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Abstract The prognostic role of immune cells in amyotrophic lateral sclerosis (ALS) remains 
undetermined. Therefore, we conducted a longitudinal cohort study including 288 ALS patients 
with up to 5-year follow-up during 2015–2020 recruited at the only tertiary referral center for 
ALS in Stockholm, Sweden, and measured the levels of differential leukocytes and lymphocyte 
subpopulations. The primary outcome was risk of death after diagnosis of ALS and the secondary 
outcomes included functional status and disease progression rate. Cox model was used to eval-
uate the associations between leukocytes and risk of death. Generalized estimating equation 
model was used to assess the correlation between leukocytes and functional status and disease 
progression rate. We found that leukocytes, neutrophils, and monocytes increased gradually 
over time since diagnosis and were negatively correlated with functional status, but not asso-
ciated with risk of death or disease progression rate. For lymphocyte subpopulations, NK cells 
(HR= 0.61, 95% CI = [0.42–0.88] per SD increase) and Th2-diffrentiated CD4+ central memory 
T cells (HR= 0.64, 95% CI = [0.48–0.85] per SD increase) were negatively associated with risk 
of death, while CD4+ effector memory cells re-expressing CD45RA (EMRA) T cells (HR= 1.39, 
95% CI = [1.01–1.92] per SD increase) and CD8+ T cells (HR= 1.38, 95% CI = [1.03–1.86] per SD 
increase) were positively associated with risk of death. None of the lymphocyte subpopulations 
was correlated with functional status or disease progression rate. Our findings suggest a dual role 
of immune cells in ALS prognosis, where neutrophils and monocytes primarily reflect functional 
status whereas NK cells and different T lymphocyte populations act as prognostic markers for 
survival.

Editor's evaluation
Cui et al. colleagues carried out a longitudinal analysis of blood cell counts in a cohort of ALS 
patients and found increased numbers of neutrophils and monocytes, which negatively correlated 
with ALSFRS-R score, but not with rate of disease progression. They also found increased levels 
in NK and central memory TH2 T cells, which correlated with a lower risk of death. In contrast, 
increased levels of CD4 CD45RA effector memory and CD8 T cells were correlated with a higher 
risk of death. These findings have important implications for the pathogenesis of ALS as well as the 
development of immune-based ALS therapies targeting specific populations immune cells.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a rare but devastating neurodegenerative disease. Although a 
genetic cause has been demonstrated for some cases of ALS, the etiology remains unknown for most 
of the patients with ALS. There is currently no cure or effective treatment available for ALS. A range 
of potential disease mechanisms have however been proposed, with potential for informing on novel 
therapeutic targets (Zarei et al., 2015).

Neuroinflammatory features, including local glial activation and T-cell infiltration in the central 
nervous system (CNS), are well documented in ALS (Komine and Yamanaka, 2015). Animal studies 
have demonstrated that altering the function of microglia and infiltrating T cells to the CNS affect 
disease progression in experimental ALS (Beers et al., 2006; Martínez-Muriana et al., 2016; Beers 
et  al., 2008). Human studies have also documented signs of systemic immune activation in ALS 
patients, compared with healthy controls, suggesting that peripheral immune activation may play a 
role in human ALS through the peripheral–central neuroimmune crosstalk (Liu et al., 2020; Jin et al., 
2020). Most of the previous studies (Jin et al., 2020; Rentzos et al., 2012; Henkel et al., 2012), 
however, are not population based and have limited sample size, raising the concern of potentially 
insufficient internal (e.g., selection bias and chance finding) and external (e.g., lack of generalizability) 
validity. Further, few studies have recorded immune cells longitudinally after ALS diagnosis, as most 
previous studies relied on a single measurement (Sheean et al., 2018).

The main purpose of this study was to determine cellular immune changes occurring over time 
since diagnosis of ALS and their prognostic values in a large clinical sample. For this purpose, we 
enrolled a longitudinal cohort of ALS patients, representing a large proportion of the entire ALS popu-
lation in Stockholm, Sweden, to (1) describe the temporal changes of peripheral leukocytes over time 
since ALS diagnosis, (2) assess the association of immune cell dynamics with the risk of death after ALS 
diagnosis, and (3) evaluate the correlations of different cell populations with the functional status and 
disease progression rate of ALS.

Results
Leukocytes and lymphocyte subtypes in ALS
Supplementary file 2 shows the distribution of leukocyte populations (N = 288 patients) and lympho-
cyte subpopulations (N = 92 patients) across all measures after ALS diagnosis. The vast majority of the 
cell populations were within the normal range, except for CD8+ central memory (CM) cells, CD4+HLA-
DR+CD38+ cells and CD8+HLA-DR+CD38+ cells, which were above the normal range.

In the main cohort, the levels of leukocytes, neutrophils, and monocytes increased progressively 
over time, especially from 20 months after diagnosis onward (Figure 1). These trends were statistically 
significant, with or without adjustment for age and sex, and remained statistically significant after 
correction for multiple testing (Table 1) . In contrast, no clear temporal trend was noted for lympho-
cytes. These results remained largely similar when stratifying the patients by sex, site of onset, or pres-
ence of C9orf72 expansions (Figure 1—figure supplement 1). The levels of leukocytes, neutrophils, 
and monocytes increased, whereas the levels of lymphocytes decreased, after Riluzole treatment, 
compared with before such treatment (Figure 1—figure supplement 2).

In the FlowC cohort, no clear temporal trend was noted for any lymphocyte subpopulation, 
although ALS patients demonstrated persistently higher proportions of CD8+ CM, CD4+HLA-
DR+CD38+, and CD8+HLA-DR+CD38+ cells than the reference ranges (Figure  1—figure supple-
ment 3). After adjustment for age and sex, there was a decreasing % of naive CD4+ T cells whereas 
increasing %s of CD4+ EMRA, CD4+HLA-DR+CD38−, and CD8+HLA-DR+CD38− cells since ALS diag-
nosis (Supplementary file 3). Male patients showed lower levels of CD4+, naive CD4+, and Th2 
of CD4+ CM cells, but higher levels of CD4+ effector memory (EM, CD4+ EMRA, CD8+, CD4+HLA-
DR+CD38−, and CD4+HLA-DR+CD38+ cells, compared with female patients, especially early stage 
after diagnosis (Figure  1—figure supplement 4)). Patients with limb onset had lower levels of 
CD8+ CM and CD4+HLA-DR+CD38+ cells compared with patients with other site of onset, whereas 
carriers of C9orf72 expansions had higher levels of natural killer (NK) cells and T cells, but lower 
levels of naive CD4+ T cells and CD8+ EM cells, than other patients (Figure 1—figure supplement 
5).

https://doi.org/10.7554/eLife.74065
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Survival
During a median follow-up of 1.1 years, we observed 163 deaths or use of invasive ventilation among 
the 288 patients of the main cohort. No association was noted between the level of leukocytes, 
neutrophils, lymphocytes, or monocytes with risk of death (Supplementary file 4). This result did 

A - leukocytes
P for trend=0.002

B - neutrophils
P for trend=0.002

C - lymphocytes
P for trend=1.0

D - monocytes
P for trend=0.004

Figure 1. Mean levels of leukocyte populations after a diagnosis of amyotrophic lateral sclerosis (ALS). The black lines show measured levels of 
leukocyte populations for each patient. The blue lines and shadow areas show the mean levels of leukocyte populations with 95% confidence intervals. 
Pink areas indicate normal range. p for trend shows the p value of within-individual temporal change of each cell population after taking into account 
the relatedness of repeated measurements.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Levels of leukocyte populations from 3months before diagnosis of amyotrophic lateral sclerosis (ALS) onwards.

Figure supplement 1. Temporal trend of leukocyte populations by sex, site of onset, and presence of C9orf72 expansions.

Figure supplement 2. Temporal trend of leukocyte populations before and after Riluzole treatment.

Figure supplement 3. Lymphocyte populations that differed from normal range.

Figure supplement 4. Temporal trend of lymphocyte populations by sex.

Figure supplement 5. Temporal trend of lymphocyte populations that differed by site of onset and presence of C9orf72 expansions.

https://doi.org/10.7554/eLife.74065
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not change after excluding patients diagnosed before the start of the Motor Neuron Disease (MND) 
Quality Registry, focusing on first cell measure only, or excluding patients with C9orf72 expansions 
(Supplementary file 5). Per standard deviation (SD) increase of neutrophil-to-lymphocyte ratio (NLR), 
there was a higher risk of death (hazard ratio [HR] = 1.31, 95% confidence interval [CI]: 1.13–1.52).

In the FlowC cohort, we found higher NK cell counts and %s of Th2-diffrentiated CD4+ CM cells to 
be associated with lower risk of death, whereas higher %s of CD4+ EMRA cells and CD8+ T cells were 
associated with higher risk of death (Figure 2). These results were largely similar after restricting the 
analysis to first measure of lymphocytes (data not shown) or after excluding patients with C9orf72 
expansions (Figure 2—figure supplement 1).

Functional status and disease progression rate
In the main cohort, a higher level of leukocytes, neutrophils, or monocytes was associated with a 
lower Amyotrophic Lateral Sclerosis Functional Rating Scale – revised (ALSFRS-R) score measured at 
the time of sampling, whereas no such correlation was evident for lymphocyte counts (Table 2). There 
was, however, no association of leukocytes, neutrophils, lymphocytes, or monocytes with disease 
progression rate. Disease progression rate differed however between patients with different NLRs 
(e.g., p = 0.04, comparing group with above third tertile NLR to the group with below first tertile 
NLR). A greater longitudinal increase of leukocytes, neutrophils, and monocytes was associated with 
a greater longitudinal decline in ALSFRS-R score (Table 3).

In the FlowC cohort, none of the lymphocyte subtypes was associated with ALSFRS-R score or 
disease progression rate measured at the time of sampling (Supplementary file 6).

Sensitivity analysis for ongoing infection
We excluded 15 patients in the main cohort who had been sampled with the presence of infection. 
The results on risk of death, ALSFRS-R score and disease progression rate remained similar although 
some results lost statistical significance (Supplementary files 7 and 8). There was no patient with 
sampling during ongoing infection in the FlowC cohort.

Discussion
We here report a longitudinal cohort study of temporal dynamics of white blood cell populations in 
288 ALS patients in Stockholm, Sweden. We found higher counts of blood leukocytes, neutrophils, 
and monocytes to be associated with a lower functional status, but not with the risk of death after ALS 
diagnosis or disease progression rate. In a subsample of 92 patients, we found that higher NK cell 
counts and proportions of Th2-diffrentiated CD4+ T cells were associated with a lower risk of death, 
whereas higher counts of CD8+ T cells and proportions of CD4+ EMRA T cells were associated with 
higher mortality risk.

Table 1. Temporal changes of leukocyte populations after diagnosis of amyotrophic lateral sclerosis 
(ALS), a cohort study of 288 patients with ALS in Stockholm, Sweden†.

Cell type

Unadjusted Adjusted*

Coefficient p value FDR Coefficient p value FDR

Leukocyte (109/l) 0.19 0.01 0.01 0.22 2.4E−03 4.7E−03

Neutrophil (109/l) 0.18 3.6E−03 0.01 0.21 1.5E−03 4.7E−03

Lymphocyte (109/l) 3.7E−03 0.73 0.73 4.1E−05 1.00 1.00

Monocyte (109/l) 0.01 0.03 0.04 0.01 4.2E−03 0.01

Bold values denote statistical significance of p < 0.05.
*Adjusted for age at diagnosis and sex.
†Linear mixed model was applied to derive the coefficient estimates, per year and p value for trend.
‡

FDR: false discovery rate.

https://doi.org/10.7554/eLife.74065
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ALS patients demonstrated gradually increasing counts of leukocytes, neutrophils, and monocytes 
over time since diagnosis. Benjamin et al. also reported increasing counts of leukocytes and neutro-
phils in ALS patients (Murdock et  al., 2017). Accumulating monocytes have also been shown in 
the cervical and lumbar spinal cord of ALS model over time (Zondler et al., 2016). The finding that 
peripheral leukocytes, neutrophils, and monocytes were correlated to ALSFRS-R, but not progression 
rate or survival, indicates that these leukocyte subtypes may serve better as markers for functional 
status than prognosis. A previous study also found CD16 expression on neutrophils and nonclassical 
monocytes to correlate with ALS disease severity (McGill et al., 2020). As neutrophils and mono-
cytes have phagocytic function, increased levels of circulating neutrophils and monocytes might 
indicate enhanced muscle damage, explaining the correlation with deteriorating functional status. 
It has also been reported that circulating monocytes from ALS patients preferentially differentiate 
to a M1 proinflammatory phenotype and produce more interleukin 6 and tumor necrosis factor α, 
compared with monocytes from healthy controls (Du et al., 2020). Regardless, although it has been 
proposed that peripheral neutrophils and monocytes are recruited to the CNS through a disrupted 
brain–blood barrier (BBB) and affect the disease progression of experimental ALS through secreting 

 

0.61 (0.42-0.88) 

0.64 (0.48-0.85) 

1.39 (1.01-1.92) 
1.38 (1.03-1.85) 

Figure 2. Forest plot of hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of lymphocyte 
populations with risk of death after a diagnosis of amyotrophic lateral sclerosis (ALS).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of lymphocyte 
populations with risk of death after a diagnosis of amyotrophic lateral sclerosis (ALS).

Figure supplement 1. The associations of lymphocyte populations with risk of death after a diagnosis of 
amyotrophic lateral sclerosis (ALS), after excluding patients with C9orf72 expansions.

https://doi.org/10.7554/eLife.74065
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proinflammatory cytokines and influencing other cells (Murdock et al., 2015; Butovsky et al., 2012; 
Zamudio et al., 2020), the functional relevance in human ALS is still unclear (Zondler et al., 2016; 
Ajami et al., 2007).

NLR has been considered a prognostic marker in many diseases, such as cancer (Akinci Ozyurek 
et al., 2017; Bowen et al., 2017) and cardiovascular disease (Kim et al., 2018), which may indi-
cate the involvement of complex coordination between different immune response pathways in the 
disease progression. Previous studies have also demonstrated a negative association between NLR 
and survival in ALS patients (Choi et al., 2020; Wei et al., 2022). Our study also found that a higher 
NLR was associated with a higher risk of death. However, the relation between NLR and disease 
progression rate of ALS is less consistently reported between studies (Choi et al., 2020; Wei et al., 
2022), although we did find a higher NLR to be associated with a greater disease progression rate.

We found a higher level of blood-borne NK cells to be associated with a lower risk of death after 
ALS diagnosis. NK cells are considered a critical part of the innate immunity and function through 
lysing infected, oncogenic, apoptotic, and major histocompatibility complex (MHC) class I‐deficient 
cells (Vivier et al., 2011). Although NK cells are known to penetrate BBB and interact with microglia, 
astroglia, and neurons (Shi et al., 2011), the role of NK cells in disease progression of ALS has rarely 
been addressed. NK cells may exert a cytotoxic role in the brain by its natural function, as suggested 
by a study showing that depletion of NK cells prolonged survival in ALS mouse models (Garofalo 
et al., 2020; Murdock et al., 2021a). As infiltration of NK cells to CNS may lead to a decrease in 
peripheral NK populations, the protective role of higher peripheral NK cells against risk of death, as 
observed in the present study, might be partly attributable to a lower level of its infiltration to the 

Table 2. Cross-sectional correlations between leukocyte populations and amyotrophic lateral 
sclerosis (ALS) Functional Rating Scale-revised (ALSFRS-R) score and disease progression rate, a 
cohort study of 288 ALS patients in Stockholm, Sweden*.

Cell type

ALSFRS-R Progression rate

Coefficient p value FDR Coefficient p value FDR

Leukocyte (109/l) −2.80 4.0E−03 0.01 0.02 0.74 0.74

Neutrophil (109/l) −3.10 1.0E−03 4.0E−03 0.05 0.33 0.67

Lymphocyte (109/l) 1.48 0.15 0.15 −0.08 0.32 0.67

Monocyte (109/l) −2.75 2.0E−03 4.0E−03 −0.03 0.52 0.69

Bold values denote statistical significance of p < 0.05.
*Generalized estimating equation model was applied to derive the coefficient estimates and p values, with 
adjustment for age at diagnosis and sex. ALSFRS-R score ranges from 0 to 48, with higher score showing better 
motor function status. Progression rate indicates the decline of motor function per month.
FDR: false discovery rate.

Table 3. Associations between longitudinal changes in cell measures and longitudinal changes in 
Amyotrophic Lateral Sclerosis Functional Rating Scale – revised (ALSFRS-R) score, a cohort study of 
288 patients with ALS in Stockholm, Sweden†.

Cell type

Unadjusted Adjusted*

Coefficient p value Coefficient p value

Leukocyte (109/l) −5.72 0.010 −5.41 0.012

Neutrophil (109/l) −4.05 0.020 −3.85 0.023

Lymphocyte (109/l) −0.49 0.839 −0.22 0.925

Monocyte (109/l) −12.90 0.001 −12.14 0.001

Bold values denote statistical significance of p < 0.05.
*Adjusted for age at diagnosis and sex.
†Generalized estimating equation model was applied to derive the coefficient estimates and p values, per unit 
change of log-transformed leukocyte counts.

https://doi.org/10.7554/eLife.74065
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CNS. On the other hand, NK cells may indeed also play a neuroprotective role. A previous study 
showed that lower levels of CD56bright NK cells in the CSF were associated with faster progression in 
ALS patients (Rolfes et al., 2021). Additionally, findings from experimental autoimmune encephalo-
myelitis, a model of multiple sclerosis, showed NK cells to suppress neuroinflammation, diminish tissue 
damage, and protect motoneurons (Huang et al., 2006; Hammarberg et al., 2000). Patients with 
multiple sclerosis have also been shown to experience clinical improvement through NK cell expan-
sions (Segal, 2007). NK cells have also been shown to exert a protective role in brain by removing viral 
infection and activated microglia (Shi et al., 2011).

We also found that higher Th2 differentiation of CD4+ T cells was associated with a lower risk of 
death after ALS diagnosis, corroborating previous findings of the neuroprotective role of CD4+ T cells 
in ALS (Beers et al., 2008; Jones et al., 2015). Animal studies have suggested Th1 and Th17 cells 
to promote neuroinflammation by producing proinflammatory cytokines and enhancing microglia-
mediated neurotoxic effects (Murphy et al., 2010) whereas Th2 cells and regulatory T cells (Tregs) 
to suppress neuroinflammation by producing anti-inflammatory cytokines and enhancing microglia-
mediated neuroprotective effects (Gendelman and Appel, 2011; Beers et  al., 2011). Although 
not statistically significant, our study indeed found a trend for Th1-differentiatated CD4+ CM cells 
and Th17-differentiated CD4+ CM cells to be positively associated with the risk of death after ALS 
diagnosis.

A novel finding of the present study is that higher proportions of CD8+ T cells and CD4+ EMRA T 
cells were associated with a higher risk of death after ALS diagnosis. The precise underlying mecha-
nisms linking together these cell types with ALS survival are unclear. However, previous animal study 
showed that activated CD8+ T cells were present in CNS of SOD1G93A ALS model at the symptomatic 
stage, and that selective deletion of CD8+ T cells could increase the survival of motoneurons whereas 
coculture motoneurons with mutant SOD1-expressing CD8+ T lymphocytes could selectively kill the 
motoneurons via Fas and granzyme pathways (Coque et al., 2019). Previous studies also indicated 
that CD4+ EMRA cells could demonstrate cytotoxic features and express the chemokine receptor 
CX3CR1 in the setting of Dengue virus infection (Weiskopf et al., 2015), which are associated with 
cytotoxic lymphocytes with cytoplasmic granules containing perforin and granzymes (Nishimura 
et al., 2002). Further studies are clearly needed to study more in detail the functional relevance of 
CD8+ and CD4+ EMRA T cells in ALS.

Expansions in C9orf72, the most common genetic cause of ALS, have been shown to be associated 
with immune features (Lai and Ichida, 2019), including activation of microglia and elevated levels 
of peripheral inflammatory cytokines (Trageser et al., 2019). In our study, although patients with or 
without C9orf72 expansions did not differ greatly in terms of major leukocyte populations, patients 
with C9orf72 expansions appeared to display changes in certain lymphocyte subpopulations including 
NK, T, naive CD4+ T, and CD8+ EM cells compared with patients without such expansions. Because 
of the relatively small number of patients with C9orf72 expansions in the study, these results should 
however be interpreted with caution until validated further.

Sex-based immunological difference might exist in response to external and internal antigens, 
contributing potentially to the variations in the incidence of autoimmune diseases and malignancies as 
well as the difference in response to vaccines between men and women (Klein and Flanagan, 2016). 
Murdock et al. also demonstrated sex-specific effect of NK cells and neutrophils in ALS (Murdock 
et al., 2021a; Murdock et al., 2021b). In the present study, we found that men and women showed 
different longitudinal trajectories of some lymphocyte subpopulations but not leukocyte populations. 
Although these findings need to be validated, they add on the evidence base to support a potential 
sex-specific immune response in ALS and ALS as a heterogenous disease.

Our study is the first, to our knowledge, to report the role of a comprehensive list of immune cells, 
including neutrophils, lymphocytes, monocytes, and detailed T-cell phenotypes, on the prognosis 
of ALS. The strengths of the present study are the large number of ALS patients which were repre-
sentative of all ALS patients in the source population, the rich information on disease characteristics 
including genetic causes, the long (up to 5 years after diagnosis) and complete follow-up (through the 
MND Quality Registry), the availability of both routine cell counts and detailed lymphocyte pheno-
typing, as well as the access to repeated measures over time. The study also has limitations. First, 
the main cohort was heterogeneous in terms of the numbers of cell measurements and the time 
intervals between measurements, as the timing of blood sampling was not predefined. Indication 

https://doi.org/10.7554/eLife.74065
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bias due to, for example, ongoing infections might therefore be a concern. The sensitivity analysis 
excluding all samples taken at the time of infections provided however rather similar results. Except 
for infection, other conditions such as immune diseases and allergies could also affect immune cell 
populations and should ideally also have been taken into account in the analysis. Further, the longi-
tudinal analysis of cell counts should be interpreted with caution because not all patients contributed 
repeated cell measurements. This is however an unavoidable problem for any longitudinal study of 
ALS patients, given the high mortality rate of this patient group. Regardless, when focusing on the first 
cell measures, we obtained similar results as in the main analysis. It would therefore be interesting to 
compare ALS with other diseases, especially other neurodegenerative diseases, regarding the studied 
cell counts, in terms of both their longitudinal trajectories during disease course and their prognostic 
values in predicting patient outcome. Further, the FITMaN panel does not include B-cell subtypes or 
Treg cells, which await to be studied further. Finally, causal inferences on the functional implications of 
the reported associations are not possible due to the observational study design.

In conclusion, our findings suggest a dual role of immune responses in ALS prognosis, where 
neutrophils and monocytes primarily reflect functional status whereas different T lymphocyte popula-
tions act as prognostic markers for survival. These findings provide additional insights for cell-based 
therapy in prolonging survival in ALS.

Materials and methods
Study cohort
The Swedish Motor Neuron Disease (MND) Quality Registry was established in 2015, collecting infor-
mation on clinical characteristics, biological test results, and quality of life outcomes from >80% of 
MND patients in Sweden (Longinetti et al., 2018). Since 2017, the MND Quality Registry has included 
99% of MND patients in the Stockholm area among whom 97.1% are diagnosed with ALS. All ALS 
diagnoses were made by a specialist in neurology and followed up by a neuromuscular specialist, and 
met the diagnostic requirement of definite, probable, probable laboratory supported, or possible ALS 
according to the revised El Escorial criteria (Ludolph et al., 2015; Brooks et al., 2000). To ensure 
the accuracy of diagnosis, all patients in the registry are re-evaluated annually to update diagnosis, 
whenever needed.

Through the MND Quality Registry, we first identified 420 patients with ALS diagnosed from 
the start of the registry until October 7, 2020, in Stockholm. We reviewed the medical records of 
these patients to identify information on peripheral leukocyte populations (i.e., differential leukocyte 
counts). During this process, we excluded 12 patients who were not diagnosed at the ALS Research 
and Care Center, Karolinska University Hospital – the only tertiary referral center for ALS in Stockholm, 
three patients with unknown time of symptom onset, 82 patients lacking leukocyte counts, and 35 
patients with counts outside of the stipulated observation period (i.e., from 3 months before date of 
diagnosis until October 7, 2020). The final analysis cohort included 288 patients (68.6%), with at least 
one recorded differential leukocyte count during the observation period. The included patients did 
not differ significantly in terms of demographic and clinical characteristics from the excluded patients 
(Table 4). About half of the patients had a single measurement of leukocytes whereas the other half 
had been sampled two or more times.

Among the ALS patients diagnosed at the Karolinska University Hospital and with a date of 
symptom onset (N = 405), we further performed flow cytometry in 92 patients (‘FlowC cohort’) to 
determine lymphocyte subpopulations (i.e., T, B, and NK cells) as well as an extended T lymphocyte 
panel ‘FITMaN’ – an internationally standardized panel reported by the Flow Immunophenotyping 
Technical Meeting at NIH (Maecker et al., 2012). Compared to the main study cohort, patients of 
the FlowC cohort were slightly younger and more likely to have a limb onset (Supplementary file 1). 
In both the main and FlowC cohorts, we followed the ALS patients from date of diagnosis or first cell 
measurement (differential leukocyte counts or FlowC), whichever came later, until occurrence of the 
outcome of interest (i.e., death or use of invasive ventilation) or October 7, 2020, whichever came first.

Blood samples and flow cytometric analysis
All samples were freshly collected. The sample processing and analyzing procedures were according 
to the validated protocol at the Departments of Clinical Chemistry (differential leukocyte counts) and 

https://doi.org/10.7554/eLife.74065
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Clinical Immunology and Transfusion Medicine (FlowC), Karolinska University Hospital. All analyses 
were performed during daytime, within 24 hr of sampling. Differential leukocyte counts were done on 
a Sysmex XN-9000 (Sysmex, Kobe, Japan). FlowC was implemented in clinical routine based on the 
standardized phenotyping panel by the Human Immunophenotyping Consortium with a set of defined 
8-color antibody cocktails (Maecker et al., 2012). The experiments were performed on a triple-laser 
Beckman Coulter Gallios and analyzed by Kaluza Software (Beckman Coulter, Brea, CA).

Differential leukocyte counts included neutrophils, lymphocytes, monocytes, eosinophils, and 
basophils. We did not include eosinophils and basophils in the analysis as they in most cases were low 
to undetectable. In addition to studying leukocytes individually, we also analyzed NLR as suggested 

Table 4. Characteristics of the 288 patients with amyotrophic lateral sclerosis (ALS) included in the 
study, compared with the entire population of ALS patients during the study period in Stockholm, 
Sweden.

Characteristics
Patients included in the 
study (N = 288)

All patients in Stockholm (N 
= 420) p value for difference*

Sex, N (%) 0.48

 � Female 134 (47%) 201 (48%)  �

 � Male 154 (53%) 219 (52%)  �

Age at diagnosis, years 0.02

 � Median (Q1, Q3) 65 (56, 71) 66 (57, 72)  �

Diagnostic delay, months 0.94

 � Median (Q1, Q3) 12.30 (7.88, 19.93) 12.35 (7.59, 20.54)  �

Gene mutation, N (%)† 1.00

 � SOD1 7 (2.88%) 9 (2.56%)  �

 � C9orf72 22 (9.05%) 30 (8.55%)  �

 � Other 4 (1.65%) 5 (1.42%)  �

Site of onset, N (%) 0.26

 � Limb 182 (63%) 250 (60%)  �

 � Bulbar 78 (27%) 118 (28%)  �

 � Other 20 (7%) 32 (8%)  �

 � Missing 8 (3%) 20 (5%)  �

Family history, N (%) 0.19

 � Yes 19 (7%) 30 (7%)  �

 � No 144 (50%) 201 (48%)  �

 � Not clear 3 (1%) 7 (2%)  �

 � Missing 122 (42%) 182 (43%)  �

No. of measurements for cell count (%) –

 � One 146 (51%) –  �

 � Two 75 (26%) –  �

 � Three 35 (12%) –  �

 � Four or more 32 (11%) –  �

*p value for the differences between patients included in the study and patients not included in the study; 
Wilcoxon rank sum test was used for the comparison of continuous variables whereas chi-square test was used for 
the comparison of categorical variables.
†Results available for 243 of the 288 patients included in the study, and 351 of the entire 420 patients in 
Stockholm.

https://doi.org/10.7554/eLife.74065


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation | Neuroscience

Cui et al. eLife 2022;11:e74065. DOI: https://doi.org/10.7554/eLife.74065 � 10 of 16

by previous studies (Choi et al., 2020; Wei et al., 2022). The FITMaN panel included measures of 23 
lymphocyte subpopulations, including (1) counts of B cells, NK cells, and T cells; (2) %s of CD4+ and 
CD8+ T cell subtypes (i.e., naive, CM, EM, and effector memory cells re-expressing CD45RA [EMRA] 
T cells based on CCR7 and CD45RA expression, as well as Th1, Th2, and Th17 of CM and EM CD4+ 
T cells based on CXCR3 and CCR6 expression); and (3) %s of subtypes of activated CD4+ and CD8+ 
T cells based on the expression of HLA-DR and CD38 (i.e., CD4+HLA-DR+CD38− cells, CD4+HLA-
DR+CD38+ cells, CD8+HLA-DR+CD38− cells, and CD8+HLA-DR+CD38+ cells). T cells were gated from 
a lymphocyte (FCS/SSC) gate as cells expressing CD45 and CD3. The unit of cell count was 109/l 
whereas the %s were expressed as the proportions of the immune cell populations out of their parent 
populations. The normal references for leukocytes (main cohort) were reported by the Department 
of Clinical Chemistry, Karolinska University Hospital, based on the Nordic Reference Interval Project 
(NORIP) (Nordin et al., 2004) (leukocyte: 3.5–8.8; neutrophil: 1.6–5.9; lymphocyte: 1.1–3.5; mono-
cyte: 0.2–0.8; 109/l). The reference values for FlowC were reported in the form of 5th to 95th percen-
tiles using reference normal ranges obtained from 50 healthy adults. All cell counts and %s were 
retrieved from patient medical records.

Outcomes of interest
The primary study outcome was risk of death or use of invasive ventilation after ALS diagnosis, iden-
tified from the MND Quality Registry. The secondary study outcomes included functional status 
measured through the ALSFRS-R and disease progression rate. ALSFRS-R is a questionnaire-based 
scale that measures the motor function and disease severity of ALS patients and is considered the 
gold standard measure of disability progression (Makary et al., 2021). Higher ALSFRS-R score indi-
cates better functional status. We acquired information on all available ALSFRS-R scores for the ALS 
patients from the MND Quality Registry. Progression rate measures the rate of ALSFRS-R decline and 
were calculated by dividing the difference between 48 (the full score) and measured ALSFRS-R score 
at a specific time point by the time difference between time of symptom onset to the measurement 
time of ALSFRS-R (in months). Progression rate is an independent prognostic predictor for ALS (Labra 
et al., 2016).

Other clinical characteristics
Data on sex, age at diagnosis, diagnostic delay, gene mutation, site of onset, family history, and body 
mass index (BMI) were collected from the MND Quality Registry or medical records. Diagnostic delay 
was calculated as time difference between date of onset and date of diagnosis. Site of onset was cate-
gorized as ‘limb’, ‘bulbar’, ‘other’, and ‘missing’. The definition of family history was based on whether 
a clear history of ALS existed among the relatives and categorized as ‘yes’, ‘no’, ‘not clear’, and 
‘missing’. Genetic testing was offered to all patients with ALS around the time of diagnosis at the ALS 
Research and Care Center at Karolinska University Hospital. A total of 88 of the most common ALS-
contributing genes, including SOD1, C9orf72, FUS, TARDBP, TBK1, OPTN, VCP, etc., were screened.

Statistical analysis
To better understand the studied cell populations in ALS, we first performed a few analyses focusing 
on the different cell populations alone. We first calculated the mean levels of measured cell popula-
tions among ALS patients, by summarizing all measurements from 3 months before diagnosis until 
end of follow-up. To visualize the temporal patterns of the cell populations, we drew a trajectory 
line of all measurements for each cell type and each patient. We then used the locally estimated 
scatterplot smoothing curves with 95% CIs to show the temporal pattern of the predicted median 
level of each cell type after ALS diagnosis. If the CIs did not overlap with the normal ranges of the 
cell populations, we considered the observed levels among ALS patients to be statistically deviant 
from normal ranges. We also used linear mixed model to assess the within-individual temporal 
changes of cell populations after ALS diagnosis. In this analysis, we included a random intercept to 
account for the initial differences between individuals and adjusted for age at diagnosis and sex. 
We analyzed all ALS patients together first and then separately by sex, site of onset and presence 
of C9orf72 expansions. Patients with C9orf72 expansions have been suggested to demonstrate a 
different immune phenotype compared with ALS patients without such expansions (Pinilla et al., 
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2021; McCauley et al., 2020). To evaluate whether ALS treatment would influence the cell counts, 
we further visualized the temporal patterns of differential leukocyte counts before and after Riluzole 
treatment.

We next used Cox model to derive HR and 95% CI to assess the association of different cell 
populations with the risk of death, after adjustment for other prognostic indicators of ALS including 
age at diagnosis, sex, site of onset, diagnostic delay, ALSFRS-R score, time difference between 
the measure of ALSFRS-R score and diagnosis, BMI, and time difference between the measure of 
BMI and diagnosis. We used time since diagnosis as the underlying time scale and cluster robust 
variance estimation to account for dependence of repeated measurements. In this analysis, we 
log-transformed the counts of leukocytes, neutrophils, lymphocytes, and monocytes, as well as 
%s of CD4+ EM cells, CD4+ EMRA cells, Th2 of CD4+ EM cells, Th17 of CD4+ EM cells, Th2 of 
CD4+ CM cells, CD8+ T cells, CD8+ CM cells, CD4+HLA-DR+CD38− cells, CD4+HLA-DR+CD38+ cells, 
CD8+HLA-DR+CD38− cells, and CD8+HLA-DR+CD38+ cells, to achieve a better normal distribution. 
Values of other cell populations were used as is (i.e., without transformation). For all markers, we 
estimated the effect size per SD increase. Because some patients had their first cell measurements 
after diagnosis, we also took into account left truncation in all analyses. Eight patients (3%) had 
missing values on site of onset and were excluded in the multivariable analysis where site of onset 
was adjusted for.

The proportional hazards assumption of the Cox model was assessed using the Schoenfeld residual 
test. After stratifying the analysis by site of onset which deviated from the assumption, the assumption 
became satisfied for all other variables. As HRs obtained in the stratified analysis were nearly the same 
as those obtained without stratification, for simplicity and consistency, we reported all findings from 
the original models (without stratification by site of onset).

Among the 288 patients, 57 (19.8%) were diagnosed before the start of the MND Quality Registry. 
In a sensitivity analysis, we excluded these patients with the aim to see if the results obtained in the 
main analysis would pertain to a cohort of incident patients. This analysis was not performed for the 
FlowC cohort as vast majority (N = 85) of the 92 patients were incident patients. We also conducted 
a sensitivity analysis by only focusing on the first cell measure of each patient to examine whether the 
main results would differ after removal of repeated measurements. We then performed another sensi-
tivity analysis by excluding patients with C9orf72 expansions, to understand the influence of C9orf72 
expansions on the results.

We further used a generalized estimating equation (GEE) model to assess the correlations of cell 
populations with functional status (i.e., ALSFRS-R score) and disease progression rate measured at the 
same time as the cell markers. The GEE model considers the correlations between repeated measure-
ments within the same individual. Like the survival analysis above, we used log-transformed values for 
some cell measures whereas original values for others and estimated the effect size per SD increase of 
the cell measures, after adjustment for age at diagnosis and sex. Additionally, we also used the GEE 
model to assess the correlations between longitudinal changes in differential leukocyte counts and 
the longitudinal changes in ALSFRS-R score.

Finally, to assess whether the results on cell measures and the study outcomes would be influenced 
by ongoing infections, we performed another sensitivity analysis after excluding all measurements 
taken during an ongoing infection. This was done by reviewing medical records of all patients to see if 
at the time of blood sampling the patient had a high count of leukocyte (>8.8 × 109/l), a diagnosis of 
any infectious disease, specific tests for infection, or self-reported infectious symptoms.

All analyses were performed using R 3.6.2. A two-sided p value of <0.05 was considered statis-
tically significant. To correct for multiple testing, we also computed the Benjamini–Hochberg false 
discovery rate (Pawitan et al., 2005).
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