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Simple Summary: Breast, colon, and prostate cancer account for about a third of cancer cases and
a fifth of cancer deaths. At the molecular level, one reason for the development of cancer is the
dysfunction or altered co-regulation of cellular proteins. In this study, we focused on the co-regulation
of ion channels, specifically the prominent Ca2+ ion channel Orai1 and the Ca2+ activated K+ ion
channel SK3. It has recently been reported that their interplay promotes the growth of breast and
colon cancer cells, but the molecular determinants for their co-regulation have remained elusive.
In this study, we set out to characterize their interplay and the crucial regions therefore required.
Moreover, we found that the function of prostate cancer cells is also controlled by the interplay of Ca2+

and the Ca2+ sensitive K+ channels. Our findings provide a better understanding of the co-regulation
of these ion channels, which could be used in the future for the development of novel therapeutics.

Abstract: The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel,
has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and
colon cancer cells, although a molecular mechanism has remained elusive to date. We show in
the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in
addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3
K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism
of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of
SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its
interplay with the SK3–CaM binding site. Mapping for interaction sites within Orai1, we identified
that the cytosolic strands and pore residues are critical for a functional communication with SK3.
Moreover, STIM1 has a bimodal role in SK3–Orai1 regulation. Under physiological ionic conditions,
STIM1 is able to impede SK3–Orai1 interplay by significantly decreasing their co-localization. Forced
STIM1–Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation
of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell
line LNCaP.

Keywords: STIM1; Orai1; CRAC channel; Ca2+ activated K+ ion channels; SK channels; SK3; calmod-
ulin; LNCaP cells
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1. Introduction

Calcium (Ca2+) ionsplay a variety of critical roles in many vital aspects of cellular life.
Ca2+ signaling triggers short- and long-term cellular processes responsible for fundamental
physiological functions, including secretion, gene regulation, muscle contraction, activation
of the immune system, cell proliferation, cell motility, and apoptosis [1–7]. Defects in the
cellular Ca2+ homeostasis due to dysfunction or changes in Ca2+ signal transduction can
lead to severe immune deficiencies, neurological diseases, cardiovascular problems, and
various types of cancers [8]. Ca2+ enters the cell via diverse Ca2+ ion channels. The resulting
elevations of intracellular Ca2+ levels can regulate the activity of Ca2+ sensing ion channels.
Several reports have already provided evidence of an interplay of Ca2+ and Ca2+ regulated
potassium (K+) ion channels such as CaV2.3 with BK channels [9], Orai1 with the ether
a-gogo K+ channel hEag1 [10] or BK channels [11,12], Orai1 [13], or TRPV6 [14] with the
small conductance Ca2+-activated activated K+ channels SK4 and Orai1 with its homolog
SK3 [13,15–19]. The interplay of the Ca2+ ion channel Orai1 with the Ca2+-activated K+ ion
channel SK3 is currently best studied in breast cancer cells [16,20,21].

Orai1 [22,23] together with the ER-localized Ca2+ sensor STIM1 [24–26] constitute
the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are activated
upon ER Ca2+ store depletion [22,27]. In response to the drop of ER Ca2+ concentration,
STIM1 undergoes a conformational change [25,28–32], coupling to and activating Orai1 to
allow Ca2+ influx [33–36]. STIM1 induced Orai1 activation is only guaranteed as long as
the cytosolic N- and C-terminus, as well as the loop2 region of this Ca2+ ion channel, are
intact [30,37–46]. STIM1–Orai1 coupling, predominantly established via the main coupling
site at the Orai1 C-terminus, can be disrupted via either a single point mutation L273D
or C-terminal truncations to L276 or beyond [35,38,47,48]. N-terminal truncations and
site-directed mutagenesis revealed that residues downstream of Q72 are indispensable
for full activation of STIM1 mediated Ca2+ entry [37,38,47]. The residues 39–59 of the
Orai1 N-terminus associate with the A-kinase anchoring protein (AKAP79) that binds both
calcineurin and nuclear factor of activated T-cells (NFAT). Orai1-AKAP79 association thus
allows local calcineurin activation and rapid NFAT nuclear translocation in response to
local Ca2+ entry through Orai1 [49].

SK3 channels are part of the SK channel family consisting of the small (SK1, SK2, and
SK3) and intermediate (SK4) conductance Ca2+-activated K+ channels. The pore forming α

subunits of SK channels consist of a tetrameric six-transmembrane domain (S1–S6) structure
flanked by the cytosolic N- and C-terminal strands. The S4–S5 linker in the SK channel
contains two α-helices, S45A, and S45B. The SK channel gating is triggered by changes in
intracellular Ca2+ concentrations at the submicromolar level (KD = 0.5 µM) [50] via bound
calmodulin (CaM) and occurs in a voltage-independent manner [51,52]. On the basis of the
structural and functional analyses, Lee et al. [53] presented the Ca2+-dependent channel
opening mechanism of SK4. The high structural similarity between SK3 and SK4 suggests
that, in analogy to SK4, similar Ca2+-dependent pore opening mechanisms exist for SK3. As
shown by Lee et al. [53], four CaM molecules bind to each channel tetramer. The C-terminal
lobe of CaM is constitutively bound to SK4 while the N-terminal lobe binds SK4 in a Ca2+

dependent manner, thereby controlling channel opening. Elevations of intracellular Ca2+

levels allow Ca2+ binding to the CaM N-lobe, triggering a conformational change of the
S4–S5 linker, which results in pore opening [50,53]. Ca2+ independent CaM binding has
been further reported to regulate SK2 channel trafficking to the membrane [54].

The structure–function relationship of Orai1 and SK3 is currently well understood.
Recent studies have reported the co-localization of the SK3 and Orai1 channels in

breast and colon cancer cells [13,16,18,19,55–57]. There, these channels control cell prolifer-
ation and migration or trigger bone metastasis [15,16,19,56,58,59], as found, for example,
for SK3–Orai1 complexes in breast cancer cells [56]. While normal human breast and
colon cancer cells contain only Orai1, the corresponding cancer cells express SK3 and
Orai1 co-localized in lipid rafts [16]. Those cells exhibit constitutive Orai1-dependent
Ca2+ entry, independent of STIM1, which is promoted via hyperpolarization due to SK3
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channel activation. This has led to the assumption that Orai1-induced SK3 activation
is mediated via direct or indirect interaction of those two proteins, potentially inducing
structural changes to open the Orai pore subsequently, leading to the constitutive activity
of the channel [57]. Indeed, there is evidence for a co-regulation of SK3 and Orai1 in
breast [17] and colon [14,16,19,60] cancer cells. However, the structural requirements and
key determinants manifesting their interplay are still unknown.

Here, we present crucial, previously elusive conditions that mediate the communica-
tion between the SK3 and Orai1 channels. We show that Orai1 promotes SK3 K+ currents
and restores SK3 channel activity, which has been abolished by CaM mutants. Using a set
of point and truncation mutants in Orai1, we uncovered that an intact pore geometry and
virtually the entire Orai1 N- and C-termini are crucial for the SK3–Orai1 interplay. While
the SK3–Orai1 co-regulation occurs independently of STIM1, STIM1 is able to reduce the
extent of SK3–Orai1 co-localization, and thus their interplay under physiological conditions.
The SK3–Orai1 co-regulation occurs not only in the standard HEK 293 expression system,
but also in the human prostate cancer cell line, LNCaP.

2. Materials and Methods
2.1. Reagents

Inhibitors (NS8593 hydrochloride Cat #: N-195, 4-AP Cat #: A-115) and activators
(NS-309 Cat #: N-180, 1-EBIO Cat #: E-150, Cyppa Cat #: C-110) were purchased from
Alomone Labs (Jerusalem, Israel).

2.2. Molecular Biology

For N-terminal fluorescence labeling of human Orai1 (Orai1; Accession number
NM_032790, kindly provided by A. Rao’s lab (Center for Autoimmunity and Inflam-
mation, La Jolla Institute for Immunology, UC San Diego’s Research Park, San Diego, CA,
USA), the constructs were cloned into the pEYFP-C1 (Clontech Laboratories, Inc. (since
2015 Takara Bio USA, Inc. San Jose, CA, USA)) expression vector via KpnI and XbaI (Orai1)
restriction sites, respectively. Orai1 N-terminal deletion mutants amplified via PCR includ-
ing a 5′ KpnI and a 3′ XbaI restriction site for cloning into the pEYFP-C1 vector as described
in [33]. Site-directed mutagenesis of Orai1 was performed using the QuikChange™ XL
site-directed mutagenesis kit (Stratagene (since 2007 Agilent Technologies, Inc., San Diego,
CA, USA) with the corresponding Orai1 constructs serving as a template according to [53].

For N-terminal fluorescence labeling of human SK3 (SK3; Accession number AAP45947.1,
kindly provided by N. Marrion’s lab (School of Physiology, Pharmacology & Neuroscience,
University of Bristol, Bristol, England), the constructs were cloned into the pEYFP-C1
(Clontech Laboratories, Inc.) expression vector via EcoRI and BamHI (SK3) restriction
sites, respectively.

Human STIM1 (STIM1; Accession number: NM_003156) N-terminally ECFP-tagged
was kindly provided by T. Meyer’s Lab (Chemical and Systems Biology, Stanford University,
Stanford, CA, USA).

CaM was amplified by PCR and cloned into YFP-/CFP-C1 vectors using EcoRI and
SacII. Frame correction was performed at the beginning of the MCS, leading to a frame
equivalent to YFP-/CFP-C2 vectors.

The CaM mutant (CaMMUT) has mutations introduced on all four EF hands, render-
ing it insensitive to Ca2+. Point mutations within CaM have been performed using the
QuikChange™ XL site-directed mutagenesis kit (Stratagene).

All clones were confirmed by sequence analysis.

2.2.1. Generation of STIM1/Orai1 Double Knockout HEK 293 Cells Using CRISPR/Cas9
Genome Editing

The guide RNA pairs within exon 1 of STIM1 were identified using the Benchling
CRISPR webtool (https://benchling.com/crispr, accessed on 12 October 2015) and the
following complementary oligos with BbsI compatible overhangs were designed:

https://benchling.com/crispr
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STIM1_gRNA1 for: 5′-CAC CGT TCT GTG CCC GCG GAG ACT C-3′

STIM1_gRNA1 rev: 5′-AAA CGA GTC TCC GCG GGC ACA GAA C-3′

STIM1_gRNA2 for: 5′-CAC CGT ATG CGT CCG TCT TGC CCT G-3′

STIM1_gRNA2 rev: 5′-AAA CCA GGG CAA GAC GGA CGC ATA C-3′

The oligo pairs were annealed by incubating for 5 min at 95 ◦C in a thermocycler
and then ramping down to 25 ◦C at 5 ◦C/min. The dsDNA guide inserts were ligated
into BbsI-digested pX330-PGK-puro vector. HEK 293 cells seeded in a 6-well plate were
co-transfected with 1 µg of each plasmid using Lipofectamine® 3000 (Thermo Fisher
Scientific, Waltham, MA, USA) when the cells were 50–60% confluent. The transfectants
were subjected to 96 h of puromycin selection (1.5 µg/mL), 24 h after transfection. For
further knockout of Orai1, the guide RNA pairs within exon 2 and exon 3 were identified
using the Benchling CRISPR webtool and the following complementary oligos with BbsI
compatible overhangs were designed:

Exon 2:

Orai1_gRNA1 for: 5′-CACCGATCGGCCAGAGTTACTCCG-3′

Orai1_gRNA1 rev: 5′-AAACCGGAGTAACTCTGGCCGATC-3′

Exon3:

Orai1_gRNA2 for: 5′-CACCGGCGGAGTTTGCCCGCTTAC-3′

Orai1_gRNA2 rev: 5′-AAACGTAAGCGGGCAAACTCCGCC-3′

The oligo pairs were annealed as mentioned above. The dsDNA guide inserts with
BbsI overhangs were ligated into BbsI-digested pU6-(BbsI) CBh-Cas9-T2 A-mCherry
(Addgene (Watertown, MA, USA) Plasmid #64324). The resulting constructs were co-
transfected in HEK 293 STIM1 KO cells seeded in a T25 flask using Lipofectamine 2000.
The transfected cells were FACS-sorted with mCherry fluorescence, and single cells were
seeded in a 96-well plate. The cells were tested by Ca2+ imaging with FURA-2 and a single-
cell-derived clone was functionally confirmed to have undergone knockout of STIM1 and
Orai1. Cells were used until passage 18.

2.2.2. Western Blot Analysis and Co-Immunoprecipitation

Untransfected as well as transfected (transfection 16–24 h prior to lysis) wild-type or
CRISPR/Cas9 STIM1/Orai1 double knockout (STIM1/Orai1 DKO) HEK 293 cells were
cultured in 12 cm dishes, harvested, and washed twice in an HBSS (Hank’s balanced
salt solution) buffer containing 1 mM EDTA. After centrifugation (1000× g/2 min), cell
pellets were resuspended in homogenization buffer (25 mM Tris HCl pH 7.4, 50 mM NaCl,
protease inhibitor (Roche, Basel, Switzerland)) and incubated on ice for 15 min. Lysed cells
were passed 10 times through a 27G 1

2 ” needle and centrifuged at 1000× g for 10 min at
4 ◦C to pellet debris. Then, 21 µL of each sample was mixed with nonreducing Laemmli’s
buffer, heated for 10 min at 55 ◦C, and subjected to 3–8% Tris-acetate gels (BioRad, Vi-
enna, Austria). Samples were loaded on a 12% SDS page, transferred to a nitrocellulose
membrane, and immunoblotted with suitable antibodies (antiSK3 antibodies (Alomone
labs), antiSTIM1 (CellSignaling, Frankfurt am Main, Germany), antiOrai1, antirabbit, and
antiActin (SigmaAldrich, Taufkirchen, Germany)).

For co-immunoprecipitation, detached cells were incubated in lysis buffer for 2 h
on ice with constant shaking. After centrifugation (1000× g, 10 min) and collecting the
supernatant, 3 µg of anti-Orai1 or anti-STIM1 antibodies were added and shaken at 4 ◦C
over night. On the next day, 100 µL Sepharose A beads were added and incubated for 2 h
at 4 ◦C with constant shaking. Samples were centrifuged for 10 s at maximum speed and
beads washed 3× with ice cold lysis buffer. 50 µL of 2× Laemmli buffer were added to
the beads and boiled for 5 min at 95 ◦C. Samples were then loaded on a 12% SDS PAGE,
blotted, and detected with an anti-SK3 antibody (Alomone labs). A Precision Plus Dual
Color standard was used for size comparison (BioRad).

Each experiment was performed at least 3 independent times.
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2.3. Cell Culture and Transfection

The transient transfection of HEK 293 or STIM1/Orai1 DKO HEK 293 cells was
performed [61] using the TransFectin Lipid Reagent (BioRad) with the corresponding plas-
mids. The transient transfection of passages 3–5 of LNCaP cells was performed using the
Lipofectamine® 3000 transfection Reagent (Thermo Fisher Scientific) with the correspond-
ing plasmids. Measurements were carried out 24 h following transfection. Notably, all
LNCaP cell experiments described here were feasible only within the cell passages 3–5.
Earlier and later passages failed to reveal SK3 channel activation (see Section 3.6) upon the
same solution conditions.

2.4. Electrophysiology

Electrophysiological recordings that assessed the characteristics of 2–3 constructs
were carried out in paired comparison on the same day. Expression patterns and levels
of the various constructs were carefully monitored by confocal fluorescence microscopy
and were not significantly changed by the introduced mutations. Electrophysiological
experiments were performed at 20–24 ◦C, using the patch–clamp technique in the whole-
cell recording configuration. For SK3/Orai1 current measurements, voltage ramps were
usually applied every 5 s from a holding potential of 0 mV, covering a range of −90 to
+90 mV over 1 s. Used solution conditions to characterize STIM1/Orai1 and SK3 currents
individually, but also in their interplay, are systematically summarized in Appendix A.
The two main solution conditions applied are Physiological SK3 Solution Conditions
with [EGTA]intra and Symmetrical SK3 Solution Conditions with [EGTA]intra. They share
the same intracellular pipette solution but differ in the composition of the extracellular
solution. The internal pipette solution contained (in mM) 144 KCl, 1.49 MgCl2, 10 HEPES,
and 0.1 EGTA (or 0.1 BAPTA). The physiological extracellular solution consisted of (in
mM) 140 NaCl, 5 KCl, 1 MgCl2, 10 HEPES, 10 glucose, and 2 CaCl2, with a pH of 7.4.
The corresponding symmetrical extracellular solution consisted of (in mM) 144 KCl, 1
MgCl2, 10 HEPES, 10 glucose, and 10 CaCl2, with a pH of 7.4. The currents recorded
under physiological solution conditions were obtained at +30 mV, while the ones recorded
under symmetrical solution conditions were obtained at −74 mV. Furthermore, Orai1 Ca2+

currents were obtained at −74 mV. The Na+-DVF solution contained 150 mM NaCl, 10 mM
HEPES, 10 mM glucose, and 10 mM EDTA, with a pH of 7.4. Applied voltages were not
corrected for the liquid junction potential, which was determined as +12 mV. Experiments
were performed using HEK 293 cells, STIM1/Orai1 DKO HEK 293 cells, or LNCaP cells
as indicated.

2.5. Confocal Fluorescence Microscopy

Confocal FRET microscopy was performed on normal HEK 293 or CRISPR/Cas9
STIM1/Orai1 double knockout (STIM1/Orai1-DKO) HEK 293 cells. The transfected cells
were grown on coverslips for 24 h and subsequently transferred to an extracellular solution
consisting of 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM glucose, and
10 mM HEPES buffer (adjusted to pH 7.4 with NaOH). The experimental setup consisted
of a CSU-X1 Real-Time Confocal System (Yokogawa Electric Corporation, Musashino,
Tokyo, Japan) combined with two CoolSNAP HQ2 CCD cameras (Photometrics, Tucson,
AZ, USA). The installation was also fitted with a dual port adapter (dichroic, 505lp; cyan
emission filter, 470/24; yellow emission filter, 535/30; Chroma Technology Corporation,
Olching, Germany). An Axio Observer.Z1 inverted microscope (Carl Zeiss, Oberkochen,
Germany) and two diode lasers (445 and 515 nm, Visitron Systems, Puchheim, Germany)
were connected to the described configuration. All described components were positioned
on a Vision IsoStation antivibration table (Newport Corporation, Irvine, CA, USA). Image
recording and control of the confocal system were carried out with the VisiView software
package (v.2.1.4, Visitron Systems). Cross-excitation and spectral bleed-through necessitate
image correction before any FRET calculation. Cross-excitation calibration factors were
therefore determined for all expressed DNA constructs on each measurement day. After
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threshold determination as well as background signal subtraction, the apparent FRET
efficiency Eapp was calculated on a pixel-to-pixel basis. This was performed with a custom
program48 integrated into MATLAB (v.7.11.0, The MathWorks, Inc., Natick, MA, USA) that
implements a microscope-specific constant G parameter of 2.75.

Fluorescence images of the subcellular localization of NFAT transcription factors in
HEK 293 cells were recorded using a QLC100 Real-Time Confocal System (VisiTech Int.,
Sunderland, UK) connected to two Photometrics CoolSNAPHQ monochrome cameras
(Roper Scientific, Planegg, Germany) and a dual-port adapter (dichroic: 505lp; cyan emis-
sion filter: 485/30; yellow emission filter: 535/50; Chroma Technology Corp., Olching,
Germany). This system was attached to an Axiovert 200M microscope (Zeiss, Oberkochen,
Germany) in conjunction with two diode lasers (445 nm, 515 nm) (Visitron Systems, Puch-
heim, Germany). Visiview 2.1.1 software (Visitron Systems) was used for image acquisition
and control of the confocal system. ImageJ was employed for subcellular localization
analysis of the transcription factors by means of intensity measurements of the cytosol and
nucleus, distinguishing between three different populations with different nucleus/cytosol
ratios: inactive (<0.85), homogenous (0.85–1.15), and active (>1.15).

2.6. Fluorescence-Based Ca2+ Imaging

STIM1/Orai1 DKO HEK 293 cells were loaded with 1 mM Fura-2 AM for 20 min at
37 ◦C in Ringer solution containing 145 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM
HEPES, and 1 mM MgCl+, 2 mM CaCl for 2 mM Ca2+. The cells were then washed three
times, and the coverslips were mounted on an Axiovert 135 inverted microscope (ZEISS,
Oberkochen, Germany), where fluorescence was recorded from individual cells, with exci-
tation wavelengths of 340 and 380 nm and emission wavelength at 505 nm. Changes in Ca2+

were monitored using the Fura-2 340/380 fluorescence ratio and calibrated according to the
method established by Grynkiewicz et al. [48]. The fluorescence microscope was equipped
with a monochromator (T.I.L.L. Photonics, Kaufbeuren, Germany) and corresponding filter
sets and allowed the detection of CFP/YFP/red fluorescent protein fluorescence.

2.7. Co-Localization Analysis

The same technical equipment as for confocal FRET microscopy was used. Co-
localization analysis was carried out when images of a co-expression indicated that
two proteins were localized at the same positions (pixel-by-pixel analysis, orange in the
CFP/YFP overlay image). The Pearson correlation coefficient (R-value) was used to quan-
tify the strength of the co-localization, where a value of R = 1 signifies perfect positive
correlation/co-localization.

2.8. Cell Proliferation Assay

Cells were seeded at an initial density of 1.5 × 104 cells/well in 24-well plates (Ther-
moFisher). Cells were incubated for 4 days in a medium (control) or with a medium,
containing agonists (NS309, Cyppa) or antagonists (NS8593 hydrochloride, 4-AP, La3+,
Synta66, GSK7975A, BTP2) of the SK3 channel or Orai1 channel at various concentrations,
respectively. The CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay kit com-
mercially available (Promega, Walldorf, Germany), containing MTS solution (tetrazolium
compound) and PMS solution (electron coupling reagent), was used to calculate the cell
growth upon different conditions. Cells treated with MTS/PMS solution were equilibrated
for 4 h at 37 ◦C incubator before the measurement of absorption at 490 nm by plate reader
Zenyth3100 was executed. Every measurement was performed in triplicate.

2.9. Statistics

All data are presented as the mean ± SEM (standard error of the mean) for the indi-
cated number of experiments. Statistical significance was determined by Mann–Whitney
test for comparison of two groups (using Origin Pro 2019, Northampton, MA, USA). Statis-
tical significance was set to p < 0.05 and is indicated in the bar diagrams with an asterisk (*).
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3. Results

3.1. Mild Cytosolic Ca2+ Buffering Allows Robust SK3 Channel Activation and Weak
STIM1-Orai1 Activation

Previous reports on breast and colon cancer cells revealed enhanced Ca2+ levels
due to an interplay of SK3 and Orai1, independent of STIM1 [16,17]. Prior to our inves-
tigations of a potential co-regulation of SK3 and Orai1 channels in HEK 293 cells, we
systematically examined individual SK3 and STIM1-Orai1 current activation upon their
heterologous expression, using distinct solution conditions, differing mainly in intracellular
Ca2+ and/or EGTA concentration. The detailed solution compositions used are highlighted
by italics/underscore and summarized in Appendix A. Our goal was to confirm the Ca2+

sensitivity of SK3 channels and to reach intracellular Ca2+ concentrations, which still allow
the activation of SK3 currents, but leave STIM1 and Orai1 in the resting or marginally
active state.

As shown in previous reports [62–64], we confirmed via electrophysiological experi-
ments that SK3 K+ currents enhance with increasing intracellular Ca2+ concentrations. For
this purpose, we used both symmetrical and physiological solution conditions with the
pipette solution containing progressively increasing buffered Ca2+ concentrations (50, 100,
250, 350, 600, 800, and 1000 nM; symmetrical or physiological SK3 solution conditions with
buffered [Ca2+]intra). SK3 evoked K+ currents, as determined using repetitive voltage-ramps
from −90 to +90 mV, exhibited under symmetrical SK3 K+ solution conditions a double
rectifying I/V relationship and a reversal potential of ~0 mV [62–64] (Figure S1A,B). Under
physiological SK3 K+ solution conditions, SK3 currents displayed an outward rectifying
current with a reversal potential of ~ −70 mV, in accord with Xia et al. [64] (Figure S1D,E).
Under both conditions, increasing Ca2+ concentrations in the pipette solution resulted in
enhanced SK3 mediated K+ currents (Figure S1C,F).

Additionally, we revealed via varying EGTA concentrations in the pipette solution
(symmetrical or physiological SK3 solution conditions with [EGTA]intra) that 100 µM EGTA
enabled the activation of SK3 mediated K+ currents (Figures 1A–C and S2A–C). SK3 K+

currents exhibited upon whole-cell break-in slight constitutive activity, which reached a
steady-state level after ~250 s, as determined from repetitive voltage-ramps at voltages with
highest currents reached (−74 mV for symmetrical and +30 mV for physiological solution
conditions; Figures 1A−C and S2A−C). Higher EGTA concentrations in the pipette solu-
tion, which decrease intracellular Ca2+ concentrations, strongly reduced (200 µM EGTA) or
abolished (>200 µM EGTA) SK3 K+ current activation (Figures 1A–C and S2A–C). Thus,
cytosolic Ca2+ levels reached with 100 µM EGTA appear to be sufficient for SK3 channel
activation, while higher EGTA buffers decreased cytosolic Ca2+ too much to allow SK3 acti-
vation. The I/V relationships obtained using 100 µM EGTA for both, physiological as well
as symmetrical solutions, are comparable to those obtained with increasing intracellular
Ca2+ concentrations (symmetrical or physiological SK3 solution conditions with buffered
[Ca2+]intra; Figures 1C and S2C).
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Figure 1. Characterization of SK3 and STIM1/Orai1 channel currents. (A) Time course of SK3 mediated whole—cell
outward K+ currents at +30 mV using physiological solution conditions and recorded in the presence of different EGTA
concentration in the pipette solution; (B) Block diagram depicts maximum current densities measured in (A); (C) Current–
voltage relationship (I/V) corresponding to (B); (D) Time course of whole—cell inward currents at −74 mV of Orai1 in
co-expression with STIM1 under physiological solution conditions. Inward currents activated upon passive store—depletion
via 100 µM EGTA are shown in 2 mM followed by 10 mM extracellular Ca2+ solution; (E) I/V relationships corresponding
to (D) in 10 mM extracellular Ca2+ solution; (F) Time courses of whole—cell inward currents at −74 mV of Orai1 in
co-expression with STIM1 under standard STIM1/Orai1 solution conditions. Inward currents activated upon passive
store—depletion via 100 µM EGTA compared to 20 mM EGTA are shown; (G) Respective I/V traces corresponding to (F);
(H) Time course of SK3 + Orai1 mediated K+ currents recorded using standard STIM1/Orai1 solution conditions with
either 100 µM or 20 mM EGTA in the pipette solution; (I) The I/V relationship corresponding to (H); (J) I/V relationship of
SK3 + Orai1 mediated K+ currents recorded using standard STIM1/Orai1 solution conditions and 100 µM EGTA in the
pipette solution before (black) and after (red) addition of SK channel blocker NS8593 (30 µM) and subsequent application of
La3+ (10 µM). (inset) The remaining current upon NS8593 (red) displaying inward rectifying behavior was blocked by La3+

(blue). (K) The block diagram shows the current densities before and after application of SK channel blocker NS8593 for
SK3, SK3 + Orai1, and SK3 + Orai1 + STIM1 n > 5 measured at +30 mV. The Mann–Whitney test was used for statistical
comparison considering differences statistically significant at p < 0.05. The asterisk (*) highlights the statistical significance
(p < 0.05) before and after application of SK channel blocker NS8593 to currents of SK3, SK3 + Orai1, and expressing cells.
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The asterisks (**), as also indicated by corresponding color (light orange), highlight the statistical significance (p < 0.05)
between the currents recorded upon individual transfections of SK3, SK3 + Orai1, and SK3 + Orai1 + STIM1. All experiments
in figure were performed in normal HEK 293 cells.

Furthermore, we determined whether the above-mentioned solution conditions: phys-
iological SK3 solution conditions with [EGTA]intra, used to characterize SK3 channel acti-
vation, allow STIM1-Orai1 activation. Using physiological SK3 solution conditions with
100 µM EGTA in the pipette solution led to weak STIM1-Orai1 activation, which enhanced
upon the exchange of the extracellular [Ca2+] from 2 to 10 mM (physiological SK3 so-
lution conditions with high [Ca2+]extra) (Figure 1D,E). Consistent with these findings,
STIM1-Orai1-Ca2+ current activation was five-fold weaker in the presence of 100 µM EGTA
(standard STIM1/Orai1 solution conditions with low [EGTA]intra) than with 20 mM EGTA
in the pipette solution (standard STIM1/Orai1 solution conditions), both in the presence of
10 mM Ca2+ extracellularly (Figure 1F,G).

Overall, we confirmed that SK3 channel currents activate increasingly with elevated
intracellular Ca2+ concentrations, both via increasing buffered Ca2+ concentrations as well
as decreasing EGTA concentrations in the pipette solution. It turned out that 100 µM EGTA
in the pipette solution and 2 mM Ca2+ in the extracellular solution are suitable to further
investigate the SK3–Orai1 interplay, as they allowed robust SK3 channel activation, but
weak STIM1/Orai1 activation. Thus, we used physiological SK3 solution conditions with
[EGTA]intra, in particular with 100 µM EGTA intracellularly and 2 mM Ca2+ extracellularly
in the following experiments to determine SK3 K+ currents and its potential interplay
with Orai1.

3.2. Orai1 Boosts SK3 Channel Activation

In this part of the study, we investigated whether a potential interplay of SK3 and
Orai1, as it occurs in specific cancer cell types [16,17], also applies to HEK 293 cells in the
absence of STIM1.

Initially, we examined whether co-expression of Orai1 and SK3 in HEK 293 cells affects
intracellular Ca2+ levels, as suggested for breast cancer cells [16,17]. Under physiological
buffer conditions, we observed marginal, but not significant enhancement of basal Ca2+

levels with Fura-AM in SK3 and Orai1 co-expressing cells compared to only Orai1 or SK3
containing cells (Figure S3A). Ca2+ mediated NFAT activation was only slightly, but not
significantly enhanced for SK3–Orai1 compared to only Orai1 or SK3 expressing cells
(Figure S3B). From these experiments, we assume that there is only a minor rise in global
cytosolic Ca2+ levels under physiological buffer conditions.

In the next step, we investigated whether Orai1 and SK3 co-expressing cells exhibit
constitutive Ca2+ currents. Interestingly, using standard STIM1/Orai1 solution conditions
with low [EGTA]intra buffering in electrophysiological experiments, SK3 and Orai1 co-
expressing cells exhibited robust constitutive current activation (Figure 1H–K) with a
double rectifying I/V relationship with a shape similar to SK3 K+ currents obtained under
physiological conditions. These currents were strongly reduced in the absence of Orai1
(Figures 1K and S3C,E). Instead of using 100 µM EGTA, 20 mM EGTA in the pipette
solution abolished these currents as well (standard STIM1/Orai1 solution conditions;
Figure 1H,I). Application of NS8593, selectively interfering with SK1, SK2, and SK3 [65],
significantly diminished currents developed in SK3 expressing cells in the presence of
low [EGTA]intra (Figure 1J,K). For solely SK3 expressing cells, K+ currents were fully
inhibited upon NS8593 application (Figures 1K and S3C,E). Remarkably, for SK3–Orai1
expressing cells, a small, widely inward rectifying current with a reversal potential of
+40 mV remained (Figures 1J and S3D,E). This remaining current was completely blocked
via 10 µM La3+ (Figure 1J). The latter indicates that, contrary to SK3 expressing cells, Orai1-
SK3 co-expressing cells show not only K+ permeation, but also Ca2+ influx, potentially
via Orai1, in line with previous findings [16,17]. Moreover, our observations (Figure 1I–K)
point to a potentiating effect of Orai1 on SK3 K+ currents.
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Thus, in the following, we investigated, using defined symmetrical and physiological
SK3 solution conditions with [EGTA]intra, whether SK3 K+ currents are altered by the
co-expression of Orai1. Indeed, SK3 K+ currents were twice as high in the presence of Orai1
compared to its absence under both solution conditions (Figures 2A–C and S2D–F). It is
noteworthy that in the absence of extracellular Ca2+ (0 mM Ca2+) no SK3 K+ currents are
activated. Only upon the exchange to a 2 mM Ca2+ containing bath solution were SK3 K+

currents activated, which further increased in the presence of 10 mM Ca2+ (Figure 2D).
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Figure 2. Orai1 enhances SK3 channel K+ currents. (A) Time course of K+ currents of SK3 expressing compared to SK3 and
Orai1 or Orai1 E106Q co-expressing HEK 293 cells under physiological solution conditions. Pipette solution contains 100 µM
EGTA and 144 mM K+ and bath solution contains 2 mM Ca2+ and 5 mM K+; (B) Block diagram with maximum current
densities at t = 250 s corresponding to (A) and Orai1 + SK3 currents upon application of 10 µM La3+. The Mann–Whitney
test was used for statistical comparison considering differences statistically significant at p < 0.05. The asterisk (*), as also
indicated by the corresponding color (red), highlights the statistical significance of the currents recorded upon individual
transfections of SK3, SK3 + Orai1, SK3 + Orai1 E106Q, SK3 + Orai1 upon application of 10 µM La3+. The currents of
SK3, SK3 + Orai1 E106Q and SK3 + Orai1 upon application of 10 µM La3+ are significantly reduced when compared to
SK3 + Orai1; (C) The I/V relationship of maximum currents measured in (A); (D) Time course experiment of HEK 293 cells
expressing SK3 + Orai1 upon application of 0 mM Ca2+ and subsequent switch to 2 mM Ca2+ followed by 10 mM Ca2+

solution; (E–G) Experiments identical to (A–C) performed in STIM1/Orai1 DKO HEK 293 cells, (F) includes in addition
SK3 + Orai1currents upon application of 10 µM GSK-7975A, 5 µM Cyppa and 5 µM Cyppa + 10µM La3+ and SK3 currents
upon application of 5 µM Cyppa and 5 µM Cyppa + 10µM La3+. The Mann–Whitney test was used for statistical comparison
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considering differences statistically significant at p < 0.05. The asterisks (*), as also indicated by corresponding colors (black,
red, blue, green, yellow, light purple, dark purple, light brown, dark brown), highlight the statistical significance of the
currents recorded upon individual transfections of SK3, SK3 + Orai1, SK3 + Orai1 E106Q, SK3 + Orai1 upon application
of 10 µM La3+, 10 µM GSK-7975A, 5 µM Cyppa and 5 µM Cyppa + 10µM La3+ and SK3 currents upon application of
5 µM Cyppa and 5 µM Cyppa + 10µM La3+. The asterisk of the particular color above the bar indicates the significance of
p < 0.05 to the corresponding individual bar of the same color, respectively, which is applicable for each bar; (H) Maximum
K+ currents of SK3 and SK3 + Orai1 expressing HEK 293 STIM1 DKO cells in response to different EGTA concentrations
(100, 200, 300, 500, and 1000 µM) or 100 µM BAPTA in the pipette solution under physiological solution conditions. The
Mann–Whitney test was used for statistical comparison considering differences statistically significant at p < 0.05. The
asterisks (*), as also indicated by corresponding color (black), highlights the statistical significance of the currents recorded
upon different EGTA or BAPTA concentration upon overexpression of either SK3 or SK3 + Orai1; (I) Co-localization studies
in STIM1/Orai1 DKO HEK 293 cells performed with a pixel-by-pixel analysis and the corresponding block diagram showing
the comparison of YFP-Orai1 with CFP-SK3 and YFP-Orai1 E106Q with CFP-SK3 (scale bar: 10 µm); (J) Western blots of
wild-type and STIM1/Orai1 DKO HEK 293 cells upon overexpression of either SK3 and Orai1 or SK3 and STIM1 showing
either the input of Orai1 detected with an anti-Orai1 antibody, input of STIM1 detected with an anti-STIM1 antibody, or
co-immunoprecipitation of Orai1 and SK3 or STIM1 and SK3 detected with an anti-SK3 antibody. While experiments in
(A–D) were performed in normal HEK 293 cells, those in (E–G) were performed in STIM1/Orai1 DKO HEK 293 cells.
Western blots and Co-IP were performed in both normal and STIM1/Orai1 DKO HEK 293 cells as indicated.

To examine whether endogenous STIM1 and Orai1 are involved in the Orai1 mediated
boost of SK3 K+ currents, we performed the above-described experiments analogously in
CRISPR/Cas9 STIM1/Orai1 double knockout (STIM1/Orai1-DKO) HEK 293 cells verified
by sequence analysis and Western blot (Figure S4A,B). In accordance with our observations
in normal HEK 293 cells, we discovered significantly enhanced SK3 K+ currents in the
presence compared to the absence of Orai1 (Figure 2E–G). In addition to the loss of SK3 K+

currents in the absence of extracellular Ca2+ (0 mM Ca2+), and the sequential enhancement
in SK3 K+ currents with increasing extracellular Ca2+ concentrations (Figure 2D), the use
of a divalent free Na+ containing solution, known to permeate Orai1 channels [45,66–69],
did not generate SK3 K+ current activation (Figure S3F–H).

In support of these findings, not only the application of the general Ca2+ ion channel
blocker La3+ (10 µM), but also of the CRAC channel blocker GSK-7975A (10 µM) to cells
expressing SK3 and Orai1 led to a reduction in K+ currents similar to those obtained in SK3
containing cells in the absence of Orai1 (Figures 2B,F and S2E). Moreover, SK3 K+ currents
enhanced by the SK channel agonist Cyppa [62] were significantly inhibited by La3+ only
in the presence, but not in the absence of Orai1 (Figure 2F). Additionally, in contrast to
Orai1, the dominant-negative Orai1 pore mutant, Orai1 E106Q, when co-expressed with
SK3, did not further stimulate SK3 mediated K+ currents (Figures 2A–C,E–G and S2D–F).
This suggests that enhancements of SK3 K+ currents in the presence of Orai1 are likely
mediated via local Ca2+ entry across Orai1.

The SK3 current enhancing role of Orai1 is also evident when the intracellular Ca2+

concentration is varied using different EGTA concentrations. In the absence of Orai1, SK3
K+ currents were readily observed in the presence of up to 100 µM EGTA in the pipette
and they significantly increased by the presence of Orai1. At higher (200–500 µM) EGTA
concentrations, however, activation of K+ currents was only observed in the presence of
Orai1. With 1 mM EGTA in the pipette, no SK3-mediated K+ currents were detectable,
regardless of whether Orai1 was present or absent (Figures 2H and S2G). Moreover, when
using 100 µM BAPTA instead of 100 µM EGTA, we discovered that SK3 K+ currents were
not further enhanced in the presence of Orai1 compared to its absence (Figures 2H and S3I).

It is worth mentioning that we verified overexpression of CFP-labelled SK3 and YFP-
Orai1 upon the individual or upon co-expression using confocal fluorescence microscopy
(Figure S3J) as well as Western blot analysis in wild-type and STIM1/Orai1 DKO HEK
293 cells. (Figures 2J, S4C,D and S5A). Interestingly, single transfection of SK3 enabled only
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the detection of higher order oligomers (Figure S4C), while triple expression of SK3, Orai1,
and STIM1 enabled the predominant detection of SK3 monomers (Figure S4D).

Moreover, we discovered clear co-localization of Orai1 and SK3 in specific spots
of the cell membrane of HEK 293 cells, in line with previous reports showing their co-
localization in breast cancer cells [16] (Figure 2I). Analysis of SK3 and Orai1 E106Q revealed
a comparable level of co-localization (Figure 2I). Thus, reduced K+ current densities of
SK3 in the presence of Orai1-E106Q are most likely the result of abolished Ca2+ entry
via the Orai1 pore mutant per se. In line with the co-localization of SK3 and Orai1, we
discovered co-immunoprecipitation of SK3 and Orai1 in wild-type HEK 293 and HEK 293
STIM1/Orai1 DKO cells (Figures 2J and S5B), which is occurring to a much lower extent in
STIM1/Orai1 DKO HEK 293 cells co-expressing SK3 and STIM1 (Figures 2J and S5B).

As we obtained in both normal and STIM1/Orai1 DKO HEK 293 cells comparable re-
sults, we performed our subsequent experiments in STIM1/Orai1 DKO HEK 293 cells only.

Moreover, we engineered an SK3 pore mutant, SK3 V544W, based on the cryo-EM
structure of SK4 [53] (Figure S3K—sequence alignment). The substitution of valine to
tryptophan at the narrowest part of the cytosolic gate [53] kept this mutant almost inactive.
The expression of SK3 V544W and its co-localization with Orai1 remained comparable to
that of SK3 (Figure S3K). Remarkably, while SK3 V544W showed significantly reduced
currents compared to SK3 wild-type, Orai1, but not Orai1 E106Q, partially restored its
activity (Figure S3L).

In summary, we clearly showed that Orai1- and SK3- co-expressing cells exhibit
constitutive K+ currents. Inhibition of SK3 K+ currents left a tiny, mainly inward rectifying
current with a Vrev in the range of +40 mV, which could be blocked by La3+. This suggests
that SK3 and Orai1 co-expressing cells develop marginal, local increases in intracellular
Ca2+ levels, which is sufficient to boost SK3 K+ currents. Orai1-induced SK3 K+ current
activation in HEK 293 cells is accompanied by their close co-localization. Enhancements of
SK3 K+ currents are specifically driven by Orai1, as this is impaired by the expression of
the prominent Orai1 E106Q pore mutant as well as by the application of a CRAC channel
blocker. In addition, the activity of an SK3 pore mutant could be partially restored by Orai1,
suggesting that the close co-localization of SK3 and Orai1 allows allosteric interference
with the SK3 pore opening mechanism.

3.3. Orai1 Overrules the Inhibitory Effect of CaM Mutants on SK3 Channels

While we reported here that Orai1 boosts SK3 K+ currents, it is believed that SK
channels are generally activated via CaM. Extensive electrophysiological and pull-down
studies on SK2 channels, investigation of the effect of disease-related CaM mutants on
SK3 [70] and recent structural resolutions on the SK4–CaM complex revealed clear evidence
that their activation is driven by Ca2+ bound CaM [50,51,53,54,64,71]. Due to the similar
Ca2+ dose–response relationship of all SK channels and their conserved structural CaM
binding domains, they are all assumed to be activated by CaM [53,54,71]. In line with
previous studies on SK channels [50,51,53,54,70,71], we provide using physiological SK3
solution conditions with [EGTA]intra experimental evidence that SK3 channels are regulated
in a CaM dependent manner analogously. While the co-expression of CaMWT with SK3
leads to significantly enhanced K+ currents (Figure S6A–D), the presence of the CaM1,2,3,4
(CaMMUT) mutant, deficient in Ca2+ binding at all four EF-hands, abolished SK3 K+ currents
almost completely (Figures 3A,B and S6A,B).
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Figure 3. Orai1 overrules inhibitory effect of CaM mutants: (A) Block diagram with maximum current densities measured
in STIM1/Orai1 DKO HEK 293 cells upon co-expression of CaMMUT with SK3 channel in the absence or presence of Orai1 in
comparison to cells containing SK3 or SK3 + Orai1. The Mann–Whitney test was used for statistical comparison considering
differences statistically significant at p < 0.05. The asterisks (*), as also indicated by corresponding colors (black, red, light
purple), highlight the statistical significance of the currents recorded upon individual transfections of SK3, SK3 + CaMMUT,

SK3 + CaMMUT + Orai1, SK3 + Orai1. The asterisk of the particular color above the bar indicates the significance of p < 0.05
to the corresponding individual bar of the same color, respectively, which is applicable for each bar; (B) I/V relationship
corresponding to (A); (C) Block diagram with maximum current densities measured in STIM1/Orai1 DKO HEK 293 cells
upon co-expression of CaM12 with SK3 channel in the absence or presence of Orai1 in comparison to cells containing SK3 or
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SK3 + Orai1. The Mann–Whitney test was used for statistical comparison considering differences statistically significant at
p < 0.05. The asterisks (*), as also indicated by corresponding colors (black, red, cyan), highlight the statistical significance of
the currents recorded upon individual transfections of SK3, SK3 + CaM12, SK3 + CaM12 + Orai1, SK3 + Orai1. The asterisk of
the particular color above the bar indicates the significance of p < 0.05 to the corresponding individual bar of the same color,
respectively, which is applicable for each bar; (D) I/V relationship corresponding to (C); Scheme represents the proposed
structure of the single subunit of the SK channel with constitutively bound CaM. The subunit consists of 6 TM domains
with the pore region located between the fifth and sixth segments. The opening mechanism of the channel is illustrated.
Upon SK3 CaM point mutation the channel remains in the closed state; (E) Block diagram with maximum current densities
measured upon expression of SK3 S441E, SK3 S441E + Orai1, SK3 S441E + CaM, and SK3 S441E + CaM + Orai1 compared to
SK3, SK3 + Orai1, SK3 + CaM, and SK3 + CaM + Orai1 in STIM1/Orai1 DKO HEK 293 cells. The Mann–Whitney test was
used for statistical comparison considering differences statistically significant at p < 0.05 The asterisks (*), as also indicated
by corresponding colors (black, red, green, purple), highlight the statistical significance of the currents recorded upon
individual transfections of SK3 S441E, SK3 S441E + Orai1, SK3 S441E + CaM, and SK3 S441E + CaM + Orai1 compared to SK3,
SK3 + Orai1, SK3 + CaM, and SK3 + CaM + Orai1. The asterisk of the particular color above the bar indicates the significance
of p < 0.05 to the corresponding individual bar of the same color, respectively, which is applicable for each bar; (F) I/V
relationship of SK3 S441E, SK3 S441E + Orai1, SK3 S441W, and SK3 S441W + Orai1 compared to SK3 + Orai1; (G) Image
series depict YFP-CaM with CFP-SK3 in STIM1/Orai1 DKO HEK 293 cells compared to YFP-CaMMUT or YFP-CaM12

with CFP-SK3, overlay and pixelwise calculated NFRET index for a representative cell (scale bar: 10 µm) in the absence
(left) and presence (right) of Orai1; (H) Bar graph diagram depicting FRET of heterologously overexpressed CaM and SK3
in comparison to CaMMUT or CaM12 and SK3 in the presence or absence of Orai1. The asterisk highlights the statistical
significance (p < 0.05). (I) Co-localization studies in STIM1/Orai1 DKO HEK 293 cells performed with a pixel-by-pixel
analysis and the corresponding block diagram showing the comparison of YFP-Orai1 with CFP-SK3, YFP-Orai1 with
CFP-SK3 S441E, and YFP-Orai1 with CFP-SK3 S441W (scale bar: 10 µm). All experiments in figure were performed in
STIM1/Orai1 DKO HEK 293 cells.

In the following, we investigated the effects of the CaM1,2 and CaM3,4 mutants de-
ficient in Ca2+ binding to the N- and C-lobe, respectively. While CaM1,2 impaired SK3
mediated K+ currents to a similar extent to CaMMUT (Figure 3C,D), CaM3,4 led to similar
enhancements in SK3 K+ currents such as CaMWT (Figure S6A,B). Moreover, we detected
significant FRET and distinct co-localization for CFP- labeled SK3 and YFP-labeled CaM
proteins and mutants confirming their direct interaction (Figures 3G,H and S6E). This
suggests, in accordance with the previous reports on SK channels [50,51,53,54,64,71], that
CaM is constitutively bound to the SK3 channel and upon Ca2+ binding to its N-lobe it
triggers conformational changes leading to pore opening.

We further investigated novel SK3 mutants assumed to be defective in CaM mediated
activation, based on SK4 studies [53]. Indeed, SK3 S441E and SK3 S441W, containing the
binding site for CaM N-lobe mutated, exhibited no activation upon co-expression with
CaM or CaM3,4 (Figures 3E,F and S6H). Localization of these SK3 mutants and their FRET
with CaM were maintained to a comparable extent as for SK3 wild-type (Figures 3I and S6I,J).

In the following, we continued to examine the effect of Orai1 on the interplay of SK3
and CaM. While co-expression of either CaM or Orai1 together with SK3 led to significantly
increased K+ currents, triple co-expression of SK3, CaM, and Orai1 further increased the
currents only slightly. (Figures 3E and S6C,D,H). Thus, co-expression of Orai1 is sufficient
to obtain almost maximum SK3 channel activity as obtained in the presence of CaM.

Interestingly, a co-expression of SK3, Orai1, and a CaM mutant (CaMMUT, CaM1,2) led
to significantly enhanced K+ currents compared to the abolished SK3 activity in the presence
of a CaM mutant (CaMMUT, CaM1,2) without Orai1 (Figure 3A–D). The defective Orai1
E106Q was unable to overrule the inhibitory effect of the CaMMUT on SK3 (Figure S6F,G).
In line with these findings, a co-expression of SK3 CaM-binding-site mutants, SK3 S441E or
SK3 S441W with Orai1 left the mutated channel inactive, both in the absence and presence
of CaM (Figures 3E,F and S6H).

To determine whether Orai1 affects the SK3–CaM binding site, we investigated SK3–
CaM FRET in the absence compared to the presence of Orai1. Remarkably, the presence of
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Orai1 led to a significant reduction in FRET of CFP-SK3 with both YFP- CaMWT as well as
YFP-CaM mutants (CaMMUT, CaM1,2) (Figure 3G,H).

In accordance with these findings, the K+ currents of the almost inactive SK3 V544W
mutant were also partially recovered upon the co-expression of CaM, which were not
further enhanced by Orai1. Furthermore, while CaMMUT left the SK3 V544W mutant
almost inactive, an additional co-expression of Orai1 also partially restored the activation
of this SK3 pore mutant (Figure S3N).

In summary, we showed that Ca2+-mediated gating of SK3 channels is established
via constitutively bound CaM which requires the N-lobe to be intact for Ca2+ binding.
Abolished SK3 channel activity due to excess of the CaMMUT was restored in the presence
of overexpressed Orai1, suggesting that Orai1 is able to compensate for disabled CaM
function. The stimulatory action of Orai1 requires an intact CaM binding site within SK3.
Restoration of SK3 currents in the presence of Orai1 in conjunction with reduced interaction
of CaMWT, as well as CaM mutants with SK3 in the presence of Orai1, suggests that Orai1
competes, either directly or allosterically, with CaM for the SK3 CaM binding site to boost
K+ currents.

3.4. Both Orai1 N- and C-Termini Play a Crucial Role in the Interplay of Orai1 and SK3

In the following, we investigated the molecular determinants within Orai1 required to
maintain the interplay with SK3 using physiological SK3 solution conditions with [EGTA]intra.

Initially, we investigated two prominent loss-of-function Orai1 mutants, Orai1 K85E [37,72]
and Orai1 L174D [73], known to interfere with the formation of a functional Orai1 pore [42],
in the presence of the SK3 channel. Co-expression of either mutant with the SK3 channel re-
vealed similar K+ currents as seen for cells expressing SK3 alone, but they were significantly
lower compared to those for SK3 in the presence of Orai1-WT (Figure 4A–D).

Confocal fluorescence microscopy exhibited comparable co-localization of SK3 with
Orai1, Orai1 K85E, and Orai1 L174D (Figure 4E). In control experiments, we used two
other Orai1 mutants (Orai1 L81K K85E and Orai1 E173K), that have been recently reported
to restore or maintain an opening-permissive Orai1 conformation [42]. As expected Orai1
L81K K85E and Orai1 E173K retained the ability to enhance SK3 K+ currents to a similar
extent to Orai1-WT (Figure 4A–D). Thus, in accord with the Orai1 E106Q pore mutant,
other mutations negatively affecting the Orai1 pore geometry interfere with the interplay
with SK3.

Furthermore, we investigated whether Orai1 N- and/or C-terminal truncations affect
the interplay with SK3. It is worth noting that the Orai1 N- and C-terminal deletion
mutant, Orai1 79-281, cannot be activated via STIM1 upon store-depletion (Figure S7). Co-
expression of Orai1 79-281 with SK3 led to an activation of K+ currents to levels comparable
to that of SK3 expressed alone, but they were significantly reduced compared to those
obtained in the presence of Orai1-WT (Figure 4F,G). Deletion of the N-terminus only
(Orai1 N1-78), which abolishes [37] STIM1 mediated Orai1 activation, also impaired the
enhancement of SK3 mediated K+ currents (Figure 4F,G,I). Co-localization of SK3 and
Orai1 79-281 or Orai1 N1-78 reached comparable levels for SK3 and Orai1-WT (Figure 4H).
Interestingly, shorter N-terminal deletion mutants (Orai1 ∆N1-38/47/64/71/72/74) (Figure
4I), that have been reported to retain STIM1-mediated Orai1 activation [37], were also
fully or partially defective in boosting SK3 K+ currents. Only Orai1 N1-26 was still able to
increase SK3 K+ currents (Figure 4I). In line with the effects of the N-terminal truncation
mutant, we discovered that point mutants within the extended transmembrane Orai1
N-terminal (ETON) region (aa 72-90), known to abolish STIM1-mediated activation, also
interfere with the enhancement of SK3 K+ currents (Figure 4J). Additionally, the C-terminus
is required for an interplay with SK3, as the C-terminal deletion mutant Orai1 1-281,
which shows significantly reduced STIM1-mediated Orai1 activation (Figure S7), exhibits
a reduced SK3–Orai1 interplay. Interestingly, SK3–Orai1 1-281 co-localization remained
unaffected (Figure 4H).
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Figure 4. Critical sites within Orai1 that mediate co-regulation with SK3. (A) Block diagram with maximum current
densities measured in CRISPR/Cas9 STIM1/Orai1 DKO HEK 293 cells upon co-expression of Orai1 K85E or Orai1 L81K
K85E with SK3 channel in comparison to cells containing SK3 or SK3 + Orai1. The Mann–Whitney test was used for
statistical comparison considering differences statistically significant at p < 0.05. The asterisks (*), as also indicated by
corresponding colors (red, green), highlight the statistical significance of the currents recorded upon individual transfections
of SK3, SK3 + Orai1, SK3 + Orai1 K85E and Orai1 L81K K85E. The asterisk of the particular color above the bar indicates
the significance of p < 0.05 to the corresponding individual bar of the same color, respectively, which is applicable for
each bar; (B) I/V relationship corresponding to (A); (C) Block diagram with maximum current densities measured in
STIM1/Orai1 DKO HEK 293 cells upon co-expression of Orai1 E173K or Orai1 L174D with SK3 channel in comparison to
cells containing SK3 or SK3 + Orai1. The Mann–Whitney test was used for statistical comparison considering differences
statistically significant at p < 0.05. The asterisks (*), as also indicated by corresponding colors (black, red, pink), highlight the
statistical significance of the currents recorded upon individual transfections of SK3, SK3 + Orai1, SK3 + Orai1 E173K and
Orai1 L174D. The asterisk of the particular color above the bar indicates the significance of p < 0.05 to the corresponding
individual bar of the same color, respectively, which is applicable for each bar; (D) The I/V relationship corresponding
to (C); (E) Co-localization block diagram performed in STIM1/Orai1 DKO HEK 293 cells with a pixel-by-pixel analysis
showing the comparison of YFP-Orai1 K85E with CFP-SK3, and YFP-Orai1 L174D with CFP-SK3.; (F) Block diagram with
maximum current densities measured in STIM1/Orai1 DKO HEK 293 cells upon co-expression of Orai1 ∆1-78, Orai1 79-281,
or Orai1 1-281 with SK3 channel in comparison to cells containing SK3 or SK3 + Orai1. The Mann–Whitney test was used
for statistical comparison considering differences statistically significant at p < 0.05. The asterisks (*), as also indicated by
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corresponding colors (red), highlight the statistical significance of the currents recorded upon individual transfections
of SK3, SK3 + Orai1, SK3 + Orai1 ∆1-78, SK3 + Orai1 79-281 and SK3 + Orai1 1-281. The asterisk of the particular color
above the bar indicates the significance of p < 0.05 to the corresponding individual bar of the same color, respectively,
which is applicable for each bar; (G) The I/V relationship corresponding to (F); (H) Co-localization studies performed in
STIM1/Orai1 DKO HEK 293 cells with a pixel-by-pixel analysis showing the comparison of YFP-Orai1 79-281 with CFP-SK3
and YFP-Orai1 with CFP-SK3 and the corresponding block diagram showing additionally YFP-Orai1 ∆1-78 with CFP-SK3
(scale bar: 10 µm); (I) Block diagram with maximum current densities measured upon co-expression of SK3 with Orai1
∆1-26/∆1-38/∆1-47/∆1-64/∆1-71/∆1-72/∆1-74/∆1-78 in comparison to SK3 and SK3 + Orai1. The Mann–Whitney test
was used for statistical comparison considering differences statistically significant at p < 0.05. The red asterisk represents
the significance in relation to SK3 + Orai1, while the black asterisk shows the significance in relation to SK3; (J) Block
diagram with maximum current densities measured upon co-expression of SK3 with Orai1 ∆74-76, Orai1 ∆75-76, Orai1
R77A K78A, and Orai1 R83A K85A R87A in comparison to SK3 and SK3 + Orai1. The Mann–Whitney test was used for
statistical comparison considering differences statistically significant at p < 0.05. The red asterisk represents the significance
in relation to SK3 + Orai1. All experiments in figure were performed in STIM1/Orai1 DKO HEK 293 cells.

In conclusion, we discovered that Orai1 mediated SK3 K+ current enhancements
require an intact Orai1 pore conformation in line with our findings with the Orai1 E106Q
pore mutants. This also supports our previous findings that the SK3–Orai1 interplay is
likely driven by Ca2+ entry via Orai1. Moreover, almost the entire Orai1 N-terminus, except
for the first 26 N-terminal residues, and the rear part of the C-terminus, are indispensable
for the co-regulation with SK3.

3.5. STIM1 Is Not Required for, but Can Influence the SK3–Orai1 Interplay Either Inhibitory
or Stimulatory

It is well known that the direct binding of STIM1 to Orai1 induces its activation [45,46].
In the following, we investigated whether STIM1 can influence the SK3–Orai1 interplay
using physiological SK3 solution conditions with [EGTA]intra, unless otherwise stated.
Expression of STIM1 when co-expressed with Orai1 and SK3 was confirmed with Western
blot (Figures S4D and S5D).

Initially, we employed an Orai1 C-terminal point mutant, Orai1 L273D, disabled in
coupling to STIM1 [35,74], co-expressed it with SK3 and STIM1 and investigated SK3
mediated K+ currents. Both in the absence and presence of STIM1, the co-expression of
SK3 with Orai1 L273D resulted in comparable K+ current activation as with Orai1-WT
(Figure 5A–D). This suggests that STIM1 is not required to enhance SK3 currents by Orai1,
similar as reported for breast cancer cells [16].

Remarkably, co-expression of SK3, Orai1-WT, and STIM1 revealed significantly re-
duced current activation compared to SK3–Orai1 alone (Figure 1K, Figures 5C,D and S3D,E).
Notably, inhibition via the SK channel blocker NS8593 left an inward-rectifying current
resembling the CRAC channel current (Figures 1K and S3D,E). Indeed, the latter could
be blocked by La3+ (Figure S3D,E), suggesting that it arises from STIM1/Orai1 activity
(Figure 5F). Moreover, we observed almost no co-localization between SK3 and STIM1
(Figure S8A). Interestingly, upon store-depletion via thapsigargin, co-localization of SK3
and Orai1 in the presence of STIM1 was significantly reduced by approximately 50%
(Figure 5E,F). In the absence of STIM1, SK3–Orai1 co-localization remained unaltered upon
store-depletion (Figure 5F). Vice versa, in the presence of SK3, STIM1–Orai1 co-localization
upon store-depletion was significantly reduced by only ~17% (Figure 5G). This suggests
that, upon store-depletion, Orai1 favors to move into clusters with STIM1 and away from
SK3. Due to the use of physiological solution conditions in our electrophysiological ex-
periments presented in Figure 5A–D, we expect only local Ca2+ entry in STIM1/Orai1
clusters (Figure 1F,G). This, together with the fluorescence microscopy studies, might
explain the reduced K+ currents for Orai1/SK3 containing cells in the presence compared
to the absence of STIM1.
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Figure 5. Functional coupling of STIM1 to Orai1 interferes with the SK3–Orai1 interplay. (A) Block diagram with maximum
current densities measured in STIM1/Orai1 DKO HEK 293 cells upon co-expression of Orai1 L273D with SK3 channel in
comparison to cells containing SK3 or SK3 + Orai1. The Mann–Whitney test was used for statistical comparison considering
differences statistically significant at p < 0.05. The asterisks (*), as also indicated by corresponding colors (red, light blue),
highlight the statistical significance of the currents recorded upon individual transfections of SK3, SK3 + Orai1, SK3 + Orai1
L273D. The asterisk of the particular color above the bar indicates the significance of p < 0.05 to the corresponding individual
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bar of the same color, respectively, which is applicable for each bar; (B) I/V relationship corresponding to (A); (C) Block
diagram with maximum current densities measured in STIM1/Orai1 DKO HEK 293 cells upon co-expression of Orai1
L273D, SK3, and STIM1 in comparison to cells containing SK3 + Orai1 or SK3 + Orai1 + STIM1. The Mann–Whitney test
was used for statistical comparison considering statistically significant differences at p < 0.05. The asterisks (*), as also
indicated by corresponding colors (red, blue), highlight the statistical significance of the currents recorded upon individual
transfections of SK3, SK3 + Orai1 + STIM1, SK3 + Orai1 L273D + STIM1. The asterisk of the particular color above the
bar indicates the significance of p < 0.05 to the corresponding individual bar of the same color, respectively, which is
applicable for each bar; (D) I/V relationship corresponding to (C); I Co-localization studies with a pixel-by-pixel analysis
showing mCherry-STIM1, CFP-SK3, and YFP-Orai1 before and after application of thapsigargin; (F) The Pearson correlation
coefficient (R-factor) gives a value for co-localizatiI(E) before and after thapsigargin treatment. An asterisk (*) indicates
a significant difference in co-localization of SK3 and Orai1 before compared to after application of thapsigargin (t-test:
p < 0.05). The control experiment of SK3 + Orai1 in the absence of STIM1 does not reveal a significant difference before
compared to after thapsigargin treatment; (G) The Pearson correlation coefficient (R-factor) gives a value for co-localization
of Orai1 + STIM1 before and after thapsigargin treatment in the absence compared to the presence of SK3 channel. An
asterisk (*) indicates a significant difference in co-localization of STIM1 + Orai1 after application of thapsigargin (t-test:
p < 0.05) in the presence of SK3; (H) Maximum K+ currents of SK3, SK3 + Orai1, and SK3 + Orai1 + STIM1 expressing
STIM1/Orai1 DKO HEK 293 cells in response to different EGTA concentrations in the pipette solution (100, 200, 300, 500,
and 1000 µM) under physiological solution conditions; (I) Block diagram with maximum current densities measured in
STIM1/Orai1 DKO HEK 293 cells upon co-expression of SK3 + Orai1 + STIM1 in comparison to cells containing SK3 or
SK3 + Orai1 upon application of indicates the significance of p < 0.05 to the corresponding individual bar of the same
color, respectively, which is applicable for each bar; (J) I/V relationship corresponding to (I); (K) Block diagram with
maximum current densities measured in STIM1/Orai1 DKO HEK 293 cells upon co-expression of SK3, Orai1, and STIM1
L251S/Y361S/L373/L373, A376S/A376K/R426L/1-474/∆400-403/L402D/400AADA403 in comparison to cells containing
SK3, SK3 + Orai1, or SK3 + Orai1 + STIM1. The Mann–Whitney test was used for statistical comparison considering
differences statistically significant at p < 0.05. The red asterisk represents the significance in relation to SK3 + Orai1,
while the black asterisk shows the significance in relation to SK3 and the green asterisk indicates the significant difference
to SK3 + Orai1 + STIM1; (L) Co-localization studies with a pixel-by-pixel analysis showing mCherry-STIM1 L251S or
mCherry-STIM1 L373S, CFP-SK3, and YFP-Orai1 before and after application of thapsigargin; (M) The Pearson correlation
coefficient (R-factor) gives a value for co-localization of (L) and additional STIM1 double mutant mCherry-STIM1 L373S
co-expressed with CFP-SK3 and YFP-Orai1, all compared to mCherry-STIM1 WT, CFP-SK3, and YFP-Orai1 before and after
thapsigargin treatment. An asterisk indicates a significant difference in co-localization of SK3 and Orai1 before compared to
after application of thapsigargin (t-test: p < 0.05). All experiments in figure were performed in STIM1/Orai1 DKO HEK
293 cells.

Nevertheless, the question arose whether global Ca2+ entry due to strong STIM1/Orai1
activation is also able to boost SK3 K+ current activation. To investigate this aspect, we
enhanced the EGTA concentration in the pipette solution (physiological SK3 solution
conditions with [EGTA]intra); 200 µM EGTA in the pipette solution resulted in further
reduced SK3 K+ currents. Higher EGTA concentrations amounting to 300 µM, 500 µM, and
1 mM gradually increased SK3 K+ currents (Figure 5H). Remarkably, the enhanced store-
depletion potentiates STIM1/Orai1 activation and increases SK3 K+ currents. Moreover,
while keeping 100 µM EGTA in the pipette solution, but using a higher concentration of
10 mM Ca2+ instead of 2 mM Ca2+ in the extracellular solution, allowed SK3 K+ current
activation in STIM1/Orai1/SK3 co-expressing cells to similar levels as observed in cells
expressing SK3 and Orai1 (Figure 5I,J), hence abolishing the inhibitory effect of STIM1.
Overall, these findings substantiate that, under physiological conditions, STIM1 moves
Orai1 away from SK3, and local enhancements in Ca2+ concentrations are not sufficient to
boost SK3 channel activity. Enforcement of STIM1/Orai1 activation likely allows not only
local, but also global Ca2+ elevations in the cell, enabling a to boost SK3 K+ currents.

To further strengthen this concept, we employed, using 100 µM EGTA in the pipette
solution (physiological SK3 solution conditions with [EGTA]intra), several well-studied
STIM1 mutants that are either constitutively opened (STIM1 L251S [34] and STIM1 1-
474 [75]) or locked in the closed conformation (STIM1 Y316S [76,77]; STIM1 L373S [78];
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STIM1 L373S, A376S [78]; STIM1 A376K [34]; and STIM1 R426L [34]). We expected that
constitutively active STIM1 mutants result in stronger inhibition, while the STIM1 inactive
mutants show less or no STIM1-mediated inhibition of SK3 K+ mediated currents in the
presence of Orai1. Indeed, the constitutively open mutants, STIM1 L251S and STIM1
1-474 [67], showed significantly reduced SK3 K+ current activation in the presence of Orai1
compared to those of SK3–Orai1 expressing cells. Co-expression of SK3 and Orai1 with
each STIM1 mutant that is locked in the closed state revealed comparable current densities
as detected for SK3–Orai1 in the absence of STIM1 (Figure 5K). In agreement with this, we
already found reduced co-localization of SK3 and Orai1 in the presence of constitutively
active STIM1 mutants before store-depletion, as shown, for example, for STIM1-L251S. Co-
localization of SK3 and Orai1 remained unaltered for STIM1 mutants locked in the closed
state, as exemplified by STIM1 L373S and STIM1 L373S A376S (Figure 5L,M). Additionally,
we tested STIM1 mutants, that couple to Orai1, but impair Orai1 gating (STIM1 400-403,
STIM1 L402D, and STIM1400AADA403) [43]. Indeed, coupling of these STIM1 mutants was
sufficient to significantly reduce Orai1-mediated SK3 K+ currents (Figures 5K and S8B).
In accordance with the impairment of Orai1 gating of these STIM1 mutants, we showed
that using 1 mM EGTA in the pipette solution instead of 100 µM led to almost completely
abolished SK3 K+ currents in the presence of Orai1 and STIM1 400AADA403, contrary to
Orai1 and wild-type STIM1 (Figure S8C,D).

In summary, we show that Orai1-mediated SK3 current enhancements can occur
independently of STIM1. Nevertheless, under physiological buffer conditions, STIM1
possesses an inhibitory role in SK3–Orai1 current activation, as it moves Orai1 away from
SK3. Conversely, reinforcing STIM1–Orai1 activation and subsequent Ca2+ entry boosts
SK3 K+ currents.

3.6. SK3 Channels Are Endogenously Expressed in LNCaP Cells

Especially in breast, but also in colon cancer cells, the significance of the SK3–Orai1
interplay for proliferation and migration has already been extensively reported [16,18–20].
In prostate cancer, less is known about the potential relevance of the Orai1 and K+ channel
interplay. Here, we used the LNCaP (Lymph Node Carcinoma of the Prostate) cell line to
examine whether SK3 plays a role in the proliferation of prostate cancer cells.

Initially, we investigated the K+ current development in LNCaP cells using both,
symmetrical and physiological SK3 solution conditions. Interestingly, we recorded I/V
relationships typical of SK3 channel currents in particular in cells of passages (P) 3–5,
but not earlier or later ones (Figure S9). It is worth noting that K+ currents in P3-5 were
significantly enhanced by overexpression of Orai1, as shown exemplarily for P4 (Figure S9).
To analyze whether these currents are specific for endogenously expressed SK3, we applied
diverse SK-sensitive agonists and antagonists. Initially, to confirm the SK3-specific action
of diverse reported agonists and antagonists, we applied them to SK3 overexpressing
HEK 293 cells. In line with Grunnet et al. [63], 1-EBIO (50 µM), a general activator of
SK channels, enhanced SK3 K+ currents ~ five-fold (Figure S10A,B). Furthermore, NS309,
selective for SK1, SK3, and SK4, also drastically enhanced SK3 K+ currents already at a
Ca2+ concentration of 0.5 µM (Figure S10C,D) in accordance with published studies [79].
Additionally, Cyppa, another selective activator of SK2 and SK3 [62], showed significant K+

current enhancements for HEK 293 cells heterologously expressing SK3 (Figure S10G,H).
To specifically inhibit SK3 mediated K+ currents, we applied NS8593, selectively interfering
with SK1, SK2, and SK3 [65]. Indeed, we monitored significant inhibition of SK3 K+ currents
upon application of 10 µM NS8593 (Figure S5E,F). 4-aminopyridine (4-AP), which has been
reported to inhibit SK3, but SK2 channels [63,80], exhibited significant inhibition of SK3
mediated K+ currents at a concentration of 10 mM 4-AP (Figure S10H,J).

Using these agonists and antagonists in electrophysiological studies, we then investi-
gated SK3 K+ current activation in LNCaP cells under both symmetrical and physiological
solution conditions. Indeed, the application of both agonists, NS309 (1 µM) and Cyppa
(5 µM) led to strongly pronounced K+ currents, particularly in LNCaP cells of passages
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3–5. Obtained currents could be reversibly inhibited by the antagonist, NS8593 (10 µM)
(Figure S11D–G). Applying the principle of exclusion, one can find that these compounds
likely activate and inhibit the activity of SK3 in LNCaP cells (Figure 6 inset). In support,
weak expression of SK3 in LNCaP cells, in particular in passage 4, was detected with
Western Blot (Figures S11A and S12). The band, in the range of 80–90 kDa, matches with
the size of SK3 monomers of 81.4 kDa and is in line with the detection of SK3 monomers
in cells co-expressing SK3, Orai1, and STIM1 in HEK 293 cells. In agreement with our
findings, the recent study by Bery et al. [81] discovered that SK3 is weakly expressed in
LNCaP cells, which could be strongly upregulated by Enzalutamide treatment.
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Figure 6. SK3–Orai1 interplay in LNCaP cells: Inset table and chemical structures represent the used agonist and antagonist
of SK and Orai1 channels. (A) Cell viability of LNCaP cells after 24, 48, 72, and 96 h upon the treatment with SK3 channel
agonist 10 µM Cyppa, 5 µM NS309, and antagonist 30 µM NS8593, 10 mM 4-AP detected via MTS assay; (B) Block diagram
represents the cell proliferation of LNCaP cells after 96 h upon conditions described in (A). The Mann–Whitney test was
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used for statistical comparison considering differences statistically significantat p < 0.05. The black asterisk represents the
significance in relation to normal cell growth; (C) Cell viability of LNCaP cells after 24/48/72 and 96 h upon the treatment
with Orai1 channel blocker 10 µM La3+, 30 µM La3+, 100 µM GSK7975A, 100 µM Synta66, the combination of Orai1 blocker
10 µM La3+ with SK3 channel antagonist 30 µM NS8593 and 10 µM BTP2 detected via MTS assay; (D) Block diagram
represents the cell proliferation of LNCaP cells after 96 h upon conditions described in (C). The Mann–Whitney test was
used for statistical comparison considering differences statistically significant at p < 0.05. The black asterisk represents the
significance in relation to normal cell growth; (E) Time course of LNCaP currents of endogenously expressed SK3 channel
in the absence or presence of Orai1 or Orai1 E106Q. Pipette solution contains 100 µM EGTA and 144 mM K+ and bath
solution contains 2 mM Ca2+ and 5 mM K+; (F) Block diagram with maximum current densities corresponding to (E). The
Mann–Whitney test was used for statistical comparison considering differences statistically significant at p < 0.05. The
light red asterisk indicates the significance to Orai1; (G) I/V relationship of maximum currents measured in (E); (H) Block
diagram with maximum current densities measured in LNCaP cells upon co-expression of CaM or CaMMUT with Orai1 in
comparison to cells containing Orai1 or CaMMUT. The Mann–Whitney test was used for statistical comparison considering
differences statistically significant at p < 0.05. The asterisks (*), as also indicated by corresponding colors (red, green,
purple, grey), highlight the statistical significance of the currents recorded upon individual transfections of Orai1, CaM,
Orai1 + CaM, CaMMUT and Orai1 + CaMMUT. The asterisk of the particular color above the bar indicates the significance
of p < 0.05 to the corresponding individual bar of the same color, respectively, which is applicable for each bar; (I) The
I/V relationship corresponding to (H); (J) Block diagram with maximum current densities measured in LNCaP cells upon
co-expression of CaM12 with Orai1 in comparison to cells containing only Orai1 or CaM12. The Mann–Whitney test was
used for statistical comparison considering differences statistically significant at p < 0.05. The asterisks (*), as also indicated
by corresponding colors (red, orange, cyan), highlight the statistical significance of the currents recorded upon individual
transfections of Orai1, CaM12 and Orai1 + CaM12. The asterisk of the particular color above the bar indicates the significance
of p < 0.05 to the corresponding individual bar of the same color, respectively, which is applicable for each bar; (K) The I/V
relationship corresponding to (J). All experiments in figure were performed in LNCaP cells.

Next, we investigated whether there is a potential role of SK3 in proliferation. To
determine the effect of the SK3 channel on LNCaP cell proliferation, we performed an MTS
assay which allows us to monitor the behavior of cell growth in dependence of above-
described agonists (NS309 and Cyppa) and antagonists (NS8593 and 4-AP). The growth of
the cells under those conditions was compared to the growth of untreated control cells after
24, 48, 72, and 96 h. The data revealed that 1 µM NS309 led to a significantly enhanced cell
proliferation compared to control cells, 96 h after the treatment (Figure S11B,C). Similarly,
cells treated with 10 µM Cyppa revealed significantly increased cell viability. The SK3
channel antagonist NS8593 (30 µM) showed significantly reduced cell growth, compared
to control cells. Among the antagonists, 4-AP is one of the most selective blockers of
SK3 channels. While 3 mM 4-AP already resulted in significant inhibition, 10 mM almost
completely inhibited the cell growth (Figures 6A,B and S11B,C).

Additionally, STIM1 and Orai1 have been found to be expressed in LNCaP cells and
to facilitate store-operated Ca2+ entry [82]. Investigation of the behavior of cell growth
depending on Orai1 channel blockers revealed that only 30 µM La3+, but not 10 µM
La3+, reduced LNCaP cell proliferation. Notably, the use of 10 µM La3+ together with
30 µM NS8593 further reduced the proliferation compared to the use of only the SK3
blocker NS8593. Intriguingly, among prominent CRAC channel blockers, only BTP2
(10 µM) [83,84] significantly reduced proliferation, while GSK-7975A (100 µM) [85,86] did
not alter and Synta66 (100 µM) [87] even significantly enhanced the proliferation of LNCaP
cells (Figure 6C,D) as recently also reported for glioblastoma cells by Waldherr et al. [88]
and metastatic renal cellular carcinoma by Dragoni et al. [89].

Altogether, these results reveal the presence of the SK3 channel in LNCaP cells, which
plays a clear role in cell proliferation. Moreover, also Ca2+ entry into LNCaP cells is
crucial for proliferation. However, whether this is specific to Orai1 remains unclear. To
examine whether the SK3–Orai1 interplay persists also in LNCaP cells, we continued with
electrophysiological experiments as described below.
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3.7. SK3 Mediated Currents Are Promoted by Orai1 in LNCaP Cells

To determine whether Orai1 also increases the K+ currents in LNCaP cells, we over-
expressed Orai1 or the Orai1 pore mutant E106Q and compared the obtained K+ currents
with those of non-transfected control cells. Orai1 overexpression revealed typical SK3
mediated K+ currents using symmetrical as well as physiological solution conditions, with
reversal potentials of ~0 mV and −70 mV, respectively. Orai1 E106Q overexpression led to
significantly reduced K+ currents when compared to Orai1-WT expressing cells, similar
to those of non-transfected control cells (Figures 6E–G and S11H–J). The application of
10 µM NS8593 significantly blocked all recorded K+ currents (Figures 6E and S11H). As
a follow-up, we determined the SK3-mediated K+ currents upon overexpression of CaM,
CaMMUT, or CaM1,2 in LNCaP cells, and the results were compared to those obtained
in cells overexpressing Orai1-WT. Overexpression of CaM, with or without Orai1-WT,
led to a comparable degree of K+ current activation as with the overexpression of Orai1
alone (Figure 6H,I), in line with our observations in STIM1/Orai1-DKO HEK 293 cells
(Figure 3). Both CaM mutants led to significantly reduced or almost completely abolished
currents (Figure 6H–K). In line with our observations in STIM1/Orai1-DKO HEK 293 cells,
those abolished currents could be rescued upon Orai1 co-expression. Our results indicate
that LNCaP cells endogenously express SK3 channels and that Orai1 similarly promotes
SK3–mediated K+ currents as in HEK 293 cells. The SK3 K+ currents already amplified
with Orai1 are not further amplified by the coexpression of CaM, which suggests that the
effects of CaM and Orai1 are not additive. Indeed, CaM triggers SK3 channel activation,
while CaMMUT, in which Ca2+ binding is disabled, negatively affects the function of the
channel. Interestingly, also in LNCaP cells, Orai1 compensates for inhibitory effects of the
CaMMUT and enhances SK3 channel activation.

4. Discussion

Previous reports on breast and colon cancer cells [16,18–20,90–92] reported extensively
that their proliferation is driven by a co-regulation of co-localized Orai1 and SK3 channels,
while the molecular determinants for this remained unknown. In search of the latter, we
discovered in this study that constitutive Ca2+ entry via Orai1 boosts SK3 mediated K+

currents, which is accompanied by their close colocalization. A crucial site in SK3 for the
interplay with Orai1 represents the SK3–CaM binding domain. Within Orai1, an intact
pore geometry, as well as intact N- and C-termini, are required to maintain the SK3–Orai1
co-regulation. This SK3–Orai1 interplay was not further promoted by STIM1. Instead,
STIM1 can interfere with the co-localization of SK3–Orai1, moving, upon SOCE activation,
Orai1 and SK3 apart from each other. In addition to the reported role of the SK3–Orai1
co-regulation in breast [17] and colon [19] cancer cells, we demonstrate using LNCaP cells
that it also plays a role in prostate cancer cells.

In this study, we provide evidence that Orai1 and SK3 co-expressing cells exhibit
constitutive currents upon low, but not high Ca2+ buffering via EGTA. Application of an
SK3 channel inhibitor reduced those currents, while a small inward-rectifying current
remained, which could be inhibited by La3+. This suggests that SK3–Orai1 expressing
cells generate small, constitutive Ca2+ entry, in line with the previously reported enhanced
Ca2+ levels in breast cancer cells compared to healthy breast cells, likely due to a unique
interplay of SK3 and Orai1 in cancer cells [16].

Generally, SK3 K+ currents develop with enhancing cytosolic Ca2+ concentrations. We
demonstrated that SK3–Orai1 co-expressing cells show increased K+ current activation
compared to cells expressing SK3 only. Enhancements in SK3 K+ currents in the pres-
ence of Orai1 likely arise from Ca2+ entry across Orai1. Indeed, using nominally Ca2+

-free or a divalent cation-free, Na+ containing solution at the extracellular side abolished
Orai1 mediated SK3 K+ current enhancements. SK3 K+ currents were gradually enhanced
with increasing Ca2+ concentrations of the extracellular solution in the presence of Orai1.
Moreover, different EGTA concentrations in the pipette solution always led to higher K+

current activation in cells containing SK3 and Orai1, compared to cells expressing SK3 only.
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Enhanced Ca2+ buffering via increasing EGTA concentrations from 200 to 500 µM enabled
activation of SK3 K+ currents only in the presence of Orai1. Furthermore, 100 µM BAPTA
instead of 100 µM EGTA in the pipette solution did not allow significant enhancements of
SK3 K+ currents in the presence compared to the absence of Orai1. Consistently, not only
the application of La3+ blocks enhancement of Orai1 mediated SK3 K+ currents, but also
the application of the CRAC channel blocker GSK-7975A, as well as the co-expression of
the prominent pore mutant Orai1 E106Q. Analogously, loss-of-function mutants, known
to interfere with proper pore hydration and maintenance of an intact pore geometry (e.g.,
Orai1 K85E and Orai1 L174D) [37,42,93], impair Orai1 induced SK3 K+ current enhance-
ment. Therefore, the presence of Orai1 is a prerequisite for the pronounced K+ current
activation via SK3. High buffering of cytosolic Ca2+ or impaired Orai1 activity interferes
with the positive feedback mechanism of the SK3–Orai1 interplay. Collectively, these re-
sults clearly indicate that SK3 channel activation is likely triggered via Ca2+ influx through
Orai1 channels.

Within SK3, its CaM binding site emerged as crucial for the interplay with Orai1.
Generally, SK channel currents enhance with increasing intracellular Ca2+ concentrations
in a CaM dependent manner, as previously demonstrated [50,51,53,54,64,70]. Here, we
further show that the Ca2+ dependent activation of SK3 is driven by constitutively bound
CaM, requiring two functional Ca2+ binding sites at the first and second EF hand. CaM
mutants deficient in Ca2+ binding (CaM1,2 or CaMMUT) affect SK3 channel activity in an
inhibitory manner. Orai1 did not further enhance SK3 K+ currents driven by overexpressed
CaM, demonstrating that the effects of Orai1 and CaM on SK3 are less likely additive.
Remarkably, our data yield that the inhibitory effect of one of these CaM mutants can be
partially overruled by Orai1. Interestingly, Orai1 reduces the interaction of both, CaMWT
and CaM mutants with SK3, suggesting that Orai1 boosts SK3 channel activity, via either
direct or indirect competition with the CaM binding site within the SK3 channel. In
line with this, SK3 mutants which are defective in CaM binding cannot be activated by
Orai1. The activation of an SK3 pore mutant could be partially restored by Orai1 or CaM,
likely due to its still-intact CaM binding site. Overall, these results suggest that Orai1
enhances SK3 K+ currents via an interplay with the SK3–CaM binding site, either directly
or allosterically. Interestingly, diverse agonists, such as 1-EBIO [94–96], NS309 [79] and
Cyppa [62], have also been reported to bind to the interaction interface of the CaM N-lobe
and the SK channel [97,98]. In addition, PIP2 has been shown to modulate SK2 channel
activity via binding to the interface of CaM and the SK C-terminus [99].

Important regions within Orai1 that maintain the co-regulation with SK3 but are
dispensable for their co-localization represent almost the entire N- and the C-termini, in
addition to an intact pore region. Additionally, for the BKCa channel, it was recently shown
that both cytosolic termini of Orai1 are important for their interplay [11]. In regard of
the SK3–Orai1 interplay, only the first 26 amino acids in the Orai1 N-terminus are not
required for the Orai1-mediated SK3 K+ current enhancements. It is worth noting that the
first part of the Orai1 N-terminus (aa 1–63) has been reported to include sites involved
in cAMP-mediated phosphorylation and caveolin binding [100–105], and thus it might
be involved in stabilizing the SK3–Orai1 interplay. Future investigations are required to
determine the involvement of this region in the SK3–Orai1 interplay.

Furthermore, the enhancements of SK3 K+ currents in the presence of Orai1 can occur
independently of STIM1 in line with previous reports [16,20,52,57]. Accordingly, Orai1
boosts SK3 K+ currents also in STIM1/Orai1-DKO HEK 293 cells. In addition, disturbed
STIM1–Orai1 coupling sites in either STIM1 (e.g., STIM1 L373S) or Orai1 (Orai1 L273D) do
not interfere with the enhancement of K+ currents.

Nevertheless, STIM1 is able to affect the SK3–Orai1 interplay in an inhibitory manner
under physiological ionic conditions. The reason for this is that, in STIM1/Orai1/SK3
co-expressing cells, Orai1 favors interplay with STIM1 upon store-depletion as revealed
by patch-clamp and co-localization experiments. In support of this, our pool of critical
STIM1 mutants in a quiescent or open conformation maintain or inhibit the SK3–Orai1
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co-regulation, respectively. It is possible that the expression level of STIM1, Orai1 and SK3
in different cell types determines whether either STIM1–Orai1 or SK3–Orai1 co-regulation
becomes decisive.

Aside from physiological ionic conditions, enhanced EGTA concentrations in the
pipette solution or increased Ca2+ concentrations outside the cell lead STIM1 to even
stimulate K+ currents in Orai1 and SK3 overexpressing cells. Herein, robust STIM1/Orai1
Ca2+ influx enhances SK3 mediated K+ currents likely due to an increase in global Ca2+

levels within the cell. This is in line with the recent observation for BKCa K+ currents which
could be further stimulated by STIM1-mediated Orai1 activation [11]. Under physiological
solution conditions, STIM1 mediated Orai1 activation probably only allows local Ca2+

elevations. Due to the separation of STIM1-Orai1 complexes from SK3 channels, no Ca2+

influx mediated K+ current activation can be established.
In addition, our data indicate that the SK3–Orai1 interplay also drives LNCaP cell

proliferation. Our pharmacological findings, together with Western blot studies, suggest
that SK3 is endogenously expressed in LNCaP cells in line with Bery et al. [81]. Furthermore,
by using different SK channel drugs, we were able to narrow down that both SK3 and
Orai1 are crucial for LNCaP cell proliferation. In line with our results in the standard
overexpression system, we were also able to show in LNCaP cells that Orai1-WT promoted
SK3 currents, while Orai1 E106Q failed to increase the current density. Additionally, CaM
mutant-induced inhibition of SK3 K+ currents was restored by Orai1. This further supports
our hypothesis that an interplay of Orai1 and SK3 is crucial for LNCaP cell function
and proliferation.

In future investigations, it yet must be determined whether and how accessory pro-
teins establish the Orai1–SK3 interplay, stabilize the close co-localization of SK3 and Orai1,
and/or assist STIM1 to move Orai1 away from SK3. There is considerable evidence that
STIM1 and Orai1 activation is modulated via a series of other regulatory proteins [106–108].
Some prominent ones represent SigmaR1, SPCA2, and Caveolin [17,56,109]. SPCA2 has
been reported to induce the constitutive activity of Orai1 independently of STIM1 in
breast cancer cells [110]. In two separate studies, SigmaR1 has been demonstrated to
interplay with STIM1 [111] and SK3 [56]. In breast and colon cancer cells, it has been
shown that the SK3–Orai1 co-regulation occurs in cholesterol-rich regions [16,19], indi-
cating a potential role of cholesterol or Caveolin in determining the regulation of the
SK3–Orai1 interplay [19,112–115].

5. Conclusions

Collectively, we discovered that close co-localization of SK3 and Orai1 enhances K+

current activation likely via local enhancements of Ca2+ levels across Orai1. Mechanistically,
Orai1 competes with CaM, the typical SK channel activator, to increase SK3 activation via
the CaM binding site. In addition, the SK3–Orai1 interplay requires both the Orai1-N- and
the C-terminus but occurs independently of STIM1. Interestingly, STIM1 can disrupt their
co-regulation by removing Orai1 from SK3. We demonstrate that the synergy of Orai1 and
SK3 occurs not only in HEK 293 cells, but also exists in prostate cancer cells, where it likely
regulates the function and growth.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13246357/s1, Figure S1: Characterization of SK3 channel. Figure S2: SK3 currents
under symmetrical solution conditions. Figure S3: Characterization of SK3 channel K+ currents alone
compared to the presence of Orai1 or STIM1/Orai1. Figure S4: Expression of SK3, Orai1, and STIM1.
Figure S5: Original Western blots for HEK239 cells. Figure S6: SK3 channel currents are regulated
via CaM. Figure S7: STIM1-mediated activation of Orai1 deletion mutants. Figure S8: SK3–Orai1
and STIM1. Figure S9: I/V relationships of K+ currents in LNCaP cells. Figure S10: Effects of SK
channel agonists and antagonists on SK3 channel currents. Figure S11: SK3 channel is endogenously
expressed in LNCaP cells. Figure S12: Original Western blots of LNCaP cells.
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Appendix A

Solution conditions used in the manuscript:
To study SK3 channel K+ currents, we used symmetrical (intracellular and extracellular

solutions contain 144 mM KCl) and physiological (intracellular 144mM KCl, extracellu-
lar: 140 NaCl, 5 KCl) solution conditions. To investigate the effects of intracellular Ca2+

levels on SK3 K+ current activation, we used increasing buffered free Ca2+ concentration
(symmetrical or physiological SK3 solution conditions with buffered [Ca2+]intra) (increasing
buffered Ca2+ concentration to 50, 100, 250, 350, 600, 800, and 1000 nM were calculated
according to the Single Chelator Metal Calculator, MaxChelator, pH 7.2.) or varying EGTA
concentration (symmetrical or physiological SK3 solution conditions with [EGTA]intra).
To investigate the effect of extracellular Ca2+, we used 2 mM or 10 mM Ca2+ in the re-
spective SK3 extracellular solutions (e.g., physiological SK3 solution conditions with high
[Ca2+]extra). Subsequently, to SK3 K+ current characterization, we used mainly the physio-
logical SK3 solution conditions with [EGTA]intra, containing 100 µM EGTA intracellularly
and 2 mM Ca2+ extracellularly, respectively, unless otherwise stated. In some experiments,
we switched from physiological SK3 solution conditions to a Na+-DVF solution.

To determine STIM1-Orai1 Ca2+ current activation, we used typically standard STIM1/Orai1
solution conditions with 20mM EGTA intracellularly and 10 mM Ca2+, but no K+, neither
intra- nor extracellularly. STIM1/Orai1 solution conditions with low [EGTA]intra contained,
instead of 20 mM, 100 µM EGTA intracellularly. STIM1/Orai1 solution conditions with
low [EGTA]intra/low [Ca2+]extra contained intracellularly 100 µM EGTA and extracellularly
2 mM Ca2+ (instead of 10 mM).

Detailed solution compositions are stated in Figure A1.

https://portal.gdc.cancer.gov/
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