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Abstract

Biological phenomena induced by terahertz (THz) irradiation are described in recent reports,

but underlying mechanisms, structural and dynamical change of specific molecules are still

unclear. In this paper, we performed time-lapse morphological analysis of human cells and

found that THz irradiation halts cell division at cytokinesis. At the end of cytokinesis, the con-

tractile ring, which consists of filamentous actin (F-actin), needs to disappear; however, it

remained for 1 hour under THz irradiation. Induction of the functional structures of F-actin

was also observed in interphase cells. Similar phenomena were also observed under chemi-

cal treatment (jasplakinolide), indicating that THz irradiation assists actin polymerization.

We previously reported that THz irradiation enhances the polymerization of purified actin in

vitro; our current work shows that it increases cytoplasmic F-actin in vivo. Thus, we identified

one of the key biomechanisms affected by THz waves.

Introduction

The recently developed technology of terahertz (THz) light sources indicate the bloom of

applications in a wide range of fields, such as chemical sensing [1, 2], security imaging motion

sensing [3–6], and telecommunications [7–12]. For example, in the wireless technology "6G"

aiming for practical use in the 2030s, the use of sub-THz electromagnetic waves is being stud-

ied. The use of the “sub-THz” is also being considered for the acquisition of high-precision

position information in radars required for autonomous driving and motion sensors. Over the

next decades, THz light sources will become miniaturized, powerful, cheap, and familiar to

everyday life. To facilitate such practical THz applications, the safety of THz radiation for

human health must be guaranteed [13].

The interaction between THz radiation and biological systems has been previously investi-

gated. Two projects, the European THz-BRIDGE and the International EMF project in the

SCENIHR [14], summarize recent studies about the biological effects of THz radiation. For
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example, THz irradiation was shown to inhibit cell proliferation and to change the adhesive

properties of the nerve cell membrane [15, 16]. Other studies showed THz-induced DNA

destabilization [17–19], which causes chromosomal aberrations in human lymphocytes [20].

The transcriptional activation of wound-responsive genes in mouse skin [21] and the induc-

tion of DNA damage in an artificial human 3D skin tissue model [22] were also reported as

effects of THz irradiation. However, the mechanisms are still unclear because such phenome-

nological studies cannot reveal the underlying molecular origin in the complex biological

systems.

An important point to consider for THz irradiation experiments is the THz radiation

source itself. The THz power density must not be too high to avoid detrimental thermal effects

on the sample. Many studies have shown the effect of heating on cells, such as tissue damage

[23, 24], heat-induced cellular death [25, 26], and DNA damage [27, 28]. Thus, the THz beam

should not be focused tightly to prevent an increase in the temperature on the sample. Two

studies have shown that millimeter-wave radiation induces specific cellular responses that dif-

fer from direct thermal effects [29, 30]; however, the underlying mechanism and exact targets

are poorly defined. In addition to the effect of heating, the generation of the acoustic waves in

aqueous solution must be considered when using the pulsed THz sources. In our previous

works, we observed that THz pulses generate shockwaves at the surface of liquid water [31].

The generated shockwaves propagate to a depth of several millimeters, and disrupt protein

structures in living cells [32]. To avoid such acoustic effects, the peak power of the THz pulses

should be kept at a sufficiently low level.

In this study, we investigated the “non-thermal” and “non-acoustic” effects of THz irradia-

tion on the morphology of living HeLa cells. The energy of THz was 6 mJ/cm2 with a duration

of 10 ms, giving a peak power less than 0.6 W/cm2, which is eight orders of magnitude smaller

than that in our previous studies [32]. The THz fluence was low enough to keep the tempera-

ture rise less than 0.2 ˚C during irradiation. Morphological observation showed that cell divi-

sion in the cell cycle is arrested at mitosis during THz irradiation. Fluorescence microscopy

revealed that this phenomenon is due to the stabilizing of the contractile ring, which is

required to disappear to complete the cytokinesis—the last step of cell division. We found that

the contractile ring was stabilized because of the enhancement of actin polymerization by THz

irradiation. This work is the first to identify the key molecule and mechanism by which THz

waves affect biological systems in a non-thermal and non-acoustic manner.

Materials and methods

THz source

We used a gyrotron (FU CW GVIB [33]) to generate 0.46-THz waves. We designed an appara-

tus that exposed samples to the radiation, which had a peak power density of 0.6 W/cm2. A

schematic representation of the device is shown in Fig 1A. The THz gyrotron produced

10-ms-long pulses with a 1-Hz repetition rate [34]. The time-averaged intensity is 6 mW/cm2.

As a second source of THz irradiation, we used a compact solid-state device based on an

IMPATT-diode (TeraSense Group Inc), which ensured coherent continuous-wave emission of

THz waves with a frequency of 0.28 THz and output power of 20 mW. THz radiation was out-

putted from the horn antenna (4 mm× 4 mm), and emitted from the bottom of the dish with-

out focusing the beam, and with a power density of 125 mW/cm2.

THz irradiation of HeLa cells

HeLa cells were seeded on 0.15 mm-thick cover glass and cultured in Dulbecco’s Modified

Eagle’s Medium (Gibco) supplemented with 10% fetal bovine serum and antibiotics (penicillin
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Fig 1. Effects of THz irradiation on cell morphology. (A) Schematic illustration of the experimental setup. THz

waves with a power density of 0.6 W/cm2, frequency of 0.46 THz, pulse duration of 10 ms, and a repetition rate of 1 Hz

were generated by a gyrotron at FIR-UF. The THz beam passed vertically from the bottom of the dish via an aperture

of 4 mm in the heating stage. As a second source of THz irradiation, we used a IMPATT-diode which ensured

coherent continuous-wave emission of THz waves with a frequency of 0.28 THz and output power of 20 mW. THz

radiation was outputted from the horn antenna with a power density of 125 mW/cm2. HeLa cells were seeded on the

film bottom dish and cultured for 24 hours before the experiments. The culture medium was kept at 37 ˚C by the

heating stage during the experiments. (B) Microscopy images of cells at 0, 30, and 60 minutes. Irradiation was started
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and streptomycin) at 37 ˚C in a 5% CO2 humidified atmosphere. Actin filaments were stained

with SiR-actin by adding probes from a 1 mM dimethyl sulfoxide (DMSO) stock solution to

the growth medium (final concentration: 3 μM) and incubating for 1 hour at 37 ˚C in a 5%

CO2 humidified atmosphere. Note that the actin filaments were stained with SiR-actin in

accordance with our earlier study [32], in which SiR-actin does not affect actin dynamics. The

film dish was set on a heating stage (LINKAM: 10002L) to maintain a culture temperature at

37 ± 1 ˚C. The THz beam passed vertically through a 4-mm hole in the heating stage. During

THz irradiation, fluorescence microscopy images were obtained with a UV light source (Thor-

labs, X-Cite 200DC lamp), dichroic mirror (Thorlabs, DMLP650R), two optical filters (excita-

tion band pass: 625 nm/25 nm; emission long pass: 675 nm), objective lens (Olympus,

LUMFLN60XW; Nikon, N10X-PF), and an sCMOS camera (Thorlabs, CS2100M-USB).

Fig 1A shows a schematic diagram of the experimental setup for THz irradiation. Cells treated

with 10 nM jasplakinolide in DMSO were used as a positive control.

For the quantitative analysis of the cells at cytokinesis, cells were synchronized at the

mitotic phase using 25 μg/ml nocodazole. Cells were cultured at 16 hours after the addition of

nocodazole. Before each experiment, nocodazole was washed out by changing the culture

medium, and cells proceeded to mitosis with or without THz irradiation.

Image analysis was performed using Fiji software. To measure the mean signal intensity in

the membrane compartment, the outline of each cell was selected using the area selection tools

in the software. The mean signal intensity of the signal over the area of the cell was recorded.

The number of cells is shown as n. Statistical significance was calculated using F- and T-tests.

Morphological analysis

To measure the cell area and perimeter, the outlines of cells were selected (in the x–y plane)

using the area selection tools in the Fiji software. The form factors of individual cells were cal-

culated as 4πS/L2, where S is the projected cell area and L is the cell perimeter. This index

reflects the irregularity of the cell shape: a perfectly round cell has a value of one, and a stellate

cell has a value lower than one. Data are presented as the mean ± standard deviation. The

number of cells is shown as n. Statistical significance was calculated using F- and T-tests.

Results

THz irradiation halts cell division of cultured cells

To observe the non-thermal and non-acoustic effects of the THz irradiation, we irradiated liv-

ing cells with a THz beam with relatively low peak power. The sample was irradiated with the

output of the gyrotron (0.46 THz), without focusing the beam and with a peak power density

of 0.6 W/cm2. This radiation power is eight orders of magnitude lower than the power in

which acoustic waves were generated in our previous work [32]. The radiation source was

pulsed with a duty ratio of 1% (10-ms duration, 1-Hz repetition rate) to reduce heating of the

sample. HeLa cells were grown on a film-bottom dish, and the culture medium was kept at 37

˚C by a heating stage during the experiment. THz radiation was emitted from the bottom of

the culture dish for 60 minutes (Fig 1A). The high absorbance of water (160 cm−1 at 21 ˚C,

0.46 THz) limits the penetration depth of the THz waves to about 100 μm. Because the

at 0 minutes and continued for 60 minutes. The bottom panels show the magnified images of the black squares in the

upper panels. The red arrows indicate a pair of cells with a round shape. The scale bar represents 200 μm (upper panel)

and 20 μm (bottom panel).

https://doi.org/10.1371/journal.pone.0248381.g001
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thickness of the cells is less than 30 μm, THz waves reached all regions of the cell. To evaluate

the effect of THz irradiation, we performed time-lapse microscopy imaging of the HeLa cells

(Fig 1B).

Under THz irradiation, the appearance of a characteristic form of cells, which consists of a

pair of round cells, was frequently observed (Fig 1B, red arrow), and the characteristic cells are

maintained during THz irradiation up to 60 min (Fig 1B, bottom panel (zoomed images)).

The round shape of the cells is a typical morphology of mitotic cells, and the pairing of two

round cells is observed at the last step of mitosis, called cytokinesis (Fig 2A). Cytokinesis is

generally completed within 15 minutes [35]. Therefore, the persistence of the paired round

cells indicates that THz irradiation inhibited the progression of cytokinesis.

For the quantitative evaluation of the arrested cells at cytokinesis, cells were synchronized

at the initial phase of mitosis using 25 μg/ml nocodazole, and released into the culture medium

without nocodazole to proceed with the mitosis. Fig 2B shows the percentage of cells arrested

at cytokinesis. Whereas cytokinetic-arrested cells are not observed under the control condi-

tion, THz irradiation induced cytokinetic arrest at 30 minutes after nocodazole release and the

arrest was further continued (Fig 2B, THz). We also analyzed the effect of heat on the progres-

sion of cytokinesis. The culture medium was kept at 42 ˚C by the heating stage during the pro-

gression of mitosis; however, this did not increase the number of cells arrested at cytokinesis

(Fig 2B, 42 ˚C). Since the temperature rise during THz irradiation was less than 0.2 ˚C (S1 Fig

in S1 File), some other reasons than the temperature increase are supposed for the inhibition

of cytokinesis.

Persistence of the contractile ring during THz irradiation

The dominant regulator of cytokinesis is the contractile ring, which consists of actin filaments

(Fig 2A) [36]. At the start of cytokinesis, a G (globular)- to F (filamentous)-actin transition is

induced to make the contractile ring (polymerization reaction). Then, the opposite transition

of F- to G-actin disassembles the contractile ring to complete cell division (depolymerization

reaction). After THz irradiation, the percentage of cells arrested at cytokinesis significantly

increased in comparison with control cells (Fig 2B), suggesting that THz irradiation affects the

disassembly of the contractile ring.

To observe the behavior of the contractile ring under THz irradiation, we stained actin fila-

ments in living cells with SiR-actin [37], and performed time-lapse imaging under a fluores-

cence microscope. The formation of the contractile ring was observed with and without THz

irradiation (Fig 3, Cytokinesis, red arrow). Without THz irradiation, the contractile ring disap-

peared after 30 minutes, and the two daughter cells separated completely (Fig 3, Control, white

arrows). By contrast, under THz irradiation, the contractile ring remained for at least 30 min-

utes (Fig 3, THz, 30 min later). In cells cultured at 42 ˚C, the contractile ring disappeared, and

cell division was completed within 30 minutes (Fig 3, 42 ˚C, 30 min later). This result suggests

that the depolymerization reaction of actin progresses in a non-thermal manner. Cytokinesis

is generally completed within 15 minutes, and the dynamic turnover of actin filaments to G-

actin is required for its completion [38–41]. Importantly, the chemical induction of actin poly-

merization with jasplakinolide inhibits the completion of cytokinesis by stabilizing the con-

tractile ring [42]. Taken together, these results support the notion that THz irradiation inhibits

the completion of cytokinesis by affecting the actin dynamics.

Effects of THz irradiation on actin filaments inside cells

Actin filaments are relevant to various cellular functions, and their dynamics are tightly regu-

lated. For example, cytoplasmic actin polymerization in the plasma membrane is an essential
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and versatile process that defines the cellular shape and confers mobility to cells. To evaluate

the effects of THz irradiation on the actin dynamics observed in living cells, we stained actin

filaments in living HeLa cells with SiR-actin [37], and performed time-lapse imaging with fluo-

rescence microscopy. The fluctuation of the cellular actin filaments can be quantitatively esti-

mated by the fluorescence intensity of SiR-actin, which increases up to 100-fold in the actin

Fig 2. THz irradiation halts cytokinesis. (A) Schematic representation of mitotic progression. In the process of mitosis, actin polymerization is

induced to make the contractile ring, which is required for starting the division of the mother cell into two daughter cells. Then, the contractile ring is

squeezed and completes cell division. Cytokinesis is generally completed within 15 minutes. (B) Percentage of cells arrested at cytokinesis. The cell cycle

was synchronized to the mitosis phase with 25 μg/ml nocodazole before each experiment. Nocodazole interferes with the polymerization of

microtubules and arrests the initial step of mitosis. Cells were determined to be arrested at cytokinesis when the contractile ring was retained for more

than 30 minutes after the release from nocodazole. The error bars show the standard deviation of three independent experiments. More than 184 cells

were measured in each experiment.

https://doi.org/10.1371/journal.pone.0248381.g002
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Fig 3. Persistence of the contractile ring during THz irradiation. Live-cell imaging of cells with a contractile ring.

The cellular actin filaments were stained with SiR-actin and observed 30 minutes after generation of the contractile

ring. The culture medium was kept at 37 ˚C by the heating stage during the experiments with and without THz

irradiation. To observe the thermal effects on cytokinesis progression, cells were cultured at 42 ˚C and observed

(bottom panel). The red arrows show the contractile ring and the white arrows show the daughter cells. The white bar

shows a scale of 20 μm.

https://doi.org/10.1371/journal.pone.0248381.g003

PLOS ONE The effects of THz wave on biomolecules

PLOS ONE | https://doi.org/10.1371/journal.pone.0248381 August 2, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0248381.g003
https://doi.org/10.1371/journal.pone.0248381


filaments. Cells treated with 10 nM jasplakinolide, which induce actin polymerization, were

also analyzed as a positive control.

As Fig 4A shows, most cells stayed adherent during the 60-minute observation period, with

a few cells detaching from the bottom of the dish. In addition, the area of the cells remained

constant for 60 minutes during both THz irradiation and jasplakinolide treatment (S2 Fig in

S1 File), suggesting that abnormal shape changes, such as atrophy and hypertrophy, did not

occur. Fig 4B shows the mean fluorescence intensity of SiR-actin in individual cells at 0, 30,

and 60 minutes. The box plot shows the mean fluorescence intensity of SiR-actin in the cells,

and the error bar represents the standard deviation. The fluorescence intensities of SiR-actin

in the cells were kept constant for 60 minutes in the control experiment (Fig 4B, control),

showing that fluorescence bleaching did not occur during the observation period. After 60

minutes of THz irradiation, the fluorescence intensity of SiR-actin increased, indicating that

actin polymerization was accelerated and the number of filaments increased inside the cells

(Fig 4B, THz). A similar effect was observed for the ‘chemical’ induction of actin filamentation

using jasplakinolide (Fig 4B, Jasplakinolide). These results show that THz irradiation acceler-

ates actin filamentation in living HeLa cells.

To confirm the THz irradiation effect by another type of radiation source, same experiment

was performed by a solid-state semiconductor device (TeraSense: IMPATT diode), which out-

puts continuous-wave at 0.28 THz with a power of 20 mW. THz wave was emitted from the

diagonal horn antenna with a size of 4 mm × 4 mm, attached at the bottom of the film-bottom

dish (Fig 1A). The irradiation power density was about 125 mW/cm2. Fig 4C shows the mean

fluorescence intensity of SiR-actin in the individual cells at 30, 60, 90, and 120 minutes. After

90 minutes of irradiation, the fluorescence intensity of SiR-actin was significantly increased

compared with the control cells (Fig 4C, THz).

The fluorescence intensity under irradiation from the IMPATT diode increased more

slowly than under gyrotron irradiation because of the different parameters of the two light

sources. Specifically, the peak power of the IMPATT diode (125 mW/cm2) was about five

times lower than that of the gyrotron (600 mW/cm2). Moreover, the frequency of the IMPATT

diode (0.28 THz) was much lower than that of the gyrotron (0.46 THz). At present, we do not

know which of these two parameters controls the speed of actin filamentation. We note that

the average energy flux of the IMPATT diode (125 mJ/cm2/s) was higher than that of the gyro-

tron (6 mJ/cm2/s). However, the speed of actin filamentation does not depend on the average

energy flux.

Effects of THz irradiation on actin-including structures in interphase cells

In addition to the formation of the contractile ring in cytokinesis, actin polymerization is

required for forming cellular structures in interphase cells, including stress fibers, lamellipodial

meshworks, and transverse arcs (Fig 5A). Stress fibers exist along the cell membrane and form

the cytoskeleton, which maintains the cell shape. Lamellipodial meshworks are observed at the

leading edge of cells and are required for cell migration. Transverse arcs are generated in the

peripheral regions of the cell membrane and move to the center of the cell [43]; this movement

is generally the initial step of cell migration, and actin polymerization is required for move-

ment. To analyze the effect of THz irradiation on actin polymerization, we analyzed actin-

including structures in living cells using fluorescent microscopy. Note that we did not observe

any change of lamellipodial meshworks in this study. It is known that the production of lamel-

lipodial meshworks induces the reorganization of the cell into an asymmetric shape. To con-

firm the cellular shape transition, we analyzed the form factor, which is close to 1 for a round

shape, and close to 0 for an asymmetric shape [44]. The form factor was the same for the
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Fig 4. THz waves enhance actin polymerization in cells. (A) Fluorescence microscopy images of cells stained with

SiR-actin at 0, 30, and 60 minutes. THz irradiation was started at 0 minutes and continued for 60 minutes. As a

positive control, cells were treated with 10 nM jasplakinolide at 0 minutes to induce actin polymerization. The white

bar shows a scale of 200 μm. (B) Mean fluorescence intensity of SiR-actin in individual cells measured from the

fluorescence microscopy images. The box plot shows the mean value relative to 0 minutes. The standard deviations of
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control, THz irradiation, and jasplakinolide-treated samples for 60 minutes (S3 Fig in S1 File).

Therefore, we concluded that lamellipodial meshworks were not induced by the 60-minute

THz irradiation.

Fig 5B shows time-lapse images of a single cell stained with SiR-actin at 0, 10, 20, and 30

minutes. The white dotted lines show the position of the cell membrane. The fluorescence

intensity of SiR-actin increased near the cell membrane in the control, indicating that stress

fibers were generated during the measurement (Fig 5B, Control, yellow arrows). Under THz

irradiation, in addition to the stress fiber formation, transverse arcs were formed in the periph-

ery, and this structure moves from the cell membrane towards the center of the cell (Fig 5B,

THz, red arrows) (S1 Movie).

Fig 5C shows the number of cells in which transverse arcs were generated during the

30-minute experiment. 27% of cells contained a transverse arc in the control experiment (Fig

5C, Cont). By contrast, over 60% of the cells contained a transverse arc as a result of either

THz irradiation or jasplakinolide treatment (Fig 5C, THz and Jasp). These results suggest that

THz irradiation affects actin polymerization not only in the contractile ring but also in the

cytoplasm of interphase cells.

Discussion

In our previous study, we subjected an aqueous solution of purified actin protein to THz irra-

diation for the purpose of developing a physical technique for macromolecular manipulation

[34]. In that study, we found that actin filaments were generated effectively under THz

three independent experiments are shown. More than 77 cells were measured in each experiment. (C) Irradiation with

THz waves generated by the IMPATT-diode source was started at 0 minutes and continued for 120 minutes. The mean

fluorescence intensity of SiR-actin in individual cells was measured from the fluorescence microscopy images. The

box plot shows the mean value relative to that measured at 30 minutes. The standard deviations of three independent

experiments are shown. More than 120 cells were measured in each experiment.

https://doi.org/10.1371/journal.pone.0248381.g004

Fig 5. Effect of THz irradiation on actin-including structures. (A) Illustration of the functional structures that include actin filaments inside cells. In

the cytoplasm, actin filaments form massive assemblies, which can be categorized as stress fibers, lamellipodial meshworks, and transverse arcs. Stress

fibers are static structures that exist along the cell membrane; the lamellipodial meshwork is observed in the leading edge of the cell; and transverse arcs

are generated in the cell membrane and move to the center of the cell. (B) Live-cell imaging of actin filaments with and without THz irradiation. The

white dotted line marks the cell membrane. The yellow arrow shows stress fibers, which appeared along the cell membrane. The red arrow shows a

transverse arc, which was generated in the cell membrane and moved to the center of the cell for 20–30 minutes. The scale bar represents 10 μm. (C)

Percentage of cells, in which transverse arcs appeared during microscopy observation for 30 minutes. As a positive control, cells were treated with 10 nM

jasplakinolide at 0 minutes to induce actin polymerization. The error bar shows the standard deviation of three independent experiments. More than

184 cells were measured in each experiment.

https://doi.org/10.1371/journal.pone.0248381.g005
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irradiation in living cells. Furthermore, THz irradiation caused the generation and retention

of massive assemblies of actin filaments, such as contractile rings and transverse arcs (Figs 3

and 5).

Because the formation of biological molecules is sensitive to temperature, the simplest

explanation for the enhancement of actin polymerization might be a transient increase of tem-

perature owing to the absorption of THz irradiation by water. However, it has been demon-

strated that the effect of a temperature rise on actin polymerization is negligible (Fig 2B) [34,

45]. In addition, we estimated the temperature change during THz irradiation as 0.23 ˚C using

an adiabatic model (S1 Fig in S1 File). Therefore, it is unlikely that a temperature change due

to THz irradiation enhances actin polymerization in living cells, and other mechanisms should

be considered.

Another possible explanation is THz-induced shockwaves. In our previous study, we found

that shockwaves were generated by THz pulses of 80 μJ/cm2 with a duration of 5 ps (peak

power of 16 MW/cm2) [32]. Intense THz pulses are absorbed at the water surface and the

energy concentration results in shockwave generation. The shockwaves propagate for a few

millimeters in the aqueous medium, and disrupt the morphology of actin filaments in living

cells. However, in the present study, the energy of each THz pulse was 6 mJ/cm2 with a dura-

tion of 10 ms, giving a peak power of just 0.6 W/cm2, which is eight orders of magnitude

smaller than that used in Ref. 32, which generated shockwaves. Therefore, we consider that

THz irradiation did not induce shockwaves under the experimental conditions of the present

study.

We attribute the observed phenomena to non-thermal and non-acoustic effects of THz irra-

diation (i.e. the direct interaction between THz photons and the dynamical motion of the

actin proteins). Because the vibration frequencies of the higher-order conformations of pro-

teins and the surrounding water molecules are in the THz band [46–48], THz irradiation per-

turbates the intra- and inter-molecular dynamics of the actin proteins. The actin

polymerization process consists of three phases: nucleation, elongation, and equilibrium. In

our previous study, we found that THz irradiation enhances actin polymerization reaction in

the aqueous solution [34]. We concluded that THz irradiation accelerates the elongation pro-

cess because the actin filaments undergo additional elongation under THz irradiation in the

equilibrium state. Those results showed that THz irradiation affects the dynamics of actin mol-

ecules during the elongation reaction.

Our previous in vitro THz irradiation experiment for the same molecule helps us under-

stand the mechanism of in vivo THz irradiation. The observed phenomena—the inhibition of

cytokinesis and formation of transverse arcs—suggest the enhancement of actin filamentation

in living cells, which we also quantitatively confirmed from the fluorescence intensity of SiR-

actin. In the in vitro experiment, such enhancement of actin filamentation was not due to the

expression of the intra-cellular system, such as activation of cell signaling, changes of tran-

scriptional regulations, and induction of cellular responses, but was due to the direct enhance-

ment of the elongation reaction of the actin filament. Using actin molecules, we succeeded in

elucidating the effects of THz irradiation on molecular reactions and cellular expression.

Actin filament is a major component of the cytoskeleton, and has crucial roles in determin-

ing cell shape, and for cell motility and division [49, 50]. Moreover, the recent development of

fluorescence probes has led to the revelation that nuclear actin filaments are required for tran-

scriptional regulation, DNA repair, and gene reprogramming [51–53]. Therefore, THz irradia-

tion has potential as a novel biological tool. In fact, we discovered that the effect of THz

irradiation is similar to that of jasplakinolide treatment. Jasplakinolide, a naturally occurring

cyclic peptide from the marine sponge Jaspis sp [54], is a membrane-permeable, actin-poly-

merizing, and filament-stabilizing drug [55]. Jasplakinolide has a wide range of known
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biological functions, which include antifungal and antitumor activities [56, 57]. Thus, by anal-

ogy with jasplakinolide, we suggest that THz irradiation can be used to manipulate cell func-

tions via actin polymerization. In this study, we also demonstrated that the actin filamentation

is induced by an IMPATT diode source. The IMPATT diode is small, operated at room tem-

perature, and works with lower electrical power. Such solid-state semiconductor THz-sources

are widely available for experiments with biological samples.

Conclusions

We found that THz irradiation enhances the formation and stabilization of actin assemblies in

living cells. Therefore, we propose that THz irradiation can be used for the optical manipula-

tion of cellular functions via the modulation of actin dynamics, leading to a better understand-

ing of the function of actin.
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