it has been suggested that the Wnt pathway
might be inhibited by ApoE protein, which likely binds to the
coreceptor LRP5/6 [147]. Moreover, the ApoE4, implicated
in sporadic AD [148], may activate GSK3 [46, 149].

Wnt dysregulation has also been implicated in AD.
For example, protein Dickkopf-1 negatively modulates the
canonical Wnt signaling pathway and thus activates GSK3.
DKKI1 colocalizes with NFT and dystrophic neurites in
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degenerating neurons of AD brains [150]. Moreover, using
Wnt and PI3K signaling inhibitors, cultured cortical neurons
have shown increased tau phosphorylation and morphologi-
cal changes mediated by GSK3/3 [151]. Taken together, this
evidence suggests an important role for GSK3 in AD and
supports the notion that GSK3 could be the link between
amyloid and tau pathology [46] (Figure 4).

6. Concluding Remarks

GSK3 has attracted a great deal of interest due to the
myriad of processes it controls. GSK3 is implicated in
many fundamental functions, ranging from bioenergetics to
developmental and plasticity events, particularly in the brain.
Altered GSK3 activity in the brain negatively influences
neuronal structure, which in turn may affect maintenance
of neuronal circuits that support cognitive function. The
use of therapeutic drugs to control GSK3 activity has been
hampered by the variety of substrates targeted by this enzyme
and the long-term ramifications of its downstream signaling.
Future studies could focus on identifying spatiotemporal
expression patterns of specific GSK3 isoforms in the brain
with the goal of developing specific inhibitors for clinical use
in devastating neurological diseases, such as AD.
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