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Extrapolating Parametric Survival Models in

Health Technology Assessment: A Simulation
Study

Daniel Gallacher , Peter Kimani , and Nigel Stallard

Extrapolations of parametric survival models fitted to censored data are routinely used in the assessment of health
technologies to estimate mean survival, particularly in diseases that potentially reduce the life expectancy of patients.
Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) are commonly used in health technol-
ogy assessment alongside an assessment of plausibility to determine which statistical model best fits the data and
should be used for prediction of long-term treatment effects. We compare fit and estimates of restricted mean sur-
vival time (RMST) from 8 parametric models and contrast models preferred in terms of AIC, BIC, and log-likeli-
hood, without considering model plausibility. We assess the methods’ suitability for selecting a parametric model
through simulation of data replicating the follow-up of intervention arms for various time-to-event outcomes from 4
clinical trials. Follow-up was replicated through the consideration of recruitment duration and minimum and maxi-
mum follow-up times. Ten thousand simulations of each scenario were performed. We demonstrate that the different
methods can result in disagreement over the best model and that it is inappropriate to base model selection solely on
goodness-of-fit statistics without consideration of hazard behavior and plausibility of extrapolations. We show that
typical trial follow-up can be unsuitable for extrapolation, resulting in unreliable estimation of multiple parameter
models, and infer that selecting survival models based only on goodness-of-fit statistics is unsuitable due to the high
level of uncertainty in a cost-effectiveness analysis. This article demonstrates the potential problems of overreliance
on goodness-of-fit statistics when selecting a model for extrapolation. When follow-up is more mature, BIC appears
superior to the other selection methods, selecting models with the most accurate and least biased estimates of RMST.
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Introduction

Background

In England and Wales, when a medical device or phar-
macological developer wishes to get a technology approved
for a new indication, they submit a report containing
clinical and cost-effectiveness evidence concluding that
their technology will offer cost-effective benefit to the
National Health Service (NHS). Usually a submission
will include an economic model, which captures the ben-
efit of the intervention across a patient’s lifetime through
the estimation of the mean survival time. Depending on

the indication, this model may be required to extrapolate
beyond the observed data to predict the future performance
of the intervention and its comparators, as the data will
often be heavily censored due to limited trial follow-up. The
optimal extrapolation from data for time-to-event out-
comes, such as overall survival, is routinely a point of
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contention within the decision making process and is often
influential on the conclusion of the appraisal.

The National Institute of Health and Care Excellence
(NICE) is responsible for deciding which treatments
should be reimbursed by the NHS. Many have their clin-
ical and cost-effectiveness assessed through the single
technology appraisal (STA) process, where evidence sub-
mitted by a pharmaceutical company is appraised by an
independent evidence review group prior to a discussion
and decision by a NICE technology appraisal committee.
The committee will consider whether the treatment is
both clinically and cost-effective, with the latter assessed
through the incremental cost-effectiveness ratio (ICER),
which divides the incremental benefit of the new therapy
by the incremental cost. The ICER can vary consider-
ably based on the time-to-event extrapolation. If the
most plausible ICER falls below certain thresholds, the
treatment would usually be considered cost-effective and
be recommended for reimbursement.

A recent review1 reported that the time horizon of
economic models included in submissions to the NICE
for cancer interventions in 2017 was on average 31.4 y
(range, 10–100 y) and 15 times the median follow-up
period, demonstrating the importance of reliable and
robust methods for extrapolation.

Methods for Model Selection

The most common approach to extrapolation in NICE
appraisals is to select a single model from a range of
parametric models (e.g., exponential).1,2 Candidate mod-
els are usually compared on 2 metrics: on the goodness
of fit to the observed data and on the plausibility of the

extrapolations. This article considers the former, since
the plausibility of extrapolations can only objectively be
demonstrated when suitably mature data are available.
Plausibility would usually be assessed through a compar-
ison of predictions of the percentage of patients who
remain event free following a certain length of follow-up.
Ideally, these assessments of plausibility are made com-
paring to relevant studies with longer observed follow-
up, but if this is unavailable, then it is necessary rely on
the opinions of clinical experts. While expert opinion
from clinicians and experienced analysts may offer valu-
able insight into the plausibility of certain models and
their extrapolations compared to known patterns of dis-
ease, these opinions may not always agree, especially
when considering novel therapies.

Goodness of fit is often assessed visually (e.g., com-
paring models to Kaplan-Meier curves or cumulative
hazard plots). While assessing visual fit may sometimes
rule out particular models, it can be difficult to distin-
guish between most models due to their similar appear-
ance, justifying a need for a less subjective approach.
Hence, there is increased reliance on statistical compari-
sons to assess the goodness of fit.

A well-established measure of model fit is the -2�log-
likelihood statistic, where a lower score suggests a better
fit. The statistic can compare 2 nested models in a formal
hypothesis test, the likelihood ratio test. In this article,
we compare both nested and nonnested models and so
can only perform a simple comparison of the log-
likelihood statistics. Figure 1 visualizes the nesting rela-
tionships for the models that we consider in this study.
When comparing models with a large number of poten-
tial covariates, relying solely on the log-likelihood can
result in the selection of an overfitted model. Although
survival extrapolation models often exclude covariates,
they may have different numbers of parameters due to
the different parameterizations of the survival models.
Models with more parameters may be at greater risk of
overfitting.
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Figure 1 Nesting relationships among models fitted in this simulation study.
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Akaike’s information criterion (AIC) expands on the
log-likelihood. AIC includes a penalty based on the num-
ber of parameters in the model, with the aim of selecting
a parsimonious model, rather than the best-fitting model.
When presenting his information criterion, Akaike demon-
strated that relying on the maximized log-likelihood
alone could bias the model selection but that this bias
was approximately equal to the number of estimable
parameters under certain conditions.3 The AIC is there-
fore defined as

AIC= � 2log Lð Þ+2K, ð1Þ

where L is the likelihood and K the number of para-
meters in the model, meaning that the model with the
lowest AIC is the closest of the candidate models to the
true model.

The Bayesian information criterion (BIC), derived by
Schwarz,4 uses a different weighting for the number of
parameters, multiplying the penalty of the AIC by the
natural logarithm of n to give

BIC= � 2log Lð Þ+2Klog nð Þ, ð2Þ

where n is either more commonly the number of obser-
vations, as in this article, or the number of events as
recommended by Volinsky and Raftery.5 While the log-
likelihood, AIC, and BIC can often agree on the best
model, moving from log-likelihood to AIC to BIC will
inevitably lead to an increased tendency to select a model
with fewer parameters due to the increasing penalty.

Survival extrapolations influence the cost-effectiveness
assessment through their estimation of either mean survival

or restricted mean survival time (RMST). These outcomes
are equivalent to life years used by NICE, which are scaled
by quality-of-life utility values to estimate treatment effect
in quality-adjusted life years. RMST is the area under the
survival model up to the time horizon of the economic
model from the relevant STA. If a survival model predicts
that all patients will have experienced an event on or before
the upper bound of time applied in the RMST, then the
RMST will equal the mean survival time.

Objectives

NICE technical support document (TSD) 14 contains rec-
ommendations issued by the NICE decision support unit
for extrapolations of individual patient survival data.6 In
its recommendations, TSD14 favors AIC and BIC over the
use of the log-likelihood statistic, alongside consideration
of the plausibility of extrapolations. Consequently, the
review by Gallacher et al.1 found that 100% (n = 28) of
cancer STAs in 2017 used at least 1 of AIC and BIC when
selecting a model for survival extrapolation. However, it is
unclear whether using AIC or BIC actually provides a ben-
efit over log-likelihood in terms of accuracy of mean sur-
vival estimation, motivating this work.

The aims of this article are as follows:

(a) to demonstrate the performance of fitting para-
metric curves to trial data when estimating RMST,

(b) to identify the dangers of selecting the incorrect model
for extrapolation when estimating RMST, and

(c) to identify whether there is any distinction between
AIC, BIC, and log-likelihood when estimating RMST.

Method

To compare the 3 model selection methods in terms of
extrapolation accuracy, we conducted a simulation study,
using the AIC, BIC, and log-likelihood to select a model
to many simulated data sets, following aims, data generat-
ing mechanisms, estimands, methods and performance mea-
sures (ADEMP) reporting recommendations (Table 1).14

Data were generated from exponential, Weibull, and gener-
alized gamma distributions, chosen as these parameteriza-
tions routinely feature in health technology appraisals and
contain different numbers of parameters capturing varying
degrees of flexibility of the hazard function.1 The para-
meters of these distributions and patterns of follow-up were
based on 4 completed trials. The aim was not to generate
scenarios that reproduced data identical to each of the trials
or their hazard curves but to obtain 12 scenarios where the
parameters came from trials and could be considered repre-
sentative of evidence included in technology appraisals.

Figure 2 Observed and predicted cumulative hazard for
pembrolizumab and dacomitinib trials.
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We selected 4 trials that were pivotal in NICE STAs,
covering a range of interesting scenarios, each with a dif-
fering combination of sample size, follow-up time, and
number of events observed,7–10 focusing on their experi-
mental arms. A summary of the trials is in Table 2,
including the time horizon of each appraisal’s economic
model used as the upper bound for estimating RMST.
Additional detail of the parameters used to generate each
scenario can be found in Supplemental Table S5. They
are typical of phase III trials used in NICE technology
appraisals, although characteristics will vary due to
differences in diseases, prognosis, and outcome. The
ARCHER 1050 trial had 103 overall survival (OS)
events observed from 227 patients with epidermal growth
factor receptor (EGFR)–mutated non–small cell lung
cancer receiving dacomitinib in 46 months of follow-up,
demonstrating an increasing hazard rate over time. In
KEYNOTE 045, 437 progression-free survival (PFS)
events were experienced across 542 second-line patients
with advanced urothelial cancer in 18 months of follow-
up, with the pembrolizumab PFS hazard rate clearly
higher in the first 2 months of follow-up than for the
remaining follow-up (Figure 2). APHINITY used the
outcome of invasive disease-free survival, with 171 of the
2400 patients who had previously had human epidermal
growth factor receptor 2 (HER2)–positive breast cancer
experiencing events in the pertuzumab + trastuzumab
arm in 48 months, with a constant rate of events observed.
MURANO captured 15 OS events in 194 venetoclax +
rituximab patients with relapsed or refractory chronic lym-
phocytic leukemia in 38 months of follow-up, demonstrat-
ing a constant or decreasing hazard rate (Figure 3).

The 4 trials could be divided into 2 categories: trials
where median survival was reached according to the
Kaplan-Meier plot (dacomitinib/ARCHER 1050 and
pembrolizumab/KEYNOTE 045) and those where the
median was not observed (pertuzumab/APHINITY and
venetoclax/MURANO).

The Kaplan-Meier curve for the novel intervention
from each trial was digitized according to the method
described by Guyot et al.11 to re-create individual patient-
level data (IPD). Three different parametric models were
fitted to each set of IPD to capture a variety of hazard
profiles while maintaining a manageable number of simu-
lation scenarios. Exponential, Weibull, and generalized
gamma distributions were chosen due to their varying
number of parameters and hazard flexibility. All models
were fitted using Broyden-Fletcher-Goldfarb-Shanno
optimization. The parameters from each of these 12 fitted
models (i.e., 12 scenarios) were first used to calculate the
‘‘true’’ RMST for each scenario and second to generate
10,000 sets of time-to-event data via the rexp(), rweibull(),
and rgengamma() commands included within the stats
and flexsurv packages in R.12 Patients were simulated as
being more likely to be recruited later in the recruitment
duration, imitating the expanding recruitment of multi-
center trials as more centers join a trial over time.

From each simulated set of data, 2 data sets were then
created: the first with complete data where every individ-
ual had an observed event time and the second with
event times censored for some individuals, mirroring the
follow-up pattern observed in the actual trial. Censoring
from incomplete follow-up was modeled by simulating a
recruitment time for each patient from an exponentially

Table 1 Summary of Study following ADEMP Guidelines14

ADEMP Category Response

Aims To demonstrate the performance of fitting parametric curves to time-to-event data when
estimating restricted mean survival time (RMST).

To identify the dangers of selecting the incorrect model for extrapolation when estimating
RMST.

To identify whether there is any distinction between Akaike’s information criterion (AIC),
Bayesian information criterion (BIC), and log-likelihood when estimating RMST.

Data-generating mechanism Data were repeatedly sampled from exponential, Weibull, and generalized gamma
distributions using parameters estimated from fitting models to re-created data from 4
phase III trials using a frequentist framework.

Methods Data were censored using trial-specific parameters to replicate the maturity of data when the
technologies were considered for reimbursement. Eight parametric curves were fitted to the
data, and their RMST estimates and goodness-of-fit statistics were captured. The models
preferred by each of AIC, BIC, and log-likelihood were compared.

Estimand RMST
Performance measures Bias, empirical SE, mean-squared error, Monte-Carlo standard error

ADEMP, aims, data generating mechanisms, estimands, methods, performance measures.
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increasing probability density function based on the
recruitment period reported for each trial and a fixed
trial end time given by the maximum follow-up time,
with all patients without an event observed before this
time considered censored. Additional censoring from loss
to follow-up or withdrawal was modeled by generating
censoring times for each patient from an exponential dis-
tribution with a low hazard rate.

Analysis of Simulated Data

To each simulated set of data, we attempted to fit 8 para-
metric models: exponential, Weibull, log-normal, log-
logistic, gamma, generalized gamma, Gompertz, and
generalized F. The first 7 models feature routinely in
technology appraisals,1 and the generalized F can be con-
sidered a generalization of the generalized gamma.13 The
estimated value of RMST was recorded for each para-
metric model. Spline models were not included due to
the additional specification required in selecting the opti-
mal spline model. The best-fitting model in each simula-
tion according to each of AIC, BIC, and log-likelihood
was selected and the corresponding RMST recorded.
Standard errors and confidence intervals around the
RMST estimates are not easily obtained from fitted mod-
els and do not capture the uncertainty around the suit-
ability of the survival curve. Reliance on these estimates
of uncertainty that originate from the observed data may
underestimate the structural uncertainty. For example, a
confidence interval from a Weibull model will ignore the
possibility the data could be better represented by a log-
logistic model, which may only become clear once data
from extended follow-up are available. The code used to
simulate, fit models, and store estimates can be accessed
at https://github.com/daniel-g-92/goodness-of-fit-paper1.

Performance Measures

Bias of RMST estimates from the models was evaluated
through calculation of the absolute and percentage dif-
ference of both the mean and median estimated RMST
from the RMST value of the source distribution. Mean
squared error (MSE), empirical standard error (EmpSE),
and Monte-Carlo standard error (MCSE) of RMST esti-
mates for all models were also measured, as defined by
Morris et al.14 Coverage probability could not be esti-
mated without confidence intervals of the individual
RMST estimates. Instead, we provide an alternative
measure, reporting the percentage of RMST estimates
that fall within 10% of the target RMST value.

Results

Model Fitting

Only results from models that had successfully fitted
without error or convergence warning were included in
the analysis (Suppl. Table S1). Successful model-fitting
rates were generally high, with only the trial scenarios of
the generalized F and generalized gamma models having
a success rate below 80%. The generalized F distribution
often failed fitting to the pertuzumab data, fitting suc-
cessfully in as few as 17% of runs. Due to the occasion-
ally skewed distribution of the RMST estimates, the
mean and median RMST estimates from the simulation
runs are both presented. The Monte-Carlo standard
errors were consistently minor compared to the RMST
estimates, suggesting the number of simulations was suit-
able (Table 3 and Suppl. Table S4).

Model Extrapolation without Selection

There were similarities between the results within the
groups based on whether median survival times had been
observed (dacomitinib/ARCHER 1050 and pembrolizu-
mab/KEYNOTE 045) or not (pertuzumab/APHINITY
and venetoclax/MURANO), and so for brevity, we describe
only results for pembrolizumab and pertuzumab trials here,
with results for the other trials included in the supplemen-
tary information.

Pembrolizumab/KEYNOTE 045. For the exponential
and Weibull scenarios of complete follow-up, most mod-
els fitted equivalently well. The exponential, Weibull,
gamma, generalized gamma, Gompertz, and generalized
F were all accurate, producing estimations of RMST
within 10% of the true RMST in at least 80% of simula-
tions and having the lowest EmpSE (Suppl. Table S4).
Despite the maturity of the data, the log-normal and log-
logistic models produced biased estimates of RMST for
these scenarios, with the RMST estimates falling within
10% of the true value in 4.4% of simulations or fewer.
The mean estimates of RMST from the log-normal and
log-logistic models overestimated by as much as 70% (log-
logistic fitted to Weibull pembrolizumab data; Suppl.
Table S4), which corresponded to a difference of 4 months
of additional overestimated benefit. MSE was low for all
models apart from log-normal and log-logistic.

In the generalized gamma scenario of complete
follow-up, the estimates of RMST showed considerable
variation, with the generalized gamma and generalized F
models being the best fitting, with the least bias, lowest
MSE and EmpSE, and the most estimates of RMST

42 Medical Decision Making 41(1)
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within 10% of the true RMST. The log-logistic, log-nor-
mal, and Gompertz models were the worst fitting, with
3% to 7% of simulations producing estimates of RMST
within 10% of the true value and their mean estimates of
RMST underestimating by 28% to 30%. The gamma
and exponential curves had extremely high MSEs and
produced the most heavily biased estimates.

For the exponential scenario of trial follow-up, the
exponential model was the most reliable predictor of
RMST, with estimates falling within 10% of the true
value in 86% of simulations but was closely followed by
the Weibull (84%) and gamma (85%) models. The esti-
mates from each of these 3 models were unbiased and
associated with the lowest MSE and EmpSE. The log-
normal and log-logistic were again biased with their
mean estimates of RMST overestimating by 62% and
82%, respectively, and were associated with considerably
higher MSE and EmpSE. This poor performance of the
log-normal and log-logistic models was repeated in the
Weibull scenario of trial follow-up, where the respective
mean estimates of RMST were 93% and 114% over.
However, the Gompertz model also produced biased esti-
mates of RMST in the Weibull scenario, overestimating
by 151%. Here the Weibull model was the least biased,
but with the gamma model having slightly lower MSE
and EmpSE.

All models produced estimates of RMST that varied
highly for the generalized gamma scenario of trial follow-
up. MSEs for all models were considerably higher than
for the Weibull and exponential scenarios. The general-
ized gamma fit produced the least biased and most accu-
rate estimates of RMST, with its estimates falling within
10% of the true value in 26% of simulations and mean
estimate of RMST only 5% higher than the true value.
The generalized F model was second best with slightly
higher bias (+13%) and just 24% of estimates falling
within the 10% range. For most other fitted models, 0%
of RMST estimates fell within the 10% range. The mean
RMST estimates for exponential, Weibull, log-normal,
log-logistic, and gamma models all severely underesti-
mated RMST, ranging from 39% to 57% below the true
value. In contrast, the estimate from the Gompertz model
overestimated by 152%.

Pertuzumab/APHINITY. For all 3 scenarios of complete
follow-up, the majority of the models produced accurate
estimates of RMST. The worst-fitting model was the log-
normal, but even in the exponential scenario, where it
was the least accurate, its estimates of RMST still fell
within 10% of true value in 98% of simulations, and its
mean RMST estimate was 8% less than the true RMST.

In the pertuzumab scenarios of full follow-up, which had
a much larger sample size than the pembrolizumab trial,
the magnitude of the bias from any fitted model never
exceeded 7%.

For the exponential scenario of trial follow-up, the
exponential model was superior, with 0% bias, the low-
est MSE and EmpSE, and with 99% of RMST estimates
falling within 10% of the true value. The least accurate
models were the Gompertz, generalized F, and log-nor-
mal, with 13%, 3%, and 0% of their respective estimates
falling within 10% of the true RMST. Log-normal
RMST estimates were the most biased, with the mean
estimate 26% above the true value.

The models for the Weibull and generalized gamma
pertuzumab scenarios were almost identical (Figure 3)
and hence had similar results. The Gompertz, general-
ized F, and log-normal models performed poorly across
these 2 scenarios, with less than 8% of the estimates fall-
ing within 10% of the true RMST and bias of up to
38%. The Weibull, generalized gamma, and generalized
F models were unbiased in both scenarios. The gamma
curve was associated with the lowest MSE and EmpSE
and the highest percentage of estimates falling within the
10% range. Both MSE values and EmpSE were much
higher for all models in the trial scenarios than the sce-
narios of complete follow-up.

Model Selection

For all scenarios of complete follow-up, the models pre-
ferred by each of AIC, BIC and log-likelihood all pro-
duced near identical, unbiased estimates of RMST
though BIC was slightly superior in the majority of cases

Figure 3 Observed and predicted cumulative hazard for
pertuzumab and venetoclax trials.
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(Table S4). For most scenarios of complete follow-up,
the methods had similar estimates of MSE, MCSE and
EmpSE. Only in the exponential scenario of pertuzumab
were the methods distinguishable, with models preferred
by BIC having the lowest EmpSE and MSE.

Pembrolizumab/KEYNOTE 045. In the exponential sce-
nario of trial follow-up, AIC selected the exponential
model in 71% of simulations, compared to 96% for BIC
and 0% for log-likelihood (Figure 4a). Models preferred
by BIC were associated with the least bias (+3%), had
the lowest MSE, and had the most estimates falling
within the 10% range (84%). Models preferred by log-
likelihood had the highest bias of the 3 selection methods
(+10%) and the lowest percentage of estimates within
the 10% range (61%) but the lowest EmpSE. Models
preferred by BIC were only slightly outperformed by
selection of the exponential model each time.

For the Weibull scenario of trial follow-up, the
Weibull model was preferred by AIC in 34% of simula-
tions. BIC and log-likelihood preferred Weibull in 26%
and 0% of simulations, respectively (Figure 4b). Models
with the highest log-likelihood were associated with the
least bias (+20%), lowest MSE, and EmpSE but had
the lowest percentage of estimates within 10% of the true
value (49%). Models preferred by BIC had the highest
percentage of estimates within the range (66%).

The methods of model selection were outperformed
by repeated selection of either the Weibull or gamma
model, which had less bias and more reliable RMST esti-
mates, suggesting the selection methods could be
improved.

In the generalized gamma scenario of trial follow-up,
AIC favored the generalized gamma model in 94% of
simulations, compared to 92% and 62% for BIC and
log-likelihood, respectively (Figure 4c). Models preferred
on the basis of BIC were associated with the least bias
(+4%), lowest MSE, and EmpSE and had the most esti-
mates within 10% of the true RMST (26%). The perfor-
mance of the other 2 selection methods was similar.
Selecting the generalized gamma curve every time would
have only had a negligible improvement over relying on
the methods of model selection, suggesting the selection
methods did well.

Pertuzumab/APHINITY. From the simulations of the
exponential scenario of trial follow-up, AIC selected the
exponential model in 65% of the time, compared to 94%
and 0% for BIC and log-likelihood, respectively (Figure
4d). Models with the lowest BIC were associated with the
lowest EmpSE and MSE, as well as had the highest

percentage of estimates in the 10% range, but models
preferred by AIC had slightly less bias (+2%). Selecting
the exponential model every time would have offered a
small improvement over using BIC preferred models.

In the Weibull scenario, AIC, BIC, and log-likelihood
preferred a Weibull model in 7%, 1%, and 1% of simu-
lations, respectively (Figure 4e). Models with the lowest
BIC had the lowest MSE and EmpSE, as well as the larg-
est number of estimates in the 10% range (25%), but
models preferred by AIC had slightly less bias (–3%).

Selecting the Weibull or gamma models would have
considerably increased the percentage of estimates falling
within the 10% range but had little impact on bias.

For the generalized gamma scenario, AIC and BIC
favored the exponential (42% and 86%, respectively;
Figure 4f) over the generalized gamma model (5% and
4%, respectively), whereas the log-likelihood favored the
generalized gamma in 53% of simulations. Models pre-
ferred on the basis of AIC featured the least bias (–3%)
and had the largest number of estimates within the 10%
range (17.8%). Models preferred by BIC were associated
with the lowest MSE and EmpSE. Selecting the general-
ized gamma model in every simulation would have had
marginal improvements over using a method of model
selection, but selecting the gamma model each time
would have significantly increased the percentage of esti-
mates falling within 10% of the true value (65%).

Agreement of AIC, BIC, and log-likelihood. We also
explored whether greater reliability from AIC, BIC, and
log-likelihood preferred models might be obtained if the
approaches agreed on the same model. In most scenarios
explored, there was almost no agreement on the pre-
ferred model between log-likelihood and BIC.

For the pembrolizumab exponential scenario, RMST
estimates were no more accurate when AIC and BIC
agreed on the best model. Of the 7471 simulations in
which the 2 criteria agreed on the model, 6227 simula-
tions fell within 10% of the true RMST value (83%),
which was not an improvement on selecting the exponen-
tial model each time (86%) or on the BIC alone (84%)
but did improve on the AIC alone (77%). Similar results
were observed for the other source distributions and
trials.

Summary of Results

If a parametric model is selected that does not resemble
the underlying survival distribution, it is likely to result
in bias, even if data are complete.

Gallacher et al. 45
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Simple hazard behavior (exponential/constant) can be
captured well from data simulating trial follow-up, but
Weibull and generalized gamma often cannot.

In the scenarios considered, BIC was generally super-
ior for selecting models that resulted in accurate and
unbiased estimates of RMST when follow-up was suita-
bly mature.

With immature data, all 3 methods can be biased in
their model selection, leading to biased estimates of
RMST.

In the scenarios of trial follow-up, the larger EmpSE
associated with the models by each of the selection meth-
ods and the generalized gamma and generalized F models
suggest that there remains considerable variation in the
RMST estimates generated by these methods.

Discussion

We have presented a range of scenarios demonstrating
the dangers of extrapolating using parametric models
and relying heavily on AIC, BIC, and log-likelihood for
model selection. The incorrect choice of model can result
in large bias, but even the model matching the underlying
distribution can be associated with large variability in the
RMST estimates, suggesting that extrapolating across
population lifetimes may be a less than ideal tool for
assessing the utility of health technologies. Model selec-
tion based solely on goodness-of-fit statistics has been
shown to lead to bias due to the selection of the incorrect
model. Incorporating some measure of plausibility may
improve this by removing implausible models from con-
sideration. BIC had a tendency to select the exponential
model, which is the model with the fewest parameters,
even when the source distribution was Weibull or gener-
alized gamma, whereas the log-likelihood favored the
generalized gamma and generalized F models, with the
largest number of parameters, across all scenarios. When
the follow-up was more mature, BIC appeared superior
to the other methods, even when the source distributions
contained multiple parameters. This could be influenced
by the source distributions and parametric models con-
sidered but could be generalizable to scenarios beyond
this simulation study. This result could also be driven by
the fact that the set of candidate models included the true
model. BIC has been shown to work better when this is
the case, whereas AIC does not seek to identify the true
model but the best predicting model.

It is clear that reliance solely on statistical measures of
goodness of fit can result in severe bias and incorrect
estimation of RMST even when 2 or more measures
might agree on the optimal model, and it is reassuring

that model plausibility is also usually considered in prac-
tice, although not always.2 Our scenarios of trial follow-
up suggested that the models preferred by the selection
methods were often associated with significantly higher
MSEs than the best parametric model, suggesting there
is room for improvement over AIC and BIC when select-
ing models for extrapolation. We have shown that the
difference in the underlying assumptions of the shapes of
the models is an important consideration, given that the
log-normal, log-logistic, and Gompertz models often
provided markedly difference estimates of RMST com-
pared to the other parametric forms, particularly in the
scenarios of trial follow-up. Of course, if we repeated
our simulation study using these distributions to gener-
ate scenarios, then we would anticipate them to perform
much better. We recommend that pharmaceutical com-
panies provide very rigorous justification for their pre-
ferred model, perhaps prespecifying the model for
extrapolation, including evidence of why the long-term
hazard behavior can be considered plausible for their
intervention. We have demonstrated that selection
should not be based on goodness-of-fit statistics alone,
and health technology assessors should be suspicious
and perhaps automatically reject cases where no further
consideration beyond information criteria is made. Even
when follow-up is complete, selecting the incorrect para-
metric model may result in a biased estimate of mean
survival.

We have shown that trial follow-up typical of that
used in NICE technology appraisals can be insufficient
for reliable extrapolation, even when the model selected
from extrapolation matches that of the underlying sam-
ple distribution. It is concerning to see how the models
and methods of model selection struggled with these rela-
tively simple scenarios of time-to-event data, where all
events came from a single distribution. As medical tech-
nologies advance and we move toward personalized med-
icine, it will be increasingly common to require greater
flexibility than that which is offered by a single para-
metric model. We anticipate that the accuracy and relia-
bility of extrapolations will only deteriorate as data come
from more complex underlying hazard behaviors, espe-
cially when the behavior of the hazard rate is expected to
differ beyond the observed period. Despite the fact that
the scenarios considered here were relatively simple, all
using single parametric distributions as a source, the
fitted models often contained considerable uncertainty.
It is likely that real-world data will not follow such sim-
ple forms, and it is possible that using the selection meth-
ods and parametric models may perform even worse in
terms of either bias or uncertainty. Inevitably, there will

Gallacher et al. 47



often be key differences between high-risk patients whose
events are observed and the low-risk patients remaining
at risk after typical follow-up of a phase III trial, mean-
ing the observed hazard rate behavior will not be repre-
sentative of the hazard rate beyond the observed period.
Even if the right model is selected, it is possible that the
tail data will not contain enough information to accu-
rately estimate the parameters. Alternatively, the hazard
rate may deviate from the shape of all of the candidate
models. While models incorporating cure proportions or
time-varying hazard ratios sometimes feature in health
technology appraisals, the data are likely to be insuf-
ficient to accurately estimate the parameters of these
more complex models to provide reliable extrapolations.
Reliance on goodness of fit to observed data will only be
reliable when the unobserved hazard rate is linked to the
observed behavior in a way that is captured by at least
one of the candidate parametric models. By definition,
each of AIC, BIC, and log-likelihood assesses model fit
solely on the observed period, explaining why the perfor-
mance of the methods improves as the length of follow-
up increases. The methods of selection do not account
for the uncertainty beyond the observed follow-up
period. The suitability of parametric model extrapolation
and goodness-of-fit statistics will surely vary across dis-
eases and the patterns of treatment response.

Given the generally high levels of uncertainty when
extrapolating (which will still exist when plausibility is
taken into account), this raises the question of whether
NICE should seek an alternative approach rather than
rely on potentially inaccurate and unreliable extrapola-
tions to decide whether to fund new interventions. If a
NICE appraisal committee decides to focus on a particu-
lar subgroup of patients, rather than the licensed popula-
tion that would usually be represented in the trial, the
relevant survival data will contain even less information,
inflating the uncertainty associated with RMST. Perhaps
greater consideration of extrapolation should be made
when designing clinical trials. There may be plenty of
evidence of the long-term outcomes for a population
receiving a comparator, in which case more patients
could be recruited into the intervention arm of a trial,
maximizing the opportunity to collect information neces-
sary to obtain the most reliable extrapolation. If this is
not feasible, perhaps recommendations should be made
on a temporary basis, with a final decision on approval
and pricing only made after a certain degree of follow-up
has been observed, such as the current operation of the
Cancer Drugs Fund in England. Alternative approaches
that assess benefit on observed periods may encourage
longer follow-up and reduce the uncertainty for decision

makers but would probably slow down access to new
therapies.

While the exponentially distributed trial data gener-
ally contained enough information for their underlying
hazard to be captured by the fitted exponential models,
the same is not true for the generalized gamma models.
This questions whether it is appropriate to select a gener-
alized gamma or generalized F model for extrapolation
from typical follow-up of a phase III trial, given that
their RMST estimate is not likely to be within 10% of
the true RMST, as seen in 3 of the 4 modeled trials. This
could be true even if it is known that the generalized
gamma is representative of the population’s survival pro-
file and may be driving the superiority of BIC. This may
mean that simpler models should be preferred when data
are particularly immature. The curves with more para-
meters also demonstrated overfitting to data simulated
from a simpler distribution. The convergence issues expe-
rienced with the generalized F may explain its lower
popularity in NICE appraisals. Heinze et al.15 have dis-
cussed the related concept of events per variable.

It is interesting how the estimates from the pertuzu-
mab/APHINITY trial were associated with the most
uncertainty, yet the company in this appraisal extrapo-
lated using a parametric model as done in this study.
Meanwhile, in the venetoclax appraisal, the company did
not extrapolate their outcome, citing insufficient follow-
up. It is unclear what truly motivates a company to select
a method of extrapolation (e.g., whether to use para-
metric models or not), but it is possible that there is
insufficient consideration of associated uncertainty, with
greater emphasis placed on the resulting ICER.

Aside from the exponential distribution, all models
have multiple parameters. It is possible that any bias or
uncertainty is associated more strongly with some para-
meters than others or that the uncertainty associated with
one parameter is more influential on the estimates of
RMST. If this was true, it could alter the way that uncer-
tainty around survival is accounted for in technology
appraisals. Probabilistic sensitivity analyses (PSAs) are
inconsistent with their inclusion of survival parameters
and commonly exclude them.1 Identification and inclu-
sion of key parameters could improve the uncertainty
captured in PSAs. Ideally, a PSA would also include the
uncertainty around the choice of model, but there is no
well-established method for incorporating structural
uncertainty into a PSA.

Strengths

The strengths of this study include that it has captured
the characteristics of 4 independent clinical trials that
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were highly influential in NICE technology appraisals.
We have captured a range of different time-to-event out-
comes, each with its unique combination of events,
follow-up length, and hazard profile. The methods
included are representative of current practice, and clear
issues are identified. It is highly relevant to decision mak-
ers and disease modelers.

Limitations

A simulation study of this kind is unable to verify the
plausibility of every extrapolation or assess the visual fit
of multiple models through a comparison to the Kaplan-
Meier or cumulative hazard plot, and so we did not con-
sider plausibility in our study. Both visual fit and extra-
polation plausibility are commonly used alongside an
information criterion when selecting a parametric model
in practice, as recommended by 2 reviews,1,2 and may
improve the application of the information criterion
when used in combination. They could rule out clearly
implausible extrapolations for a specific disease or indi-
cation, preventing these models from being selected by
AIC and BIC. Similarly, the issues around convergence
for certain models in particular scenarios may be intro-
ducing bias into the analysis. The results are also depen-
dent on the models used to generate each scenario.

We have used RMST rather than overall mean sur-
vival time with the restriction applied corresponding to
the time horizon used in each appraisal’s economic anal-
ysis. Following this truncation, the bias of RMST esti-
mates for certain models may be underestimated. If we
had allowed the time horizon to vary based on the pre-
dictions of each model, we would likely observe even
more uncertainty in the estimates of RMST due to the
tails of models such as the log-normal being allowed to
carry on for much longer.

We used an arbitrary measure of 10% distance from
the true RMST to measure accuracy of the RMST pre-
dictions. This allowed some degree of comparison across
the different trials but may still be inappropriate due to
the wide range in underlying RMSTs. For example,
there may be much more uncertainty in the ICER in
the venetoclax study, despite more of its RMST esti-
mates falling within the 10% threshold across the vari-
ous scenarios.

We have only considered RMST from single arms of
trials. While potential bias should always be avoided, its
effect may be reduced if the bias is roughly equivalent on
both arms of a trial, hence having a minimal effect on the
estimate of incremental differences in RMST. However,
the broad uncertainty demonstrated in these simulations
offers no guarantees that bias will be evenly distributed

across trial arms. The level of uncertainty observed in the
extrapolations also raises the question of whether extra-
polation is an acceptable approach to estimating treat-
ment benefit.

Only the characteristics of 4 trials were considered in
this study. It is possible that the usefulness of AIC and
BIC may vary based on the hazard profile, the selection
of models considered, and the degree of follow-up.

We have simulated from only 3 parametric distribu-
tions. Real-world data may come from other distribu-
tions or may not be well represented by a parametric
curve. Similarly, it is unclear whether alternatives to
parametric modeling, such as combining trial data with
external data16 or using Bayesian model averaging,17

may improve RMST predictions.
Relying solely on estimates of RMST alone, without

assessment of plausibility at certain benchmarks, could
mean that a seemingly unbiased estimate of RMST is the
result of a combination of over- and underprediction.
The consequences of this could be significant in eco-
nomic modeling due to additional considerations such as
discounting and age-related disutilities, meaning that it is
important to capture when treatment benefit occurs,
rather than just overall absolute benefit.

Conclusion

This study demonstrates issues with parametric extrapo-
lation of time-to-event data and the reliance on AIC and
BIC to select a preferred model. We show that data from
trials used in NICE technology appraisals are often inad-
equate to obtain an accurate and unbiased extrapolation.
In scenarios of mature trial follow-up, BIC was generally
superior to AIC and log-likelihood. Further work is needed
to identify when data are mature enough to provide accep-
table levels of certainty around survival extrapolations.

Recommendations

Consider underlying hazard assumption, as assuming the
incorrect model can result in large biases.

All model selection methods occasionally led to pre-
ferred models with extremely high estimates of mean sur-
vival. Care should be taken to also consider plausibility
of estimates and to not solely rely on statistical goodness
of fit when selecting a model.

BIC appears superior for model selection when data
are sufficiently mature.

Restricted follow-up can contain too little information
for a reliable model of a multiparameter model to be esti-
mated and extrapolated.
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