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Abstract The main novelty of this paper is presenting the
adaptation of Gesture Description Language (GDL) method-
ology to sport and rehabilitation data analysis and classifica-
tion. In this paper we showed that Lua language can be suc-
cessfully used for adaptation of the GDL classifier to those
tasks. The newly applied scripting language allows easily ex-
tension and integration of classifier with other software tech-
nologies and applications. The obtained execution speed al-
lows using the methodology in the real-time motion capture
data processing where capturing frequency differs from
100 Hz to even 500 Hz depending on number of features or
classes to be calculated and recognized. Due to this fact the
proposed methodology can be used to the high-end motion
capture system. We anticipate that using novel, efficient and
effective method will highly help both sport trainers and phys-
iotherapist in they practice. The proposed approach can be
directly applied to motion capture data kinematics analysis
(evaluation of motion without regard to the forces that cause
that motion). The ability to apply pattern recognition methods
for GDL description can be utilized in virtual reality environ-
ment and used for sport training or rehabilitation treatment.
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Introduction

Motion capture (MoCap) is a powerful technology with
many possible applications. The dimensionality of output
signal stream from MoCap system depends on number
and type of sensors or tracked body joints in virtual skel-
eton that are used [1-4]. Mostly often each body joint has
three or six degrees of freedom. Three are linear coordi-
nates in Cartesian frame with versors (x, y, z) and other
three are angles that define the orientation of the body
segments. Those values are not used directly by the sys-
tem but rather features values are calculated as derivatives
of original data. The features selection and extraction
methods are for example Gabor [5] or Haar filters [6].
Dimensionality reduction can be done with principal com-
ponents analysis (PCA) [7] or other approaches [8]. The
movement representation is often invariant under rigid
transformation [8] and can be for example angular repre-
sentation of the skeleton joints [9] where each pose is
described using an angular representation of the skeleton
joints.

Many methods have been yet proposed for human actions
and movements evaluation and recognition. That type of anal-
ysis is important for calculation of biomechanics parameters
of actions, for evaluation ones activates and lifestyle or during
rehabilitation [10, 11]. Among proposed methods that can be
used for signals and action recognition are approaches that are
often used for signal identification and pattern recognition.
The most popular are Hidden Markov Models (HMM) [10,
12, 13], support vector machines (SVM) [5, 9, 14], decision
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forests [9, 15], Gaussian process dynamical models [16], K-
means clustering [6], nearest neighbor classifier [17], Bayes
classifier [18], dynamic Bayesian networks [19], syntactic
method [6, 20, 21] and rule based methods — for example
Gesture Description Language (GDL) [22—24]. GDL classifi-
er uses a rule — based approach with memory stack. The mem-
ory stack holds the captured MoCap data frames, features and
classes to which a sequence of MoCap frames are classified.
GDL method uses specially designed scripts that hold the
definition of features calculated from MoCap input stream.
Those features are used to design rules that have if-else form
and define the key frames of actions. Key frames are ordered
in sequences. If the sequence of key frames appears in mem-
ory stack in a given time restriction the ongoing action is
classified to a given class. This approach is somehow similar
to HMM classifier.

The wide comparison of GDL methodology to other rec-
ognition system is discussed in other papers [25-27]. This
comparison includes most important aspects like comparison
of action description methodology, geometric interpretation of
those descriptions, training algorithm and applications. The
example results for various physical activates is presented in
papers [22-26, 28-31] and includes common-life actions,
gym exercises and Oyama and Shorin-Ryu karate techniques.

So far the GDL was used mainly for classification of
MoCap data stream from multimedia devices (for example
Microsoft Kinect) however we need to create a unified ap-
proach that would enable not only classification but also anal-
ysis of MoCap signals from high-end hardware. That type of
devices is often used to support spot coaches in training opti-
mization and physicians in rehabilitation process [10, 11, 32].
The requirements for this new approach is that it has to be
capable to create complex features definitions (that could be
for example used for kinematic analysis) and have to be fast
enough for real-time data analysis (performance is very im-
portant aspect of every medical system [33]). The main nov-
elty of this paper is presenting the adaptation of Gesture
Description Language (GDL) methodology to sport and

require "GDL2/Engine"

function ReturnConclusions (ActualSkeletonData,
PreReturnConclusions (ActualSkeletonData,

rehabilitation data analysis and classification. In the following
sections we will present, evaluate and discuss proposition of
such methodology.

Materials and methods

In this section we will present the novel adaptation of
GDL methodology to analysis and classification of
MoCap data for sport and rehabilitation applications. To
do so we need to enhance the possibilities of features
definition of scripting language that is inherent part of
GDL classifier. We did it by replacing the old GDLs
scripting language with Lua.

Lua application in GDL paradigm

Lua is a dynamically typed language that can be easily inte-
grated with other computer languages and applications. Due
its simplicity and easily extensions it is a popular scripting
technology for other computer systems. Lua is used in scien-
tific computing like linear algebra, neural networks, numeric
optimization routines and many more [34-36]. Lua was also
used in an aspect-oriented infrastructure to handle dynamic
programming tasks [37]. Lua is also used in middleware de-
sign and development [38, 39] also in robotics and embedded
systems [40—43]. This programming language is very popular
tool for writing high-level scripts for other computer systems
[44-46]. In paper [47] authors discuss what mechanisms Lua
features to achieve its flexibility and how programmers use
them for different paradigms.

The proposed Lua implementation is based on Lua 5.2 and
JAVA hosting application. Lua functions are called by Lual li-
brary. GDL engine uses five classes and one script file Engine.lua
with global variables and functions - see a class diagram present-
ed in Fig. 1. A very basic script that can be used to detect situation
when right hand is under head might looks as follow:

TimePeriod)
TimePeriod)

if Head(0).y > HandRight (0) .y then

HandUnderHead = true
else
HandUnderHead = false
end
PostReturnConclusions (st)
end
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Fig. 1 This figure presents a class diagram for Lua implementation of GDL classifier

The ReturnConclusions function is called by hosting appli-
cation to pass the tracking parameters. The proposed Lua —
based framework can be easily adapted to anybody joints set
simply by configuration of joints definition in SkeletonData
class and functions in Engine.lua.

Features calculation

The adapted GDL classifier uses standard Lua syntax to define
features. There are three types of features: logical, numeric
and vector. The logical feature role is identical to conclusion
from GDL specification and it is represented by ‘boolean’ data
type in Lua. Only those logical values that equals ‘true’ are
passed to hosting application. The numeric data type has a
floating-point value and it is represented by ‘number’ data
type in Lua. The vector data type has three floating-point
values and is represented by user-defined class Vector3D.
There are also definition of most important vectors operation

Al = angle(ShoulderRight (0) - ShoulderLeft (0),

A2 = angle(SpineShoulder (0) - SpineBase (0),

A3 = angle (CrossProduct (ShoulderRight (0)
SpineShoulder (0) - SpineBase (0)),

A4 = angle (ShoulderRight (0) - ShoulderLeft (0),

A5 = angle(SpineShoulder (0) - SpineBase (0),

A6 = angle (CrossProduct (ShoulderRight (0)

SpineShoulder (0)

- SpineBase (0)),

like vector sum, multiplication by a number, dot product, cross
product etc. that can be usable for kinematics or kinetics anal-
ysis [48] (the basic trigonometric functions like sinus are al-
ready supported by Lua).

In Fig. 2 we present vectors set that was used to generate
features set that was used for recognition hiza-geri karate kick.
We have defined six angle-based features:

Where 41, ..., ¢ are angles calculated between vectors v,
,...,vs visualized in Fig. 2. Vectors are defined by tracked
body joints.

The Lua implementation looks as follows:

HipRight (0) - KneeRight (0))
HipRight (0) - KneeRight (0))

- ShoulderLeft (0),

HipRight (0) - KneeRight (0))
KneeRight (0) - AnkleRight (0))
KneeRight (0) - AnkleRight (0))

- ShoulderLeft (0),

KneeRight (0) - AnkleRight (0))
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Fig. 2 This figure presents vectors set that was used to generate example
features

Where angle is a function that finds angle between two
vectors on the plane designated by those vectors.

In Fig. 3 we present 3D visualizations of important phases
of selected karate actions we used in evaluation of our
methodology.

In Fig. 4 we present plot of features values defined by (1)
for a recording of single Hiza-Geri kick done with Kinect 2
depth camera. Above the plot are horizontal bars with color-
coded information about key frames to which current frame
was assigned by GDL classifier. Brown is the first key frame,
yellow the second, cyan the third. Blue stands for lack of
assignment (N — not assigned).

Pattern recognition with GDL approach

The recognition process of action pattern in adapted imple-
mentation is mainly the same as in [25]. The only difference is
a reasoning module. We have found that in the previous
implementations users seldom used some features of it and
might even not be aware of its existence. Due to this fact
hardly ever users design GDLs that reference to rule

kiba-dachi

Fig. 3 This figure presents important phases of karate actions: Hiza-Geri
kick and Kiba-Dachi stance. The Mo-Cap data is visualized in 3D virtual
environment

hiza-geri

@ Springer

conclusion before it is defined in next rule. Also those types
of constructions are not required in automatic training algo-
rithm (R-GDL) about which we write below.

The wearable body sensor enables to collect big data
collections for which approaches know from other fields
of big-data analysis can be applied [49, 50]. This property
is also utilized in automatic training algorithm for GDL
technology. While using GDL for a classification task the
one of the most challenging aspect is designing of appro-
priate script that defines key frames of actions. To find
those key frames automatically we often use Reverse-
GDL (R-GDL) approach published in [25]. The R-GDL
utilizes the fact that after transferring the original MoCap
data to features space key frames can be detected with k-
means clustering algorithm. This situation if visualized in
Fig. 5 where data assigned to key frames is color coded
with the same color pattern as in Fig. 4.

Results

In third section we will evaluate the average performance of
our adapted methodology. The implementation can be found
on official website of GDL technology [51]. We are mostly
interested in how much time is required to calculate features
and to classify the input dataset. We have taken into account
time of transferring data from hosting application to GDL
engine, Lua scripts execution time and transferring data from
GDL to host application. After this whole cycle the applica-
tion obtains data that can be directly used by it. We have used
20-joints data with gym exercises recordings acquired with
Kinect version 1 (K1), the same as we used in [25] and 25-
joints data with karate techniques recordings acquired with
Kinect version 2 (K2) [26]. The Lua scripts in which actions
were defined varied in number of features definition and num-
ber of GDL instructions calls. The most basic scripts were 10-
features, 20-features, 30-features and 40-features sets that
were defined both for K1 and K2. All features were angles
defined by vectors calculated from neighboring joint. The oth-
er scripts were codes that define kiba-dachi stand (about 4 kB
of code), and definition of 12 karate actions (about 33 Kb of
code) [30], jumping jacks exercise (4 kB) and 9 gym exercises
(40 kB) [25]. We have used actions recordings consisted of
100, 200, 500, 1000, 2000, 5000, 10,000 and 20,000 frames.
Evaluation was repeated 20-times for each Lua script and
recording. The proposed method was evaluated on standard
PC equipped with Intel Core 17-4770 CPU 3.40 GHz, 8 GB of
RAM with Windows 7 Home Premium 64 Bit. The results in
Table 1 and Fig. 6 are averaged results plus — minus standard
deviation.

Basing on the obtained data in Table 2 and Fig. 7 we have
shown what is an average execution time of single MoCap
frame calculation plus — minus standard deviation.
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Fig. 4 This figure presents features time series generated for single Hiza-
Geri kick recording. The horizontal axis represents time and the vertical
axis the angle. Each time series stands for one of the feature from (1). On
the top of the plot there are color bars that indicate to which GDL key
frame the signal sample has been classified. Color codes are the same as

Discussion

The results presented in previous section show that processing
time of Lua implementation of GDL methodology operates in
fast and reliable way. As can be seen in Table 1 and Fig. 6
there is a nearly linear dependence between number of proc-
essed frames and time of processing. That proves that the

PCA feature 3

PCA feature 1

in Fig. 5. Number 1, 2 and 3 are key frames numbers (there are totally
three key frames in this particular Hiza-Geri definition). Symbol N rep-
resents the time sample in which signals have not been classified to any
key frame

method is stable and can operate without disturbance contin-
uously. The test performed on features set for 10, 20, 30 and
40 features proves that there is no significant difference in
processing time for 20 and 25 joints dataset. This is also quite
natural that the larger the movement description is the more
time is require to process the single MoCap frame. The exe-
cution time for 40-features K1 is 3.53 +0.16 milliseconds and

PCA feature 2

Fig. 5 This figure presents three-dimensional projection of six-dimensional feature space (1) using principal component analysis. Each point represents

a single MoCap frame with color-coded GDL key frame
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Table 1  This table presents averaged execution time (in milliseconds) plus-minus standard deviation of various Lua scripts that uses GDL
implementation

100 200 500 1000 2000 5000 10,000 20,000
kiba-dachi (K2) 171+£26 290+35 754 +44 1683 +51 3062+96 7824+ 191 15316 +278 31,249+1218
karate (K2) 1173+£330 22254299 5913+146 11,627+358 23,114+458 60,020+788 116,892+2052 231,344 +1046
10 features (K2) 125+21 201422 505+26 1123+36 2064 +38 5116+31 10,511+£377 20,566+ 164
20 features (K2) 220421 366+45 912+43 2069 +56 3717+57 9234455 18,677 +252 37,526+915
30 features (K2) 301+31 524+65 134669  2996+83 5429+83 13,550+ 81 27,322+374 54,419+203
40 features (K2) 394+35 778100 1977109  4010+125 7999+ 117 20,018+140  40,615+618 80,120+ 500
jumping jacks (K1) 104+16 166+18 425+25 1099+ 149 1659+21 4220+73 8615+409 16,684+ 69
gym (K1) 7224260  1251+164 3710+185 8806=+160 17,655+221 43,832+187 88,156+646 175,715+2004
10 features (K1) 121+12 195+22 498 +27 1148 +35 2024 +49 5087 +117 10,200 +288 20,211 +183
20 features (K1) 215+25 359+45 901 +50 2097 +63 3652+52 9092 +38 18,439 +£253 36,333+38
30 features (K1) 309+24 534+67 1368+65  3059+100 5504 +85 13,744+88  27,231+500 55,012+126
40 features (K1) 377+31 671+84 1710+£95  3828+112 6921+103 17,249+ 115 34,723 +157 69,997 448

Each row represents various features, action and actions groups that are evaluated for different number of motion capture frames (in columns)

Fig. 6 This figure visualizes data

from Table 1
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Table 2  This table presents averaged execution time (in milliseconds)
plus-minus standard deviation of various Lua scripts that uses GDL im-
plementation for a single motion capture frame

Feature, action or action group name

Execution time (in milliseconds)

kiba-dachi (K2)
karate (K2)

10 features (K2)
20 features (K2)
30 features (K2)
40 features (K2)

jumping jacks (K1)

gym (K1)

10 features (K1)
20 features (K1)
30 features (K1)
40 features (K1)

1.57+0.08
11.64+0.24
1.06 +0.08
1.92+0.13
2.77+0.13
3.98+0.05
0.90+0.10
8.11+£0.94
1.05+0.08
1.89+0.13
2.82+0.15
3.53+0.16

@ Springer
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for K2 is 3.98+0.05 that means that it is possible to process
MoCap dataset with frequency over 250 Hz which is suffi-
cient for most up-to-date hardware of that type. The slowest
processing was obtained for karate actions classification
dataset that recognizes 12 different actions (11.64+0.24 mil-
liseconds per frame). That means that frequency of frame pro-
cessing is about 85 Hz which is fast enough for signal classi-
fication task. Summing up the GDL methodology adapted to
new functionalities satisfies needs of sport and rehabilitation
data analysis and classification.

Conclusions

In this paper we showed that Lua language can be successfully
used for adaptation of the GDL classifier to new scientific tasks.
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Fig.7 This figure visualizes data 14
from Table 2

12

10

Time 8

(in miliseconds) 6

The newly applied scripting language allows easily extension
and integration of classifier with other software technologies
and applications. As it was discussed in the previous section
the obtained execution speed allows using the methodology in
the real-time motion capture data processing where capturing
frequency differs from 100 Hz to even 500 Hz depending on
number of features or classes to be calculated and recognized.
Due to this fact the proposed methodology can be used to the
high-end motion capture system. We anticipate that using novel,
efficient and effective method will highly help both sport
trainers and physiotherapist in everyday tasks. For example pat-
tern recognition and data mining methods can supply both sport
and rehabilitation data evaluation. The proposed approach can
be directly applied to MoCap data kinematics analysis (evalua-
tion of motion without regard to the forces that cause that mo-
tion). However kinetics (the study of movements under the
action of forces) will require additional data source beside
MoCap for example ground reaction forces acquired by force
plate or other force type collected with dynamometer. That ad-
ditional data stream can be easily integrated with our method-
ology and the forces can be calculated without changing already
established framework. However sole kinematics is sufficient
for many applications in sport, medicine, physiotherapy and
rehabilitation. Actions can be described using derivatives of
displacement like velocity or acceleration. The ability to apply
pattern recognition methods for GDL description can be utilized
in virtual reality environment similarly to that described in [27,
52] and used for training or treatment.
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