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Abstract: In this review, we discuss the major histocompatibility complex (MHC) class II trans-
activator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the
founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein
family but stood apart for a long time as the only transcriptional regulator. More recently, it was
found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain
(CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding
activators through multiple protein–protein interactions with an MHC enhanceosome complex that
binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of
MHC-II expression is regulated largely through the differential expression of CIITA. In addition to
the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of
CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic
immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus
replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional
regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for
NLR proteins.
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1. Introduction

The major histocompatibility complex (MHC; in humans, human leukocyte antigen,
HLA) class I and class II molecules are antigen-presenting molecules for CD8+, and CD4+ T
cells, respectively, and are therefore of crucial importance for the cellular immune response.
Their expression is mainly controlled at the level of gene transcription. MHC-II genes
show a highly controlled developmental, cell-type and stimulus-specific expression with
constitutive expression confined to professional antigen-presenting cells (APCs) such as
dendritic cells (DCs), B cells, macrophages, and thymic epithelial cells. Other cell types are
negative; however, the expression can be induced in diverse cell types by different stimuli,
most prominently IFNγ. The study of a rare severe combined primary immunodeficiency
called the bare lymphocyte syndrome (BLS) led to the identification of class II transactivator
(CIITA) and of the three genes coding for the subunits of the heterotrimeric RFX (regulatory
factor X-box) complex binding to the X-box in the highly conserved W/SXY module found
in all MHC-II gene promoters. CIITA has been recognized as the “master regulator” of
MHC-II expression since the differential expression of MHC-II genes is largely due to the
differential expression of CIITA. CIITA is a founding member of the NLR (nucleotide-
binding and leucine-rich-repeat-containing) protein family, but for a long time, it stood
apart in this protein family as the only transcriptional regulator. MHC-I genes, on the
other hand, are expressed ubiquitously in nucleated cells; however, their expression levels
differ widely, and they also show inducible expression, e.g., by IFNγ. In addition to other
regulatory elements, the MHC-I gene promoter also contains a functional W/SXY element
(also called site α), and CIITA was found to contribute to MHC-I activation under certain
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conditions. However, it was also clear that many cell types express high levels of MHC-I in
the complete absence of CIITA. This conundrum was resolved when it was recognized that
the closest homolog of CIITA, NLRC5, functions as an MHC-I activator. In this review, we
will mainly focus on CIITA but draw parallels to NLRC5 where appropriate.

2. Identification of CIITA, the Master Regulator of MHC-II Expression

CIITA was identified through a genetic complementation approach in the HLA-II-
negative cell line RJ2.2.5, which was derived from the Burkitt lymphoma line Raji by γ-
irradiation followed by negative immunoselection [1,2]. The 4.5 kb cDNA coded for an 1130
amino acid protein, which was later identified as isoform III of CIITA (see below). CIITA
mutations were identified in RJ2.2.5 and the B cell line BLS-2 from BLS complementation
group A [2,3].

After the identification of CIITA, it was rapidly established that CIITA also controls
IFNγ-induced MHC-II expression [4,5]. CIITA mRNA is induced by IFNγ, and ectopic
expression of CIITA is necessary and sufficient to induce MHC-II gene expression [4,5].
This has since been repeated in many different cell lines. CIITA controls MHC-II expression
quantitatively, and there is a close correlation between levels of CIITA and MHC-II mRNA
expression levels in different tissues [6].

3. CIITA, a Founding Member of Mammalian NLR Proteins

CIITA is the founding member of the NLR protein family [7]. The nucleotide-binding
domain also has been described as the NACHT (NAIP, CIITA, HET-E, TP1) domain and the
protein family as the CATERPILLER (caspase activation and recruitment domain (CARD),
transcription enhancer, R (purine)-binding, pyrin, lots of leucine repeats) family [8–10].
CIITA was, however, for a very long time, the most exceptional member of this protein
family in that it was the only transcriptional regulator.

The CIITA protein structure is characterized by an N-terminal acidic domain, a region
rich in prolines, serines, and threonines (P/S/T domain), a central nucleotide-binding
domain (GTP domain) and at least four C-terminal leucine-rich repeats (LRRs; Figure 1).
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Figure 1. Domain structure of nucleotide-binding and leucine-rich-repeat (NLR) proteins CIITA (a), NLRC5 (b) and NLRP3
(c). Abbreviations: AAD, acidic activation domain; CARD, caspase activation and recruitment domain; DD, death domain;
F-I, F-III, F-IV, isoforms-I, -III and -IV; LRR, leucine-rich repeats; NACHT, NAIP, CIITA, HET-E, TP1 domain; P/S/T,
proline-serine-threonine rich domain; PYD, pyrin domain.

Three alternative promoters (pI, pIII, and pIV) and corresponding exons one gener-
ate three different isoforms of CIITA (isoforms I, III, and IV) differing in their N-termini.
Isoform IV is initiated by an AUG in the common exon two, whereas isoforms I and III
carry their own initiator AUGs leading to N-terminal extensions of 101 and 24 amino acids,
respectively. The N-terminal extension of isoform I shows homology to caspase activa-
tion and recruitment domain (CARD) and was found to increase MHC-II transcription
somewhat [11] (Figure 1).
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While there is a close correlation between CIITA and MHC-II expression in many
cell lines and tissues, there have nevertheless been many post-translational modifications
described for CIITA. Modifications include phosphorylation, acetylation and deacetylation,
and ubiquitination (reviewed in [12]). Furthermore, CIITA has been shown to self-associate
via its GTP- and LRR-domains and also to oligomerize, contributing to nuclear localization
(see also below) and transactivation [13–16].

CIITA has never been shown to bind directly to DNA and has therefore frequently been
described as a coactivator, although the term is somewhat misleading since it is the principal
activator of MHC-II expression. The N-terminal acidic domain of CIITA has been shown to
function as a potent transactivation domain and shares many functionalities with the acidic
domain of the viral activator VP16 [17–20]. CIITA activates transcription initiation and
elongation through multiple mechanisms (reviewed in [21,22]). CIITA recruits components
of the general transcription machinery, such as TFIID and TFIIB, it induces phosphorylation
of RNA polymerase II and interacts with P-TEFb. It also recruits chromatin remodeling
coactivators such as p300, CBP, PCAF, and BRG1 [21,22]. CIITA also has been shown to
interact with the 19S proteasomal subunit Sug1 [23,24]. CIITA also has been reported to
have histone acetylase (HAT) activity, to possess an endogenous kinase activity, and can
functionally replace the TFIID component TAF1 (reviewed in [25]) (Table 1).

Table 1. Features of the NLR proteins CIITA, NLRC5 and NLRP3.

CIITA NLRC5 NLRP3

Aliases NLRA; C2TA; MHC2TA NOD27; CLR16.1 CIAS1; PYPAF1; Cryopyrin;
CLR1.1; NALP3

Main functions MHC-II gene transcription
MHC-I gene transcription;

diverse roles in innate
immunity

Inflammasome;
transcriptional regulator of

TH2 differentiation

Length
(human)

FI: 1207 aa a

FIII: 1130 aa
FIV: 1106 aa

1886 aa 1036 aa

Subcellular localization Nuclear and cytoplasmic
Lb b: nuclear

Cytoplasmic
Lb: nuclear

Nuclear and cytoplasmic
(in TH2 cells)

Interaction partners c

RFX5; RFX-ANK; NF-YB; NF-YC;
CREB; Bob-1; p300; p400; PCAF;

CBP; BRG1; CARM1; TFIID;
TFIIB; P-TEFb; Sug1; SIRT1;

ZXDA; ZXDC

RFX-ANK IRF4

Footnotes: a: amino acids; b: leptomycin B treatment; c: only considering transcriptional regulatory functions.

Nucleo-cytoplasmic transport and localization of CIITA is a very complex subject
with many different mutations distributed over the whole length of the protein affecting
subcellular localization and transport. Both nuclear localization signals and nuclear export
signals have been described, which may explain that wild-type CIITA shows a close to
50:50 distribution between nucleus and cytoplasm [15,26–32]. Several signals depend on
post-translational modifications, such as the PCAF-dependent acetylation of lysines in
the acidic domain [33]. Deletion of the acidic and P/S/T domains leads to an exclusively
cytoplasmic CIITA fragment (L335), which can, however, be driven very efficiently to an
exclusively nuclear localization by the addition of an SV40 large T nuclear localization
signal (NLS-L335). Interestingly, both NLS-L335 and L335 are strongly dominant-negative,
suggesting that essential interactions with protein partners can occur both in the nucleus
and in the cytoplasm [31,34].

CIITA is a short-lived protein, with isoform III showing a half-life of about 30–45 min
in pulse-chase experiments [35]. Degradation signals reside in the N-terminal P/S/T
and acidic domains and in the extreme N-terminus itself [35,36]. N-terminal epitope-tags
stabilize the protein, and the first 10 amino acids of CIITA isoform III can destabilize a
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heterologous protein [36]. Interestingly, the transactivation potential is inversely correlated
to stability, and CIITA isoform III interacts more efficiently with the RFX complex and the
transcription machinery when compared to a truncated version [36]. Mono-ubiquitination
was shown to increase CIITA-dependent MHC-II transactivation in a non-degradative
manner [37].

4. Identification of NLRC5 as an MHC-I Regulator

NLRC5 was identified as an MHC-I regulator (also referred to as CITA; class I transac-
tivator) through a knockdown approach by Kobayashi and colleagues [38]. This activity
was mediated by the W/SXY motif and the MHC enhanceosome in the MHC-I promot-
ers [39,40]. NLRC5 and CIITA are the closest homologs among NLR proteins with respect
to their GTP and LRR domains, but NLRC5 differs strongly from CIITA in the N-terminal
domain [38,41]. There is no P/S/T region or acidic activation domain in NLRC5, but it
rather carries N-terminal to the GTP domain a region with weak homology to a CARD,
which can potentially adopt a related death domain (DD) fold (Figure 1) ref. [42].

Domain swap experiments yielded very interesting information concerning the func-
tion of the NLRC5 DD [43]. NLRC5 exclusively activated an MHC-I reporter construct,
whereas CIITA showed a strong preference for MHC-II in HEK293T cells [43]. It had
been shown earlier that N-terminal deletions of either the acidic (∆-163) or the acidic and
the P/S/T domain (L335) of CIITA lead to strong dominant-negative phenotypes [31,34].
Surprisingly, the fusion of the DD to ∆-163 or to L335 led to constructs that were very
efficient in activating both MHC-I and MHC-II genes [43]. This showed first that the DD
could act as a bona fide transcriptional activation domain, and second, it demonstrated
that the specificity for MHC-I or MHC-II promoters resulted from a combined action of the
activation domains and the GTP- and LRR-domains. Finally, it revealed that under certain
conditions, CIITA could be very efficiently recruited to MHC-I promoters.

NLRC5-deficient mice confirmed its importance for MHC-I expression, at least in
certain cell subsets. While MHC-I expression was only mildly affected in APCs, such as
macrophages, there was a strongly reduced MHC-I expression in lymphocytes such as T,
NKT and NK cells [41,44–46].

5. Cis-Acting Elements, MHC Enhanceosome, CIITA- and NLRC5-Cistromes

The MHC-II promoter is the prototype of a composite regulatory element, which is
often referred to as the W/SXY or SXY module. It is composed of four cis-acting elements,
the W/S, X (or X1), X2 and Y boxes, which are present in classical and non-classical MHC-II
gene promoters in a fixed order, orientation and spacing. The W/S element is bound by an
as yet unknown factor, but the other three binding complexes have been well defined. The
X-box is bound by the heterotrimeric RFX (regulatory factor X) complex composed of the
DNA-binding subunit RFX5, RFX-AP (RFX-associated protein) and RFX-ANK or RFX-B
(RFX-ankyrin-containing protein or RFX-defective in BLS group B). The corresponding
genes are mutated in BLS complementation groups C, D and B, respectively [47–50]. The
X2-element is bound by the cyclic-AMP-responsive-element-binding protein (CREB) [51],
whereas the Y-box, which is an inverted CCAAT-element, is bound by the major CCAAT-
box-binding protein complex NF-Y [52,53]. These protein complexes bind cooperatively to
the W/SXY module in vitro and in vivo and form a platform in the manner of an enhanceo-
some, to which CIITA is recruited through multiple protein–protein interactions [30,54–57].
Surprisingly, the W/SXY-binding complex is completely inert with respect to MHC-II
activation in vivo, and it is only the recruitment of CIITA to the complex which is both
necessary and sufficient to induce MHC-II expression (Figure 2).
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Recently, the CCR4-NOT (carbon catabolite repressor 4-negative on TATA) complex
has been implicated in the non-expression of MHC-II genes [58]. Knockdown or knock-out
of CCR4-NOT subunits led to the expression of MHC-II genes in the absence of CIITA [58].
This suggests that the CCR4-NOT complex is necessary for the tightness of the regulation
of MHC-II genes and to prevent leaky expression from MHC-II promoters in the absence
of CIITA. CIITA must then, either directly or indirectly, relieve the suppression of CCR4-
NOT to activate MHC-II transcription. How this is achieved mechanistically is unknown
at present.

CIITA induces transcription-associated histone modifications over the MHC-II pro-
moter in two sequential phases, the first of which is characterized by a rapid increase in
histone H4 acetylation over a large region. The second phase coincides with transcription
and is restricted to short upstream regions, where histone acetylation and methylation
occurs. This second phase is dependent on RNA pol-II-mediated transcription elonga-
tion [59]. Induction of CIITA by IFNγ leads to the eviction of nucleosomes over the MHC-II
promoters and the appearance of a nucleosome-free region (NFR) [60] (Figure 2).

The W/SXY module is found in the proximal promoters of all classical MHC-II genes
(HLA-DR, -DQ and -DP) and also in several associated genes such as the invariant chain
(Ii), HLA-DM and HLA-DO. In addition to these proximal promoter elements, more distal
regulatory elements were identified throughout the MHC-II locus on human chromosome
6. These distal regulatory elements were identified based on their homology to either the
MHC-II X-box (termed XL elements) or to the W/SXY motif. These elements bind RFX
and CIITA in vivo and function as enhancers of MHC-II expression [61,62]. These elements
are involved in long-distance interactions and help to achieve a coordinated and specific
expression of MHC-II genes. Interestingly, several of these elements are bound by the
CCCTC-binding factor CTCF, and knockdown of CTCF leads to a reduction of MHC-II
gene expression concomitantly with a reduction in long-distance interactions [22,63,64].

Recently, the region between the HLA-DRB1 and HLA-DQA1 loci in the MHC-II
region was shown to display characteristics of a super-enhancer (SE) region [65,66]. Two
SEs were identified in this region and termed DR/DQ-SE and XL9-SE, and were shown
to be highly enriched in disease-associated SNPs. CRISPR/Cas9-mediated deletion of the
DR/DQ-SE led to a reduction of HLA-DRB1 and HLA-DQA1 expression. Local chromatin
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interactions were disrupted by SE-deletions, suggesting that the SEs are involved in the
organization of the local three-dimensional chromatin architecture [66].

Interestingly, the MHC-I gene promoters also possess a W/SXY module, which also
has been described as site α. However, the pattern of expression of MHC-I genes is only
partly overlapping with that of MHC-II genes, and thus it is not surprising that MHC-I
promoters also possess other regulatory elements implicated in constitutive and inducible
expression. MHC-I genes are expressed ubiquitously, but their expression levels vary
greatly with high levels of expression in hematopoietic cells. Furthermore, their expres-
sion can be modulated by different stimuli, prominently among them IFNγ. Somewhat
surprisingly, it was found that CIITA can activate MHC-I expression, especially in cell lines
that were very low or negative for MHC-I expression [67,68]. Expression was dependent
on the presence of site α containing the W/SXY module and recruitment of the RFX com-
plex [67–69]. On the other hand, CIITA KO mice and cells from BLS group A did not show
a notable reduction in MHC-I expression and many cell lines express high levels of MHC-I
in the complete absence of CIITA. This puzzle was at least partially resolved when NLRC5
was identified as an MHC-I activator and was shown to be recruited to the W/SXY module
in the MHC-I promoters [38–40].

Analysis of the CIITA cistrome led to some very interesting results. A genome-wide
scan for promoter-proximal-binding of CIITA via a ChIP-chip (chromatin IP-microarray)
analysis yielded only nine validated targets in addition to MHC genes [70]. ChIP-seq
analysis led to somewhat higher numbers of in vivo-binding sites with 843 or 480 hits,
respectively [71,72]. However, this is still a very limited number of binding sites when
compared to other transcription regulators that often show thousands of binding sites in the
genome. Only a few novel genes in addition to MHC-II genes were found to be regulated
by CIITA, and computational analysis showed that CIITA bound mostly through XY box
motifs in one analysis [72], although the other study found that 60% of CIITA-binding sites
were not associated with RFX5 binding [71]. The most astonishing results were, however,
obtained in an NLRC5 ChIP-seq analysis, where only a highly restricted set of 12 targets in
classical and non-classical MHC-I genes was identified [73]. NLRC5 and CIITA were found
to have nonredundant target sets, although both were dependent on a W/SXY cis-acting
module. Bioinformatic analysis revealed that the W/S element was essential in conferring
the NLRC5 specificity [73]. The extremely restricted target gene set of NLRC5 is highly
unusual and possibly unique among transcriptional regulators so far and illustrates the
exquisite specificity that can be achieved through combinatorial cis-acting elements and
cooperatively binding trans-acting factors.

6. Regulation of CIITA Gene Expression

As described above, the regulation of MHC-II gene expression is largely regulated
through CIITA and levels of MHC-II, and CIITA mRNA expression correlate closely in
various murine tissues and cell lines [6]. Thus, differential MHC-II expression is largely
due to differential CIITA expression. Expression of CIITA appears to be mostly regulated
at the level of transcription, although diverse post-transcriptional modifications of CIITA
have also been described. Regulation of CIITA gene expression has been reviewed in some
detail, and we will here sum up the most salient features, mainly based on studies of CIITA
promoter knock-out mice [21,74]. Knock-out of promoter IV (pIV) of CIITA showed that
this promoter was essential for the IFNγ-induced expression of CIITA in non-hematopoietic
cells [75]. Macrophages, on the other hand, were shown to display normal IFNγ-induced
CIITA and MHC-II expression in pIV KO mice [75]. A surprising finding was that pIV is
essential for the expression of MHC-II in thymic cortical epithelial cells [76]. Consequently,
CIITA pIV KO mice show a severe defect in the positive selection of CD4+ T cells [76].
Thus, CIITA pIV is essential for the CIITA—and ensuing MHC-II—expression in cells of
non-hematopoietic origin [21,74].

The role of CIITA pIII expression was addressed through pIII + IV KO mice [77]. These
mice lack CIITA and MHC-II expression in all B cell subsets, which is not the case in pIV
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KO mice [77]. Furthermore, CIITA and MHC-II expression were absent in plasmacytoid
DCs (pDCs) [77], which possibly are of lymphoid origin rather than myeloid cells such as
conventional DCs [78]. In contrast to their murine counterparts, human activated T cells
express CIITA and MHC-II. It was shown that this activity is mediated by CIITA pIII [79].
Taken together, this indicates that CIITA pIII is specific for cells of lymphoid origin [21,74].

CIITA pI was originally described as a DC-specific promoter [80]. It is also used for
the constitutive and IFNγ-inducible expression of CIITA in macrophages and can thus
be regarded as a myeloid-specific promoter [21,74]. Surprisingly, mice lacking CIITA pI
and corresponding exon 1 had a relatively mild phenotype [81,82]. It was found that in
pI KO animals, CIITA expression in DCs had shifted mainly to pIII. This suggested the
involvement of distal regulatory elements in the expression of DC-specific CIITA and less
tight insulation between pI and pIII compared to what had been found between pIII and
pIV [81,82].

In addition to the proximal CIITA promoters, distal regulatory elements play a crucial
role in CIITA expression. This has been best studied for IFNγ-induced expression of CIITA.
Many distal regulatory elements involved in chromatin loops were identified from far-
upstream to downstream of the CIITA-gene locus [83]. The chromatin-remodeling enzyme
BRG1 was found to be crucial for the induction of histone modifications and the recruitment
of STAT1, IRF1 and p300 [83]. BRG1-dependency is conferred on the CIITA locus by the
polycomb repressive complex 2 (PRC2) [84]. More recently, it was shown that NFAT5
binding to an upstream distal regulatory element is essential for the IFNγ-dependent,
pI-mediated CIITA expression in macrophages [85].

7. CIITA in Disease

In order to evade the immune response, several pathogens have evolved different
mechanisms to suppress the antigen presentation pathway. Several viruses such as HIV
prevent this presentation both at the level of MHC-II genes and molecules and at the
level of CIITA gene expression [86–89]. Inhibition of MHC-II expression by varicella-
zoster has also been observed [90,91]. Repression of CIITA by human cytomegalovirus
(HCMV) and Epstein–Barr virus has also been shown [92–95]. Interference with the
IFNγ pathway has been observed in infections with influenza viruses [96,97]. Herpes
viruses have been shown to simultaneously inhibit CIITA and interfere with the transport
of MHC-II molecules [98]. Kaposi’s sarcoma-associated herpes viruses have also been
shown to inhibit transcription of CIITA via the viral protein vIRF3 and via SOCS3 [99,100].
Toxoplasma gondii downregulates CIITA and MHC-II in immune cells and neural cells by
several different mechanisms [101–103]. Several species of Mycobacterium are capable of
inhibiting CIITA via TLR-2 and chromatin modifications [104–106]. Chlamydia infection
inhibits MHC-II expression via two different cell type-specific mechanisms, one chlamydial
protease-like activity factor (CPAF)-independent and MyD88-dependent in bone marrow-
derived macrophages and one CPAF-dependent in mouse embryonic fibroblasts [107,108].

Modulation of antigen presentation during viral infections is an important phe-
nomenon, as inhibition of this pathway facilitates the spreading of the virus. HCMV
has been shown to modulate several antiviral responses, including downregulation of
MHC-I expression to inhibit CD8+ T cell activity [109,110]. However, certain viral effects
on the CD4+ branch of immunity are not as well understood, mainly due to the absence
of proper cellular models for the endogenous expression of MHC-II. Nevertheless, recent
studies on the Kasumi-3 cell line were able to show that endogenous MHC-II downregula-
tion by HCMV was mediated by inhibition of CIITA expression. This inhibition was also
independent of previously known viral MHC-II repressor proteins that intervene in the
IFNγ-induced expression, such as the tegument protein pp65, the viral IL-10 homolog, and
two proteins coded from unique short (US) regions, US2 and US3, failed to downregulate
MHC-II expression. Single gene knock-out studies failed to find a responsible gene in the
US region, thus suggesting that the cause may be a complex interaction of several proteins
in this region or that the responsible factor is coded elsewhere [95].
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The Epstein–Barr virus is also known to evade the immune response by inhibiting
CIITA. Expression of the immediate-early protein Zta in Raji cells has been shown to inhibit
the expression of CIITA. This inhibition is mediated by Zta at the transcriptional level.
Analysis of CIITA pIII revealed the existence of two Zta response elements (ZRE) in its
sequence. The binding of Zta to these ZREs prevents transcription of CIITA and thus leads
to inhibition of MHC-II expression [111].

8. CIITA-Dependent Regulation of Genes Other Than MHC-Genes

Children suffering from BLS never showed a phenotype that could not be explained by
the absence of MHC-gene expression, indicating that CIITA and the three genes encoding
RFX-subunits have an exquisite specificity for MHC genes. Given what we know about
gene-regulation in general, it is, however, not astonishing that there are a limited number of
other genes that appear to be regulated by CIITA, frequently in an RFX-dependent manner.
A few genes possess well-defined W/SXY modules in their regulatory regions and are at
least partially regulated by CIITA and RFX. Examples are the semaphorin receptor plexin-
A1, RAB4B and butyrophilin-2A2 (BTN2A2) [112–114]. A certain number of genes have
been reported to be negatively regulated by CIITA in IFNγ-induced cells. The best-studied
example is probably collagen (COL1A2), where IFNγ-induced CIITA inhibits transcription
in an RFX-dependent manner [115–120]. CIITA-mediated inhibition was dependent on the
presence of the N-terminal acidic and P/S/T domains [116]. Recently, IFNγ-induced CIITA
was shown to repress eNOS via the recruitment of the histone H3K9 trimethyl transferase
SUV39H1 [121]. While it thus appears that CIITA-mediated inhibition is at least in part
executed via the recruitment of co-repressors, it is not clear how the decision between
activation and inhibition is made mechanistically. Some other genes have been proposed
to be coregulated positively or negatively by CIITA (see discussion in [21,74]), but several
of them could not be confirmed in vivo [122]. Taken together, it is apparent that CIITA is a
highly dedicated and specific regulator of the MHC-II antigen presentation pathway.

9. Three’s a Crowd: NLRP3 as a TH2 Transcriptional Activator

Bruchard and colleagues reported that NLRP3, a well-known component of an inflam-
masome complex, can act as a transcriptional activator in CD4+ TH2 cells, contributing to
the expression of TH2 cytokines, such as IL-4, IL-5, and IL-13 [123,124] (Figure 1). NLRP3
is normally cytoplasmic but was found to be localized in the nucleus of TH2 cells [123]
(Table 1). Activation of the Il4 promoter occurred through interaction with IRF4. Similar
results have recently been found in macrophages [125]. NLRP3 carries a pyrin domain
in its N-terminus; however, the mechanism by which NLRP3 activates transcription was
not investigated [123]. These results indicate that a third NLR protein can act as a tran-
scriptional activator and raise the question of whether the same may apply to yet other
members of this versatile protein family.

10. CIITA and Cancer
10.1. CIITA and Immune Evasion in Cancer

Given its function as a transcription factor regulating the expression of MHC-II genes,
CIITA has been shown to play important roles in different pathologies. One of the most
prominent examples of cancers where CIITA inactivation participates in tumor prolif-
eration is the primary mediastinal large B-cell lymphoma (PMLBCL). This cancer is an
aggressive form of non-Hodgkin’s lymphoma that often originates in the mediastinum,
probably of thymic medullary B-cell origin [126]. These tumors present frequent genomic
alterations in CIITA, comprising structural genomic rearrangements, missense, nonsense,
and frameshift mutations found in 53% of primary tumor biopsies and PMBCL-derived cell
lines [127]. Such alterations were also observed in an analysis of public data sets of whole
transcriptome sequencing (RNA-seq) from three PMLBCL-derived cell lines: Karpas1106P,
MedB-1, and U2940 [128]. Characterization of the CIITA-mutations in MedB-1 revealed
two missense mutations (in trans) causing amino acid exchange in the acidic domain and
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the NACHT domain. Mutations in Karpas1106P presented two important deletions in
both chromosomes; in one case, CIITA and the downstream SOCS1 gene are completely
eliminated, while the other one results in disruption of CIITA. The cell line U2940 also
presents an important deletion in one allele that generates a fusion of the upstream NUBP1
gene and CIITA, producing a fused transcript; the second allele contains a point mutation
that generates a stop codon. In all cases, these modifications prevented the expression of
the MHC-II genes and presumably helped the immune escape of the tumor [127]. These
genetic modifications are so prevalent that their gene expression profile (GEP) can be used
as a pattern for the identification of diffuse large B-cell lymphomas (DLBCL) without
mediastinal participation that shows PMLBCL characteristics [129]. However, the immune
escape phenomenon by PMBL is not only due to the inactivation of CIITA, as an integrative
genomic analysis identified mutations in the Janus kinase–signal transducer and activator
of transcription (JAK-STAT) and the nuclear factor κB (NFκB) pathways as concomitant
factors participating to the immune escape [130].

Similar observations were made in cutaneous DLBCL. Analysis of 37 samples revealed
that mutations that inhibit antigen presentation were second only to alterations in the
NFκB pathway. Predictably, most of these mutations were present in B2M, CIITA and HLA
genes [131]. Similar types of alterations have also been identified in a group of 20 patients
suffering from primary cutaneous diffuse large B-cell lymphoma leg-type (PCLBCL-LT).
Next-generation sequencing using a lymphoma panel for diffuse large B-cell lymphomas
revealed frequent genetic losses in CIITA, as in previous cases, this loss may participate in
the immune escape [132].

An important factor regulating the MHC-II expression in some blood cancers is Fork-
head box P1 (FOXP1) [133]. This transcription factor has been observed as a poor prognosis
marker in DLBCLs. Using microarray analysis of siRNA FOXP1-silenced DLBCL cell lines,
differential regulation of MHC-II expression was identified between DLBCL expressing
wild-type FOXP1 and activated-B-cell-like DLBCL, which expresses short isoforms of
FOXP1. The cause of the downregulation of MHC-II was suggested to be FOXP1 acting
as a novel negative regulator of CIITA target genes; thus, suppression of FOXP1 could
represent a therapeutic target for the treatment of DLBCL [133]. Another factor involved in
the expression of CIITA in cancer has been identified in pediatric glioblastomas. RACK7, a
receptor for activated C-kinase, acts as an inhibitor of CIITA. RACK 7 recognizes a point
mutation on histone H3.3 (H3.3G34R), often found in this type of tumor. Binding by
RACK7 modifies the chromatin environment and suppresses the expression of CIITA, and
thus limits the immunogenicity of the tumor [134].

Chronic myeloid leukemia (CML) is another type of blood cancer presenting CIITA
aberrations important for the prognosis of the condition. It has been reported that MHC-
II and CIITA are greatly downregulated in CML cases; however, the expression was
increased following stimulation by IFNγ, thus proving that the MHC-II pathways remained
functional [135]. Interestingly, expression of MHC-II and CIITA was significantly increased
by inhibition of JAK1/2 via ruxolitinib. These results suggest that cytokine induction of the
JAK-mediated pathway antagonizes MHC-II expression, thus presenting the opportunity
for new therapeutic targets for the treatment of CML [135].

A strong downregulation of CIITA has been reported in blasts from acute myeloid
leukemia (AML) relapse cases following allogeneic transplantation of hematopoietic cells.
Inhibition of CIITA expression was concomitant with the upregulation of inhibitory check-
point molecules that prevented T-cell recognition of AML cells and facilitated relapse [136].

Some cancers with viral infections have been shown to present upregulated expression
of MHC-II. For example, Epstein–Barr virus-associated gastric adenocarcinomas (EBVaGC)
presented a better outcome than EBV-negative cancers of the same type. The effect is
suggested to be a consequence of upregulation of MHC-II expression that is concomitant
with the expression of foreign viral antigens. Using RNA-seq data from 400 gastric cancer
patients, the upregulation of all MHC-II involved genes, including CIITA and RFX5, was
observed compared to normal tissues or other types of gastric cancers [137]. Expression
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of these genes was unexpected, as EBV infection induces expression of the viral protein
BZLF1 (ZEBRA, Zta), which represses transcription of CIITA [111,138]. While expression
of the viral protein was still found in many of these cancers, upregulation of MHC-II
was correlated with higher levels of intratumoral IFNγ. These results suggested an APC
function of cancer cells, increasing the immunogenicity of the tumor microenvironment
and thus helping cancer elimination [137].

Another example of cancers where viral modulation of the MHC-II expression plays
an important role is head and neck squamous cell carcinomas (HNSCC) [139]. A subset of
these cancers is induced by high-risk human papillomaviruses (HPV) infections. Analysis
of more than 500 RNA-seq data sets from HNSCC patients allowed the identification of
the impact of HPV infections on the MHC-II expression and regulation. Upregulation of
all genes involved in MHC-II antigen presentation roles was observed in HPV-positive
cases compared to HPV-negative controls; among these genes were CIITA and RFX5 [139].
Similar to the observations of Ghasemi and colleagues, a viral infection of tumoral bodies
was correlated with higher levels of IFNγ. This case also suggests an APC role for the
cancer cells that participate in tumor elimination [137,139].

10.2. Generation of Cancer Vaccines via CIITA and NLRC5

The evident problem presented by the immune escape of tumors via suppression of
antigen presentation has prompted some scientists to try to increase the immunogenicity of
the cancer cells by artificially increasing the expression of the antigen-presenting pathways
via the ectopic expression of CIITA or NLRC5.

The direct role of cancer cells as APCs has been investigated using a model of trans-
genic mice, the CD11c.DTR C57BL/6 mice (H-2b), where the dendritic cells (DC) can
be functionally deleted via diphtheria toxin [140]. In order to eliminate other potential
professional APCs, macrophages were also eliminated via the administration of liposome
clodronate. In these mice, the H-2d cells (epithelial cancers) were stably transfected with a
plasmid carrying CIITA. Increased immunogenicity by the MHC-II expressing cells was
able to successfully prime CD4+ T-cells and induce an antitumoral immune response in the
absence of natural APCs [140]. From these observations, it has been proposed that antigens
presented by MHC-II molecules and the induction of a T helper response could present
a promising option to elicit an antitumor response that may even be more efficient than
stimulating the MHC-I pathway [141].

Several studies have shown that artificial overexpression of CIITA, and thus of MHC-
II, in cancer cells leads to increased antitumoral response. It has been shown that this
expression significantly alters the tumor microenvironment by replacing a low population
of tumor-infiltrating macrophages and neutrophils with activated CD4+ and CD8+ T-
cells [141]. Using high MHC-II expressing cells, it has been possible to purify and isolate
MHC-II bound peptides [142]. Application of this protocol to human hepatocarcinoma for
the isolation of specific tumor peptides from both MHC-I and MHC-II pathways allowed
the creation of the first multi-epitope, multi-target, and multi-allele vaccine targeting
activation of CD4+ and CD8+ T cells. This vaccine was undergoing phase I/II clinical trials
as of 2019, results from these trials should soon provide insights into the efficiency and
safety of this method [141].

An important recent observation was made by Johnson and colleagues concerning the
participation of MHC-II expression in anti-PD-1 therapies [143]. Two orthotopic immuno-
competent murine models of non-small cell lung cancer, the cell line CMT167, which is
sensitive to anti-PD1 therapy and the Lewis lung carcinoma (LLC), which is resistant, were
used. RNA-seq analysis from in vivo samples of these cell lines revealed that sensitivity to
the therapy was dependent on the CIITA-mediated expression of tumor-cell-specific MHC-
II. Ectopic expression of CIITA in LLC rendered these cells MHC-II-positive and sensitized
the tumors to anti-PD-1 therapy. Upregulation of CIITA was also associated with increased
T-cell infiltration and a survival benefit in patient-derived lung adenocarcinomas [143].
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Similarly, targeting the activation of the MHC-I pathways also has been explored.
Activation of NLRC5 induces stimulation of the antigen processing machinery (APM)
and expression of MHC-I molecules [38–40,144]. Importantly, it has been shown that
inhibition of the expression of NLRC5 induced by promoter methylation, loss of copy
number and somatic mutations induces strong downregulation of MHC-I, and the level
of MHC-I expression is an important marker for the prognosis of the majority of solid
cancers [145,146]. This suggested that ectopic expression of NLRC5 may be of therapeutic
benefit. Stable transfection of NLRC5 into the murine melanoma cell line B16-F10 resulted
in the upregulation of MHC-I molecules, TAP1, LMP2 and LMP7 (large multifunctional
proteasome 2 and 7) [147]. This activation of the general APM leads to an efficient presen-
tation of the tumoral antigen gp100 and subsequent activation of CD8+ T-cells specific for
gp100. Injection of B16-F10 expressing NLRC5 (B16-5) in murine models showed efficient
activation of the antitumoral immune response dependent on MHC-I expression. This im-
munity was translated into the reduced formation of tumor foci in the lungs and skin. Very
interestingly, injection of irradiated B16-5 cells led to immunization against the parental
cell line B16, which expresses very low levels of MHC-I molecules [147]. These results
show the importance of both antigen-presenting pathways, not only in the antitumoral
immunity but as possible targets for therapeutic treatments.

11. CIITA and Viral Inhibition
11.1. CIITA as a Viral Restriction Factor

An activity of CIITA that goes beyond its transcriptional regulatory function is its
ability to act as an antiviral restriction factor (RF). Viral RFs are a relatively recent discovery
and are part of a new branch of the immune system known as intrinsic immunity [148].
This mechanism acts by restricting viral replication and assembly of new viral particles
and is mediated by proteins often expressed in a constitutive manner; however, some can
also be induced by a viral infection. The most significant activity of restriction factors,
when compared to other antiviral responses, is their ability to act immediately, thus being
important factors in diminishing the effectiveness of the infection in early stages [148].
CIITA has been observed to behave as a restriction factor for human T cell leukemia
virus-1 (HTLV-1), Human T cell leukemia virus-2 (HTLV-2) and human immunodeficiency
virus-1 (HIV-1) [149–151]. CIITA was first shown as an RF against HIV-1 in T cells, where
it competes for binding to cyclin-T1 (CyT1), a subunit of the P-TEFb complex, with the
viral transactivator Tat [86,87]. Further studies on myeloid cells, another target of HIV-1,
were performed in the promonocytic cell line U937, using mutants that allowed infection
(U937 Plus) or not (U937 Minus) [152]. Comparing the differential expression of CIITA
in these cell lines, these studies presented evidence that CIITA was able to suppress
replication of HIV-1 by inhibiting transactivation of Tat, thus positioning CIITA as a general
RF in myeloid cells as well as T cells [152,153]. This antiviral activity was observed to be
independent of the activity of tripartite motif 22 (TRIM22), another RF that was identified
before CIITA as an inhibitor of HIV-1 transcription [154]. Nevertheless, evidence suggests
that TRIM22 and CIITA cooperate in their RF activity. This cooperation is mediated by
the assembly of a nuclear body, a protein complex containing CIITA, TRIM22 and the
promyelocytic leukemia protein (PML) [155]. The nuclear bodies then compete for and
capture CyT1, thus preventing the activation of Tat. This mechanism constitutes the first
example of synergistic activity in intrinsic immunity [155].

The activity of CIITA as an RF for HTLV-1 is mediated by a direct interaction between
CIITA and the viral protein Tax-1. This binding prevents the interaction of Tax-1 with
its coactivators p300/CBP-associated factor (PCAF), the cyclic AMP-responsive element-
binding protein (CREB), and the activating transcription factor-1 (ATF1), which are required
for the proper activation of HTLV-1 [150]. This mechanism also has been shown to partic-
ipate in CIITA’s inhibition of HTLV-1 induced oncogenic transformation of T cells. This
transformation is induced by persistent activation of the NF-κB pathway mediated by
Tax-1. Interestingly, CIITA has been observed to inhibit the NF-κB pathway via several
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mechanisms; the interaction between CIITA and Tax-1 in the cytoplasm prevents activation
and nuclear transport of p50/RelA/IκB complexes, while nuclear bodies containing CIITA
bind Tax-1/RelA and block activation of NF-κB controlled genes [153]. As mentioned
before, CIITA is also able to act as an RF for HTLV-2, similar to the mechanism observed
for HTLV-1. CIITA interacts directly and inhibits the activity of the Tax-2 transactivator.
However, the domains that interact between CIITA and both Tax proteins are different, but
overlapping in each case; for Tax-1, CIITA interacts via two adjacent regions comprising
amino acids 1 to 252 and 253 to 410, while the interaction with Tax-2 is mediated by the
N-terminal domain between amino acids 1 to 321 and seems to act in cooperation with
NFY [156].

11.2. CIITA as an Inhibitor of Ebola and Corona Viruses

Recently, Bruchez and colleagues showed that CIITA inhibited the Ebola virus and
coronaviruses, although CIITA was acting in this instance as a conventional MHC-II gene ac-
tivator and not as a viral restriction factor [157]. With the objective of identifying pathways
that participate in resistance mechanisms to viral infections, a transposon-mutagenesis
forward screen in U2OS cells was applied. Transposon-modified cellular libraries were
treated with vesicular stomatitis virus expressing the Ebola glycoprotein (EboGP-VSV), and
cells surviving the infection were expanded and analyzed by next-generation sequencing
of the transposon insertion sites. In addition to the Ebola virus receptor NPC1, only CIITA
was identified repeatedly as a transposon target. Transposon insertion resulted in the up-
regulation of CIITA, which increased the cellular resistance to EboGP-VSV between 100 and
1000-fold. Further experiments suggested that CIITA inhibits viral entry by blocking fusion
in the endosomes. Given that CIITA acts as a transcription factor, genes controlled by
CIITA were analyzed. Among these, only the isoform p41 of CD74, the invariant chain of
the MHC-II molecules, was able to induce viral resistance. Expression of CD74 fragments
pinpointed the resistance ability to the thyroglobulin domain, whose presence in the endo-
some inhibits the activity of cathepsins, which are needed for the processing of the EboGP
and subsequent viral fusion. Similar glycoprotein processing is needed for the insertion
of other viruses, such as coronaviruses. Expression of p41-CD74 in U2OS and Vero cells
was able to block entry of pseudotyped viruses expressing the S protein from SARS-CoV-2
and WIV1-CoV, thus confirming that p41-CD74 inhibited processing of the viral protein.
These experiments were important for the identification of new mechanisms dependent
on CIITA that are astonishingly separated from the antigen-presenting pathways. These
experiments also suggest that there may be novel and important functionalities for CIITA
left to identify [157].

12. Conclusions

In this review, we have attempted to give an overview of the biology of CIITA, the
master regulator of MHC-II expression. CIITA and its closest homolog NLRC5 are highly
dedicated regulators of MHC-gene expression and are therefore of crucial importance for
the regulation of the cellular immune response. Differential expression of MHC-II gene
expression is mediated by the differential expression of CIITA, which is controlled by three
independent promoters. As could be expected, CIITA is a major target for cancer immune
escape mechanisms, and ectopic expression of CIITA and NLRC5 present promising
avenues in cancer vaccination strategies. Finally, CIITA acts as a viral inhibitor, both as a
viral restriction factor and through its role as an MHC-II gene regulator, demonstrating its
crucial role for the immune response.
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