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Plasmids harboring qnr genes confer resistance to low fluoroquinolone concentrations.
These genes are of significant clinical, evolutionary and environmental importance, since
they are widely distributed in a diverse array of natural and clinical environments. We
previously extracted and sequenced a large (∼185 Kbp) qnrB-harboring plasmid, and
several small (∼8 Kbp) qnrS-harboring plasmids, from Klebsiella pneumoniae isolates
from municipal wastewater biosolids, and hypothesized that these plasmids provide
host bacteria a selective advantage in wastewater treatment plants (WWTPs) that
often contain residual concentrations of fluoroquinolones. The objectives of this study
were therefore to determine the effect of residual fluoroquinolone concentrations on
the growth kinetics of qnr plasmid-harboring bacteria; and on the copy number of
qnr plasmids and expression of qnr genes. Electrotransformants harboring either one
of the two types of plasmids could grow at ciprofloxacin concentrations exceeding
0.5 µg ml−1, but growth was significantly decreased at concentrations higher than
0.1 µg ml−1. In contrast, plasmid-free strains failed to grow even at 0.05 µg ml−1.
No differences were observed in plasmid copy number under the tested ciprofloxacin
concentrations, but qnr expression increased incrementally from 0 to 0.4 µg ml−1,
suggesting that the transcription of this gene is regulated by antibiotic concentration.
This study reveals that wastewater-derived qnr plasmids confer a selective advantage
in the presence of residual fluoroquinolone concentrations and provides a mechanistic
explanation for this phenomenon.
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INTRODUCTION

The extensive use, and misuse of antibiotics in the past half
century has significantly contributed to the proliferation of
antibiotic resistant bacteria (ARB), and associated antibiotic
resistance genes (ARGs) that confer resistance to many of
the clinically prescribed antibiotic compounds (Levy and
Marshall, 2004; Schmieder and Edwards, 2012). Although
antibiotic resistance has traditionally been associated with clinical
environments, there is substantial evidence suggesting that
anthropogenically-impacted hotspots such as animal husbandry
facilities and wastewater treatment plants (WWTPs) can
contribute to antibiotic resistance in natural environments and
thereby impact the global scope of antibiotic resistance (Davies
and Davies, 2010; Allen, 2014; Gatica et al., 2016). Many
ARGs are carried on mobile genetic elements (MGEs) such
as IS-sequences, integrons and plasmids. This facilitates the
horizontal transfer of ARGs within and between environmental
microbiomes, thus playing a central role as one of the most
powerful forces in microbial evolution and ecology (Frost et al.,
2005).

Fluoroquinolones bind to the holoenzyme of bacterial
gyrase/topoisomerase IV and double-stranded nicked DNA
in the bacterial chromosome replication fork, thus preventing
its progress, leading to cell cycle arrest and eventually to cell
death (Dalhoff, 2012). Due to their chemical characterization,
fluoroquinolones accumulate in dewatered sludge, where
concentrations of up to 50 mg/kg dry weight have been detected
(Golet et al., 2002). Resistance to fluoroquinolones is traditionally
associated with specific mutations in chromosomal genes
encoding for gyrase/topoisomerase enzymes. However, plasmid-
mediated quinolone resistance (qnr) genes confer resistance to
sub-clinical levels of fluoroquinolones that are approximately
one order of magnitude lower than minimum inhibitory
concentration (MIC) levels associated with chromosomal
mutations (Martínez-Martínez et al., 1998; Robicsek et al., 2006).
This occurs by competitive binding of the Qnr proteins to the
gyrase, prior to its binding to the nicked DNA, consequently
resulting in declining of assembly of the antibiotic recognition
site. (Martínez-Martínez et al., 1998; Robicsek et al., 2006;
Strahilevitz et al., 2009). The binding of Qnr to the bacterial
gyrase partially interferes with the replication fork progression
and therefore, notwithstanding the fact that it keeps the cell
from succumbing to the lethal effect of the fluoroquinolones,
Qnr binding to the gyrase slow replication fork progression,
leading to reduction of the growth rate of the bacterial culture
(Tran et al., 2005). Although previous studies have suggested
that qnr genes originated in natural environments (Poirel
et al., 2005), they have evolved in a wide array of commensal
and pathogenic bacteria and are strongly associated with
multidrug resistance (Perry and Wright, 2013; Marti et al.,
2014).

Albeit lower than the MIC conferred by genomic mutations,
Qnr defense should not be easily disregarded, since sub-
inhibitory ciprofloxacin concentrations are common in
anthropogenic environments such as sewage and treated
wastewater; and because the qnr genes are mainly carried

on transferrable plasmids, making them of high ecological
and evolutionary importance since they can be disseminated
from anthropogenic sources into microbiomes in natural
environments (Marti et al., 2014). Furthermore, plasmid-
mediated quinolone resistance may allow the “window
of opportunity” needed for the development of point
mutations in the gyrase, leading to resistance to clinically
relevant fluoroquinolone concentrations (Drlica, 2003;
Cantón and Morosini, 2011; Marti et al., 2016). Indeed,
the relevance of qnrs in the environmental resistome can
also be demonstrated by the fact that qnrS, for instance,
although sometimes rarely detected in the clinical settings,
is very prevalent in WWTPs and has a very broad host
range suggesting a competitive advantage of these plasmids
in in this environment (Kaplan et al., 2015; Marti et al.,
2016).

In a previously published study, we isolated numerous
ciprofloxacin-resistant Klebsiella strains from dewatered
biosolids of a large municipal wastewater treatment facility,
and extracted, transformed, characterized, and fully sequenced
seven qnr-bearing plasmids (Kaplan et al., 2013). The first was
a mega-plasmid of 185 Kbp that encoded 10 different ARGs,
including qnrB. This plasmid shared a high level of sequence
identity with a wide range of previously described, clinically
associated pKP3-like plasmids. The other six plasmids were
much smaller (∼8 Kbp) and were highly similar (>95% identity)
to pGNB2, a plasmid previously detected in a German wastewater
treatment facility by plasmid capture (Bönemann et al., 2006)
and pBRST7 from an Aeromonas hydrophila strain isolated from
diseased fish in an Indian aquaculture system (Majumdar et al.,
2011).

It is traditionally believed that maintaining plasmids within
host cells confers significant fitness costs due to the need to
synthesize extra nucleotides and enzymes for replication and
transfer; and therefore, the maintenance of a plasmid within a cell
requires a selective advantage that exceeds the abovementioned
fitness cost (Martínez and Rojo, 2011; Hernando-Amado et al.,
2017). While most studies have evaluated the cost/benefit
of harboring plasmids under minimal inhibitory antibiotic
concentrations, studies by Gullberg et al. (2011) demonstrated
that several resistance mechanism conferred significant selective
advantages at sub-inhibitory concentration of antibiotics.
The realization that environmentally relevant antibiotic
concentrations can select for ARGs has tremendous ramifications
for both the spread and evolution of antibiotic resistance
(Gullberg et al., 2011; Cytryn, 2013).

The aim of this study was to assess the impact of
selective pressure in the form of sub-therapeutic and clinical
fluoroquinolone concentrations, on the growth dynamics,
plasmid abundance and qnr gene expression in bacteria
harboring qnr plasmids that were isolated from municipal
WWTPs. The growth of naïve and electro-transformed
Escherichia coli DH10B strains with the above-described qnrB-
and qnrS-harboring plasmids was monitored in the presence of
different concentrations of ciprofloxacin; in tandem, plasmid
abundance and qnrS gene expression were quantified using
real-time PCR.
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MATERIALS AND METHODS

Growth Rates of E. coli DH10B
Electrotransformants Under Different
Ciprofloxacin Concentrations
Escherichia coli DH10B competent cells (20 µl)
electrotransformed with either the 8 Kbp qnrS-harboring
plasmid pKPSH213.55, or the 185 Kbp qnrB-harboring plasmid
pKPSH11-XL (Kaplan et al., 2015), were grown in 180 µl
LB-broth with the following concentrations of ciprofloxacin:
0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, and 4.0 µg ml−1. In
tandem, plasmid-free DH10B cells were grown under the same
ciprofloxacin concentrations as a control. Cultures were grown
in sterile 96-well microwell plates (Thermo Fisher Scientific
Inc., Denmark) following an initial inoculation of 2 × 104 cells
ml−1 in an automated Spark 10 M multimode microplate reader
(Tecan, Zurich, Switzerland) at 37◦C, gently shaking every
20 min; and cell density was closely measured every 40 min for at
least 30 h.

In addition to microplate experiments, naïve DH10B cells
and pKPSH213.55-harboring DH10B strain were also grown
in 5 ml of sterile LB-broth at 37◦C under constant shaking
to assess growth dynamics in large volumes, and to extract
nucleic acids used for the qnrS abundance and expression
experiments described below. In these experiments, four different
ciprofloxacin concentrations: 0, 0.1, 0.4, and 1.0 µg ml−1 were
evaluated. The initial cell density was 6× 104 cells ml−1, in three
biological repeats, and growth was monitored periodically using a
biochrom WPA spectrophotometer (Biochrom, Ltd., Cambridge,
England). Cultures were harvested at mid-log phase, at 2 × 106

cells ml−1 and immediately frozen on liquid N2. Naïve DH10B
cells grown without antibiotic and DH10B pKPSH213.55 cells
grown with 0 and 0.1 µg ml−1 ciprofloxacin were harvested
after 2.5 h and DH10B pKPSH213.55 cells with 0.4 µg ml−1

ciprofloxacin were harvested after 6 h. DH10B pKPSH213.55 cells
grown with 1.0 µg ml−1 began collapsing were harvested after
7 h, at 5 × 105 cells ml−1. Due to the low density of cells in this
culture, duplicate cell cultures were used for each nucleic acid
extraction.

Nucleic Acid Extraction, Purification and
Synthesis of Single Strand cDNA From
Mid Log-Phase Electrotransformants
DNA and RNA from the harvested cell cultures were extracted
using the Exgene Cell SV kit (GeneAll, Seoul, South Korea)
and the EZ-RNA kit (Biological Industries, Beit HaEmek,
Israel), respectively; according to the manufacturers’ instructions.
Residual DNA was removed from the RNA samples by digesting
with DNase I for 20 min at room temperature (Sigma, St.
Louis, MO, United States). Synthesis of single strand cDNA was
achieved using ImProm-IITM Reverse-Transcriptase (Promega,
Madison, WI, United States) with random primers and 1.0 µg
of total RNA template.

RNA, cDNA, and genomic DNA concentrations were
measured with a QubitTM 3.0 Fluorometer (Thermo Fisher

Scientific, United States) using reagents and protocols supplied
by the manufacturer.

Quantitative PCR Assessment of Plasmid
Copy Number and qnrS Gene Expression
Levels
Plasmid copy number (abundance of qnrS) and qnrS gene
expression levels in the naïve and pKPSH213.55-transformed
DH10B cells grown in the presence of 0, 0.1, 0.4, and
1.0 µg ml−1 were monitored by real-time quantitative PCR
(qPCR). Triplicates from whole genomic DNA and cDNA for
each of the four ciprofloxacin concentrations were diluted
10-fold and 1 µl was used in a 20 µl final reaction
volume together with 0.5 µM of each primer and 1X SYBR
Green Master Mix. For qnrS, the SYBR R© DyNAmo Flash kit
(Thermo ScientificTM) was used together with the primers
qnrSrt-F11 (5′-GACGTGCTAACTTGCGTGAT-3′) and qnrSrt-
R11 (5′-TGGCATTGTTGGAAACTTG-3′; Marti and Balcázar,
2013) to generate a 118 bp amplicon. In tandem, total bacterial
abundance was estimated by targeting the 16S rRNA gene using
the universal primers 331-F (5′-TCCTACGGGAGGCAGCAGT-
3′) and 518-R (5′-ATTACCGCGGCTGCTGG-3′) (Nadkarni
et al., 2002; Lopez et al., 2003). Samples were denatured at 95◦C
for 7 min, followed by 40 cycles at 95◦C for 10 sec and 60◦C
for 30 sec. Three technical replicates were conducted for each
individual sample. Efficiency of reactions was monitored in each
run by means of an in internal standard curve using a 10-
fold dilution of standards ranging from 107 to 102 copies per
reaction, done in duplicates. Reported efficiency was between
96 and 98.6% for all runs, and R2-values were greater than
0.99. For both qPCR primer sets, the template for the standard
curve used the pNORM1 plasmid (courtesy of C. Merlin). This
plasmid is a standard pEX-A vector containing a synthetic
sequence combining fragments that cover both of the target
gene amplicons (Rocha et al., 2018). Additionally, presence of
qPCR inhibitors in samples was assessed using an additional
100-fold dilution as previously suggested (Bustin et al., 2009). All
runs were performed using a StepOnePlus real-time PCR system
(Applied Biosystems, Foster City, CA, United States) and data
analysis was conducted using the StepOne software v2.3 (Applied
Biosystems, Foster City, CA, United States).

Genomic DNA was targeted to estimate plasmid copy number
per cell. Specifically, qnrS values were divided by 16S rRNA values
and multiplied by seven, which is the documented number of
16S rRNA copies in the E. coli DH10B genome (Durfee et al.,
2008). For qnrS gene expression analyses, the estimated qnrS copy
number per sample was determined by normalizing to both E. coli
DH10B abundance and to cDNA concentration. Briefly, for cell
normalization, average copy number values from qPCR technical
replicates were multiplied by the dilution factor used in qPCR
and the final volume in µl of the cDNA sample after reverse-
transcription, and then divided by the estimated cell number at
harvest used for RNA extraction. For cDNA normalization, copy
number from each qPCR technical replicate was multiplied by the
dilution factor used in qPCR and divided by the concentration
expressed in ng µl−1 of the cDNA sample.
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To determine the statistical significance of ciprofloxacin
concentration on both plasmid copy number and qnrS gene
expression, we applied unpaired t-tests, comparing samples
grown in the presence of different ciprofloxacin concentrations
to the control grown without ciprofloxacin (t-test was performed
using GraphPad Prism version 6.00 for Windows, GraphPad
Software, La Jolla, CA, United States).

RESULTS

Impact of Ciprofloxacin Concentration
on Growth Dynamics of qnrS- and
qnrB-Harboring Plasmids
Growth dynamics of naïve E. coli DH10B and E. coli DH10B
cells electrotransformed with the wastewater-derived plasmids
pKPSH213.55 (8 Kbp qnrS-harboring plasmid) and pKPSH11-
XL (185 Kbp qnr-harboring plasmid), are shown in Figure 1.
Naïve untransformed E. coli DH10B cells did not grow in the
presence of the lowest ciprofloxacin concentration measured
(0.05 µg ml−1). In contrast, qnr plasmid-harboring strains grew
at concentrations of up to 0.5 µg ml−1, albeit with incrementally
decreasing growth rates and lower maximum cell densities at
ciprofloxacin concentration above 0.1 µg ml−1 (Figure 1).

Collectively, growth kinetics of both transformants could
grossly be divided into three groups: (A) at ciprofloxacin
concentrations below 0.1 µg ml−1, cells exhibited short lag phases
(∼2 and ∼4 h for qnrS- and qnrB-harboring cells, respectively),
high growth rates and reached high densities. (B) at ciprofloxacin
concentrations that ranged from 0.2 to 0.5 µg ml−1, cells
exhibited longer lag phases (∼4 h), lower growth rates and
reached lower cell densities. (C) at ciprofloxacin concentrations
that exceeded 1 µg ml−1, cells exhibited extremely long lag phases
(∼12 and∼20 h for qnrS- and qnrB-harboring cells, respectively,
under 1 µg ml−1 ciprofloxacin and more than 24–30 h for 2 and
4 µg ml−1, respectively), very slow growth rates and reached low
cell densities.

Despite the fact that the qnrB-harboring plasmid pKPSH11-
XL is more than 20 times larger than the qnrS-harboring
plasmid pKPSH213.55, we did not observe significant differences
in the growth kinetics of the two transformants, suggesting
that the fitness cost of the increase plasmid size is negligible
(Supplementary Figure S1).

Impact of Ciprofloxacin Concentration
on qnrS-Harboring Plasmid Copy
Number
To examine the short-term impact of ciprofloxacin exposure
(2.5–7 h) on qnr plasmid copy number, DNA was extracted
from mid-log phase pKPSH213.55-harboring E. coli DH10B
electrotransformants grown in 0, 0.1, 0.4, and 1.0 µg ml−1

ciprofloxacin. The qnrS and 16S rRNA gene copy numbers
were determined by qPCR, and pKPSH213.55 abundance was
estimated by qnrS to 16S rRNA copy number ratios. E. coli
DH10B strains harbor seven copies of 16S rRNA, and therefore,
we estimated that each cell maintained approximately 2–3 copies

of pKPSH213.55 per cell. The three ciprofloxacin concentrations
tested had no significant impact on plasmid copy number relative
to the bacteria that were grown without antibiotic (Figure 2).

Impact of Ciprofloxacin Concentration
on qnrS Expression
The impact of short-term (2.5–7 h) ciprofloxacin exposure
on qnrS expression was determined by qPCR amplification of
qnrS cDNA normalized either to the estimated cell abundance
(Figure 3), or to the measured cDNA concentration in
ng/µl−1 (Supplementary Figure S2). The normalized expression
of qnrS was significantly higher in cells grown in 0.1 µg
ml−1 ciprofloxacin in comparison to those grown without
ciprofloxacin; and cells grown in 0.4 µg ml−1 ciprofloxacin
displayed significantly higher normalized qnrS expression levels
than those grown in 0.1 µg ml−1 ciprofloxacin. In contrast, at
1.0 µg ml−1 ciprofloxacin, qnrS expression levels significantly
dropped, returning to basal levels observed without selection
stress.

DISCUSSION

Plasmids harboring genes encoding for resistance to antibiotics
not only confer survival to individual host cells, but also may
drive the evolution of entire bacterial communities in specific
ecosystems, due to their ability to transfer or be transferred
and expressed within closely associated organisms (Bennett,
2008; Cytryn, 2013). A myriad of studies have assessed the
dynamics of antibiotic resistance-conferring plasmids from
clinical environments, but only few have investigated the
behavior of ARG-harboring plasmids isolated from non-
clinical ecosystems. We hypothesize that municipal WWTPs
may be hotspots for the propagation and dissemination of
plasmid-mediated quinolone resistance due to high residual
concentrations of fluoroquinolones (especially in biosolids)
and the high concentration of biofilm-associated bacteria in
these ecosystems (Stokes and Gillings, 2011; Kaplan et al.,
2013; Rizzo et al., 2013). Henceforth, the global aim of this
study was to assess correlations between levels of selective
pressure and bacterial fitness in cells harboring qnr plasmids
isolated from municipal WWTPs. This was accomplished by
assessing growth dynamics, gene abundance and qnr expression
levels in DH10B E. coli electrotransformants harboring two
previously described qnr-encoding plasmids that were isolated
from a wastewater treatment facility (Kaplan et al., 2015).
Comprehensive understanding of qnr plasmid dynamics in
anthropogenic “hotspots” such as WWTPs is crucial due to the
high abundance of qnr genes in these environments and the
ubiquitous presence of sub-therapeutic levels of fluoroquinolones
in wastewater effluents and biosolids (McClellan and Halden,
2010; Kaplan et al., 2015).

Plasmid maintenance is believed to come with a distinct
fitness cost to the host that is associated with added energetic
requirements needed for replication, transcription and
translation (Turner et al., 2002). However, in the presence
of antibiotics, plasmids harboring ARGs provide a selective
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FIGURE 1 | Growth dynamics of qnrS- and qnrB-encoding plasmids in DH10B Escherichia coli electrotransformants exposed to different ciprofloxacin
concentrations. Naïve and pKPSH213.55 (qnrS)-transformed cells (A). Naïve and pKPSH11-XL (qnrB)- transformed cells (B). Plasmid-free DH10B cells did not grow
under any of the indicated ciprofloxacin concentrations. Cip - ciprofloxacin.

advantage to these cells, and therefore maintenance of these
plasmids may occur in environments containing residual
concentrations of antibiotics. The naïve, plasmid-free E. coli
DH10B strain, failed to grow even at 0.05 µg ml−1 ciprofloxacin,
and previously we found that contrary to commonly documented
clinical MIC levels for E. coli (1 µg ml−1) it’s growth was inhibited
in ciprofloxacin concentrations below 0.002 µg ml−1 (Kaplan
et al., 2015). In contrast, the qnr plasmid transformants grew well
at ciprofloxacin concentrations as high as 0.5 µg ml−1. This has
significant environmental ramifications since sub-therapeutic
concentrations reaching 0.05 µg ml−1 have been documented in
wastewater effluents and biosolids (Golet et al., 2002; McClellan
and Halden, 2010). These products are often used for irrigation
or applied as fertilizers in agriculture and therefore may facilitate
the dissemination of antibiotic resistance in food webs.

In the complete absence of selection, we found a significant
reduction in growth rate and maximal cell density differences
between the naïve E. coli DH10B cells and the qnrS and qnrB

plasmid electrotransformants. While plasmid maintenance is
known to hamper bacterial growth, we believe that this finding
also stems from the fact that there is a tradeoff associated with
Qnr protection that is caused by competitive binding of Qnr to
the gyrase. Although this mechanism lowers gyrase inhibition by
fluoroquinolones in a concentration-dependent manner, it also
reduces the amount of holoenzyme-DNA, and thereby constrains
bacterial growth (Tran et al., 2005).

Although both the qnrB- and qnrS-harboring plasmids
reduced the fitness of host cells in the absence of ciprofloxacin,
no significant difference in growth kinetics were observed in
the 8 Kbp qnrS vs. the 185 Kbp qnrB plasmid transformants,
despite significant difference in their size. Support for the fact that
plasmid size does not significantly impact bacterial fitness was
previously demonstrated in Pseudomonas aeruginosa (San Millan
et al., 2014).

Increased ciprofloxacin concentrations of up to 0.5 µg ml−1

resulted in reduced cell density and increased duration of lag
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FIGURE 2 | Estimated copy number of pKPSH213.55 plasmids per bacteria
purified from cultures at mid-log phase cells grown in media containing
different ciprofloxacin concentrations (0, 0.1, 0.4, and 1.0 µg ml−1). Plasmid
copy number was inferred by normalizing qPCR-based qnrS copy number to
the seven gene copies of 16S rRNA in DH10B. Cells grown in 0 and
0.1 µg ml−1 ciprofloxacin were harvested after 2.5 h; cells grown in
0.4 µg ml−1 ciprofloxacin were harvested after 6 h; and cells grown in 1.0 µg
ml−1 ciprofloxacin were harvested after 7 h.

FIGURE 3 | Quantification of qnrS transcripts normalized to estimated
bacterial cell number at mid-log phase under different ciprofloxacin
concentrations (0, 0.1, 0.4, and 1.0 µg ml−1). Cells grown in 0 and 0.1 µg
ml−1 ciprofloxacin were harvested after 2.5 h; cells grown in 0.4 µg ml−1

ciprofloxacin were harvested after 6 h; and cells grown in 1.0 µg ml−1

ciprofloxacin were harvested after 7 h. The reported significance refers to a
∗p-value < 0.05 for 0.1 µg ml−1, and a ∗∗∗∗p-value < 0.0001 for 0.4 µg ml−1.

phase. However, when ciprofloxacin exceeded 1.0 µg ml−1, lag
phase was extremely prolonged, after which cell growth did occur.
This elongated lag phase may indicate the actual time required
for the bacterial cell to transcribe and to translate enough
QnrS proteins, to substantially protect the bacterial gyrase, by
competing against the antibiotic on binding to its target site.

Another explanation for acquisition of elevated ciprofloxacin
resistance in the environment are spontaneous genomic point
mutations occurring in the bacterial gyrase/topoisomerase IV
genes, as previously demonstrated by Baym et al. (2016), who
showed the progression of E. coli growth along a ciprofloxacin
gradient as a function of well synchronized mutations in

various gyrase loci. The occurrence of these mutations may be
facilitated by the previously mentioned “window of opportunity”
conferred by plasmid-mediated quinolone resistance (Drlica,
2003; Cantón and Morosini, 2011; Marti et al., 2016). Another,
more recent study eloquently demonstrated that tolerance boosts
the chances for antibiotic resistance mutations to spread within
a bacterial population under selective pressure (Paiva et al.,
2017). Henceforth, it may be hypothesized that qnr-bearing
plasmids may increase the capacity of bacteria to acquire bacterial
gyrase/topoisomerase IV point mutations).

By applying a qPCR-based approach, we determined that
the qnrS-bearing plasmid is a low copy number plasmid,
averaging 2–3 copies per-cell and that short-term exposure to
selective ciprofloxacin concentrations did not affect plasmid copy
number. Conversely, this short-term exposure to ciprofloxacin
stimulated qnrS transcription levels up to fivefold higher than in
comparison to cells grown without ciprofloxacin. Elevation in qnr
expression was previously demonstrated for qnrB in response to
ciprofloxacin in the growth medium, and this phenomenon was
found to be regulated by the cellular SOS-response (Wang et al.,
2009). Nonetheless, SOS-independent elevation in qnrS levels was
found by Rutgersson et al. (2014) who demonstrated that elevated
levels of fluoroquinolones in an Indian river sediment coincided
with higher expression levels of qnr genes, and also by Okumura
et al. (2011) who demonstrated induction of qnrS transcripts in
an SOS-independent manner in E. coli. Another study recently
applied full transcriptome sequencing to demonstrate that sub-
MIC levels of ciprofloxacin changed the transcription levels of
several plasmid-borne genes (some of which were resistance
genes) in plasmid donor E. coli strain in an SOS-independent
manner (Shun-Mei et al., 2018). This study also demonstrated
that sub-MIC concentrations of ciprofloxacin stimulate inter-
species conjugative transfer of plasmids.

As depicted in Figure 3 and Supplementary Figure S2,
in contrast to the significant elevation in relative qnrS gene
expression when exposed to 0.4 µg ml−1 ciprofloxacin, under
higher ciprofloxacin concentration (of 1.0 µg ml−1) no such
effect was detected. This may result from the fact that under
higher antibiotic concentrations, the competitive binding of
the Qnr to the bacterial gyrase fails to sufficiently defend the
replication fork. It is possible that under these high ciprofloxacin
levels, the cell slows qnr transcription and adopts other means
of defense, but additional experiments coupled to whole genome
sequencing are required to validate this hypothesis.

CONCLUSION

This study revealed two important insights. First, it demonstrates
that qnr plasmids isolated from WWTPs confer a selective
advantage in the presence of residual fluoroquinolone
concentrations that are often present in WWTPs. This has
significant ramifications for understanding the distribution
and potential dissemination of these plasmids in irrigated
and fertilized environments that receive wastewater effluents
and biosolids, respectively. Second, it suggests that under
sub-MIC fluoroquinolone concentrations, the protective nature
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of qnr is dependent not on plasmid copy number, but rather
on expression level; and that this expression is dictated by
fluoroquinolone concentration. This finding is supported by
Jiang and colleagues, who showed dependence of the expression
levels of qnrS on the presence of ciprofloxacin (0.25 µg ml−1)
in clinical Enterobacteriaceae isolates (Jiang et al., 2014).
Interestingly, both large and small qnr-harboring plasmids
conferred selective advantages in the presence of sub-MIC
ciprofloxacin concentrations, suggesting that plasmid size does
not substantially affect the fitness of host cells. Future studies
should focus on elucidating fluoroquinolone concentration-
dependent molecular regulatory mechanisms associated with
varying level of selection stress and qnr expression.
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