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Accurate measures of liver fat content are essential for investigating hepatic steatosis. For a noninvasive inexpensive ultra-
sonographic analysis, it is necessary to validate the quantitative assessment of liver fat content so that fully automated reliable
computer-aided software can assist medical practitioners without any operator subjectivity. In this study, we attempt to quantify
the hepatorenal index difference between the liver and the kidney with respect to the multiple severity status of hepatic steatosis.
In order to do this, a series of carefully designed image processing techniques, including fuzzy stretching and edge tracking, are
applied to extract regions of interest. Then, an unsupervised neural learning algorithm, the self-organizing map, is designed to
establish characteristic clusters from the image, and the distribution of the hepatorenal index values with respect to the different
levels of the fatty liver status is experimentally verified to estimate the differences in the distribution of the hepatorenal index. Such
findings will be useful in building reliable computer-aided diagnostic software if combined with a good set of other characteristic
feature sets and powerful machine learning classifiers in the future.

1. Introduction

Fatty liver or hepatic steatosis is a common histologic finding
in human liver biopsy specimens, and nonalcoholic fatty liver
disease (NAFLD) is the most common cause of fatty liver
[1]. The prevalence of NAFLD in the general population is
estimated to be 20–30% in Western countries [2], but this
number is considerably higher in people with type 2 diabetes
or obesity [3] and recent report found a similar tendency
in Asian countries as well [4]. In a majority of patients,
NAFLD is associated with metabolic risk factors such as
obesity, diabetesmellitus, and dyslipidemia [5]. NAFLD is not
only a liver disease but also an early mediator that reflects a
metabolic disorder [6].

Liver biopsy is the gold standard for the quantification of
hepatic steatosis. However, it is difficult for most patients to
accept it due to its invasiveness and a significant degree of
sampling error [7].

Ultrasonography (US) is an appealing technique com-
pared with computed tomography (CT) and magnetic reso-
nance imaging (MRI) in detecting the fatty infiltration of the
liver because of its simplicity, low cost, noninvasive nature,
and widespread availability.

However, almost always, the use of US methodologies in
diagnosis suffers from several limitations including operator
dependency, subjective evaluation, and limited ability to
quantify the amount of fatty infiltration, and, ultimately, it is
frequently regarded as being unable to provide an accurate
measurement of the liver fat content [8].

Recently, there has been notable progress in US method-
ologies. The overall sensitivity, specificity, positive likelihood
ratio, and negative likelihood ratio of the ultrasound for the
detection of a moderate-severe fatty liver, as compared to
histology, were sufficiently high comparedwith those of other
imaging techniques (i.e., CT orMRI) [1].Thus, there has been
a growing need to have a computer-aided tool to quantify
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liver steatosis by using the liver echogenicity or the increased
US attenuation in fatty liver tissue.

The automated fatty liver diagnosis system typically con-
sists of the detection of the fatty liver area, feature extraction,
and classification. The performance of the classifier is highly
dependent on the feature set for the classifier algorithms used
for the diagnosis. Some of the recent efforts in this line of
research are the support vector machine (SVM) with wavelet
packet transform (WPT) [9] or gray-level run length matrix
(GLRLM) [10], simple neural network, and self-organizing
map (SOM) with a textual feature set [11]. Other research
efforts in this field include extracting the salient features
with the data mining technique [12] or texture analysis [13]
or finding an appropriate quantification index to decide a
fatty liver class such as the fatty liver index (FLI) [14] and
hepatorenal index (HRI) [15].

Further, in practice, several studies report that the ultra-
sonographic findings of the fatty liver are based on the
brightness level of the liver in comparison to the renal
parenchyma [16–18]. Since Joseph et al. [19] reported a “bright
liver pattern” indicating that a closely packed high amplitude
echoes throughout the liver, this pattern has been recognized
as a diagnostic hallmark of the fatty liver. Normally, liver and
renal cortexes are of a similar echogenicity; however, the renal
cortex appears relatively hypoechoic as compared to the liver
parenchyma in fatty liver patients on US.The liver-to-kidney
contrast has been used as a diagnostic parameter for the fatty
liver in many articles [1].

In this study, we also note the importance of the quan-
tification of HRI as a predictor of the fatty liver level and
its utility in classification. While many previous studies have
viewed the fatty liver classification as a two-class problem
(normal versus abnormal), our approach considers it a
multiclass problem (normal, mild, moderate, and severe) on
the basis of [20].

We also apply a self-organizing map (SOM) and the
corresponding cluster analysis in the quantification process
of the contrast of HRI with respect to the steatosis level of
the liver. SOM has been effectively used in many engineering
applications such as computer vision and texture analysis
[21] and many areas of medical image analysis [22, 23]. The
proposed method does not take into account the quality of
the textual feature set that is used in the final fatty liver
classification and diagnosis at this point of time. Rather, we
focus on the usefulness of SOM and the other corresponding
intelligent image processing methods in quantifying HRI
with respect to the fatty level of a liver US image.

2. Fatty Liver Area Extraction with Image
Processing Algorithms

A typicalUS image that contains the liver and the right kidney
areas and has a relatively low intensity is shown in Figure 1.

There exists a limiting membrane with a high intensity as
the border of our two regions of interest (ROI)—the liver and
the right kidney. Such ROI are extracted with respect to the
location of musculi abdominis and fascia found in the upper
area of the liver and the fatty areas of the liver and the kidney.

Figure 1: Ultrasonography image and regions of interest.

Figure 2 summarizes the overall procedures performed in
this study. Our software consists of twomajor activities—ROI
extraction with image processing and cluster analysis with an
artificial intelligence technique.The latter will be explained in
Section 3 in detail.

The first major step of image preprocessing for the US
analysis is to enhance the brightness contrast. The US image
contains a relatively bright area such as abdomen muscles,
fascia, fat area in the kidney, and the border lines between
the liver and the kidney. We apply the fuzzy stretching
technique [24] for this purpose. The fuzzy stretching tech-
nique enhances the contrast by dynamically controlling the
maximum and the minimum range of the stretching with a
triangle-type fuzzy membership function.

Let𝑥
𝑖
be the brightness value of the inputUS imagewhere

𝑖 is in the range of [0, 255].Then, the average brightness value
of the image 𝑥

𝑚
can be computed by using the following

formula:

𝑥
𝑚
=

255

∑
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where𝑀 and𝑁 denote the width and the length of the image.
Then, the distance between the brighter area and the

average 𝑑max, and the darker area and the average 𝑑min is
defined as follows:

𝑑max =
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(2)

where 𝑥
ℎ
and 𝑥

𝑙
denote the highest and the lowest brightness

pixel value, respectively. Then, the brightness values are
adjusted according to the following rule and the maximum
andminimum intensity values 𝐼max and 𝐼min are computed by
the following formula:

if (𝑥
𝑚
> 128) ad = 255 − 𝑥

𝑚

else if (𝑥
𝑚
≤ 𝑑min) ad = 𝑑min

else if (𝑥
𝑚
≤ 𝑑max) ad = 𝑑max

else ad = 𝑥
𝑚
,

𝐼max = 𝑥𝑚 + ad, 𝐼min = 𝑥𝑚 − ad.

(3)
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Figure 2: Overall procedure of the proposed method.
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Figure 3: Fuzzy membership function for brightness enhancement.

The fuzzymembership function for intensity stretching is
then defined as shown in Figure 3 in the interval [𝐼min, 𝐼max],
where the maximum membership degree 𝐼mid is defined as
follows:

𝐼mid =
𝐼max + 𝐼min
2

. (4)

Thus, the membership degree is defined according to the
following rules in the interval [𝐼min, 𝐼max]:

if (𝑥 ≤ 𝐼min) or (𝑥 ≥ 𝐼max) then 𝜇 (𝑥) = 0,

if (𝑥 > 𝐼mid) then 𝜇 (𝑥) =
𝐼max − 𝑥

𝐼max − 𝐼mid
,

if (𝑥 < 𝐼mid) then 𝜇 (𝑥) =
𝑥 − 𝐼min
𝐼mid − 𝐼min

,

if (𝑥 = 𝐼mid) then 𝜇 (𝑥) = 1.

(5)

The membership degree 𝜇(𝑥) obtained from the above
rules is then applied to the following formula to compute the
lower (𝛾) and the higher (𝛽) boundaries of the intensity that
are defined as the minimum and maximum values among 𝑥
whose 𝜇(𝑥) is no less than 𝛼-cut:

if (𝐼min ̸= 0) 𝛼-cut =
𝐼min
𝐼max

else 𝛼-cut = 0.5.
(6)

Finally, the following formula finishes the stretching to
enhance the brightness contrast:

𝑥
𝐺
= 255

𝑥 − 𝛾

𝛽 − 𝛾

, (7)

where 𝑥𝐺 denotes the stretched brightness value of the pixel
from the original value 𝑥. Figure 4 demonstrates the effect of
fuzzy stretching.

To the image obtained in Figure 4, we also apply average
binarization only for pixels with positive intensity.

After binarization, we apply the edge tracking algorithm
[25] for fast object labeling. The edge tracking algorithm
tracks pixels having the same object label. The search for
the same label is 5-directional, starting with the top left spot
orthogonal to the current search direction by 45∘ each until
the search point returns to the starting point. If the search
diverges or the area obtained by this edge tracking is too
small (<200) or too large (>20000), we remove those objects
as noise since such a set of objects has no chance to form
any fascia, fat in the kidney, or limiting membrane with
a high intensity as the border of the liver and the kidney.
Figure 5 demonstrates the effect of binarization (Figure 5(b))
and noise removal by object labeling (Figure 5(c)).

However, the limiting membrane, the border between
the liver and the kidney, tends to have no clear form
with a relatively low intensity; thus, it is easy to lose such
information in the brightness-enhancing process. In order
to restore such lost boundary lines, we apply the average
binarization and labeling procedure again after connecting
relatively bright fascia and kidney fat area. This refocusing
contour analysis can successfully restore the boundary lines,
and the effect can be shown as in Figure 6.

The final treatment of this ROI extraction procedure
is to discriminate the liver and kidney area with reverse-
binarization and AND operations. Knowing that the liver
area is located in between the fascia and the limiting
membrane boundary lines and the kidney area is located
in between the limiting membrane boundary lines and the
kidney fat area, we extracted the ROIs as shown in Figure 7
for a further analysis of hepatic steatosis.

3. Quantification of Hepatorenal Index by
Self-Organizing Map

In this paper, we adopt the traditional fatty liver classification
based on [20] in which abnormal fatty livers are classified
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(a) Input image (b) Fuzzy stretched image

Figure 4: Fuzzy stretching effect.

(a) Fuzzy stretched image (b) After binarization

(c) After object labeling and noise removal

Figure 5: Object extraction by contour analysis.

into three levels—mild, moderate, and severe—with respect
to the evidence of diffuse hyperechogenicity of the liver
relative to the kidneys, ultrasound beam attenuation, and
poor visualization of the intrahepatic structures. Figure 8
shows the typical mild and moderate levels of the fatty liver
where the mild level (Figure 8(a)) has a slightly increasing
echogenicity level of liver parenchyma with clear boundaries
of the diaphragm and the intrahepatic blood vessel, whereas
the moderate level (Figure 8(b)) has a relatively high increase

in the echogenicity and the boundaries become vague. Such
a tendency becomes stronger when the fatty liver status is
“severe.”

In the US analysis, the brightness level of the liver
area with the presence of the right kidney, the hepatorenal
index difference (HRI-diff), or hepatorenal index ratio (HRI-
ratio) is often used as an index of the abnormal fatty liver
classification [15–17]. However, while strongly correlated to
other useful classification indexes [18], the quantification of
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(a) Boundary lost (b) Boundary restored

Figure 6: Redoing binarization for boundary line restoration.

(a) Object linking (b) Reverse binarization

(c) Liver area (d) Kidney area

Figure 7: Extracting regions of interest.

HRI with respect to hepatic steatosis is not a simple problem
due to the sensitivity of the probing position and the operator
subjectivity.

In this paper, we propose a method based on a self-
organizing map (SOM) [21] to quantify HRI-diff automati-
cally. Our goal is to compute the representative brightness
value by the cluster analysis obtained by SOM and show

that such representative HRI values have a strong statistical
tendency with the severity of the fatty liver level.

SOM, a nonlinear, ordered, smooth mapping of high-
dimensional data onto the regular, low-dimensional array
[21], is an unsupervised learning neural network tool used
in many medical image analysis applications [22, 23]. Some
studies have used SOM as a diagnostic classifier over a set
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(a) Mild level (b) Moderate level

Figure 8: Fatty liver with respect to severity.

(a) SOM applied (liver area) (b) Steatosis (liver area)

(c) SOM applied (kidney area) (d) Steatosis (kidney)

Figure 9: Typical normal liver.

of textual/statistical features in this fatty liver classification
problem [11], but in our work, SOM is used to form a set
of stable clusters with respect to the HRI values. Then, the
distinction of such clusters with respect to HRI-diff from that
of renal parenchyma shows the quantified characteristic of
HRI.

We use a two-dimensional output layer in this applica-
tion, and the SOM algorithm used in this study is as shown
in Algorithm 1.

The connection weight (𝑤) has the role of sample input
patterns and the most similar output neuron 𝑗 becomes
the winner during the learning process. Then, all connected
weights within the radius 𝑟 from the winner node 𝑗 will be
updated. The similarity is computed by the following:

𝐷(𝑗) = ∑

𝑖

(𝑤
𝑗𝑖
− 𝑥
𝑖
)

2

. (8)
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(a) SOM applied (liver area) (b) Steatosis (liver area)

(c) SOM applied (kidney area) (d) Steatosis (kidney)

Figure 10: Typical mild fatty liver.

Weight (𝑤𝑘+1) of the learning step 𝑘 + 1 is then defined as
follows:
Δ𝑤
𝑘

𝑗𝑖
= 𝛼 [𝑥

𝑖
− 𝑤
𝑘

𝑗𝑖
] , 𝑤

𝑘+1

𝑗𝑖
= 𝑤
𝑘

𝑗𝑖
+ 𝛼 [𝑥

𝑖
− 𝑤
𝑘

𝑗𝑖
] . (9)

After the predefined number of repetitions, the radius 𝑟
and the learning rate 𝛼 are reduced and the learning step
continues. The stopping condition in our experiment was
𝛼 < 0.2 or radius 𝑟 becomes a nonpositive value.

The clusters from SOM learning are then analyzed after
quantization. The quantization process is necessary because
of the possibleUSdistractions.Thus, the representative inten-
sity value is defined as the average over pixels in the largest
cluster after quantization.

Then, the hepatorenal index difference (HRI-diff) is
computed to view if there is a statistically significant tendency
with respect to the severity of hepatic steatosis.

Since it is expected that the representative intensity of the
kidney area is relatively stable and that of the liver area is
positively proportional to the severity of steatosis, HRI-diff
will play the role of the predictor of the fatty liver severity
classification.

4. Experiment and Analysis

The proposed method is implemented in Visual Studio 2010
C# with Intel Core @ 3.40GHz and 4GB RAMPC. 25 images

Table 1: HRI quantification with respect to severity level of fatty
liver.

LP RP Number of CL
Normal
Range 23–53 21–51

8–10SD 3.027 3.671
Mean 43.500 41.709

Mild
Range 38–74 28–53

9–11SD 2.546 3.157
Mean 52.159 43.724

Moderate
Range 38–91 28–68

9-10SD 2.321 4.023
Mean 68.729 46.704

LP: liver parenchyma; RP: renal parenchyma; number of CL: number of
clusters.

from 10 normal, 7 mild, and 8 moderate fatty liver patients
were obtained from the Pusan National University Hospital,
Korea, in the 1024× 768 bitmap format. Images were obtained
by the right subcostal scan including the lower pole of the
liver and the right kidney. Table 1 summarizes the major
findings of this experiment.
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(a) SOM applied (liver area) (b) Steatosis (liver Area)

(c) SOM applied (kidney area) (d) Steatosis (kidney)

Figure 11: Typical moderate fatty liver.

Step 1. Initialize weights
𝑤 ← random value

Step 2. Set topological neighborhood and learning rate
Radius 𝑟 ← integer
Learning rate 𝛼 ← small number (0 < 𝛼 < 1)

Step 3. While the stop condition is not satisfied,
Do Steps 4–8

Step 4. For each input 𝑥
Do Steps 5–8

Step 5. Compute distance
𝐷(𝑗) = ∑

𝑖

(𝑤
𝑗𝑖
− 𝑥
𝑖
)
2

Step 6. Find winner neuron 𝑦
𝑗

∗

Step 7. Update weights within radius
𝑤
𝑘+1

𝑗𝑖
= 𝑤
𝑘

𝑗𝑖
+ 𝛼[𝑥

𝑖
− 𝑤
𝑘

𝑗𝑖
]

Step 8. Reduce the learning rate and radius
Step 9. Test the stop condition

Algorithm 1: Self-organizing map (SOM) learning algorithm.

As represented in Table 1, HRI values in the liver area
are positively proportional to the severity of the hepatic
steatosis and even the dispersion of the distribution is clearly
discriminative considering low standard deviation within the
class level.

Figures 9, 10, and 11 show the typical ROI extractions and
fatty level visualizations with respect to the severity level—
normal, mild, andmoderate. At this point of time, we did not
have “severe” fatty liver images in this experiment.

5. Conclusion

In this study, we aim to quantify the HRI difference between
the liver and the kidney by using US images as a use-
ful predictor attribute of the multilevel (multiclass) hep-
atic steatosis classification. The proposed fully automated
computer-aided diagnostic system typically consists of three
parts—ROI extraction with image processing, feature set
extraction, and applying classifier algorithms. In the ROI
extraction procedure, we use a fuzzy stretching algorithm
to enhance the brightness contrast. The carefully designed
fuzzy membership function and the corresponding auxiliary
image processing techniques such as labeling, binarization,
and contour analysis enable us to extract the appropriate and
distinguishable liver and kidney areas from the image.

Then, the self-organizing map (SOM), an unsupervised
neural network learning algorithm, is designed to form
representative clusters of the liver image from the ROI US
images. The characterization of the cluster analysis gives us
a clear statistical delineation of the intensity distribution in
terms of HRI-diff among different levels of hepatic steatosis.
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The purpose of this study is to show that HRI is an
important and informative diagnostic attribute in multi-
class fatty liver classification because of such quantification.
This encourages us to develop reliable automatic diagnostic
software if it is combined with other sets of useful textual
or statistical features and other powerful machine learning
algorithms in the future.
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