
Frontiers in Microbiology | www.frontiersin.org 1 October 2021 | Volume 12 | Article 758758

ORIGINAL RESEARCH
published: 04 October 2021

doi: 10.3389/fmicb.2021.758758

Edited by: 
Mehdi Raissy,  

Islamic Azad University, Iran

Reviewed by: 
Pande Gde Sasmita Julyantoro, 

Udayana University, Indonesia
Rishikesh Subhashrao Dalvi,  

Maharshi Dayanand College, India

*Correspondence: 
Mohammad Sudagar  
sudagar_m@gau.ac.ir

Kartik Baruah  
kartik.baruah@slu.se

Specialty section: 
This article was submitted to  

Food Microbiology,  
a section of the journal  

Frontiers in Microbiology

Received: 14 August 2021
Accepted: 06 September 2021

Published: 04 October 2021

Citation:
Zakariaee H, Sudagar M, 

Hosseini SS, Paknejad H and 
Baruah K (2021) In vitro Selection of 

Synbiotics and in vivo Investigation of 
Growth Indices, Reproduction 

Performance, Survival, and Ovarian 
Cyp19α Gene Expression in Zebrafish 

Danio rerio.
Front. Microbiol. 12:758758.

doi: 10.3389/fmicb.2021.758758

In vitro Selection of Synbiotics and  
in vivo Investigation of Growth Indices, 
Reproduction Performance, Survival, 
and Ovarian Cyp19α Gene 
Expression in Zebrafish Danio rerio
Hamideh Zakariaee 1, Mohammad Sudagar 1*, Seyede Sedighe Hosseini 2,3, 
Hamed Paknejad 1 and Kartik Baruah 4*

1 Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and 
Natural Resources, Gorgan, Iran, 2 Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran, 
3 Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran, 
4 Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary 
Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden

In this study, we tested the compatibility of two extracts from the plant Jerusalem artichokes 
and button mushrooms with two different Lactobacillus probiotics (Lactobacillus 
acidophilus; La and Lactobacillus delbrueckii subsp. Bulgaricus; Lb) to develop a synbiotic 
formulation to improve the growth, survival, and reproductive performances of farmed 
fishes. Initially, we employed in vitro approach to monitor the growth of the probiotic 
lactobacilli in the presence of the different doses of the plant-based prebiotics, with the 
aim of selecting interesting combination(s) for further verification under in vivo conditions 
using zebrafish as a model. Results from the in vitro screening assay in the broth showed 
that both the probiotic species showed a preference for 50% mushroom extract as a 
source of prebiotic. A synbiotic formulation, developed with the selected combination of 
L. acidophilus, L. bulgaricus, and 50% mushroom extract, showed a positive influence 
on the growth and reproductive performances of the zebrafish. Our findings also imply 
that the improvement in the reproductive indices was associated with the upregulation 
of a cyp19a gene. Overall results suggest that a combination of L. acidophilus, L. 
bulgaricus, and mushroom extract can be considered as a potential synbiotic for the 
successful production of aquaculture species.

Keywords: prebiotics, probiotics, zebrafish, mushroom, artichoke, reproduction, cyp19a gene

INTRODUCTION

The gut microbiota plays a central role in the health, well-being, growth, and disease prevention 
in fish (Xiong et al., 2019). The composition of the microbial communities in the fish gut is 
not constant and may change with nutritional status, age, rearing water, and other environmental 
conditions (Ringø et  al., 2010; Zhang et  al., 2018; Yukgehnaish et  al., 2020). The microbial 
balance in the fish gut is crucial for its optimal metabolism and disease prevention. Over the 
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past few years, there has been an increasing effort to steer 
the gut microbiota of fish toward beneficial communities as 
the dominance of such beneficial microbes in the fish gut has 
been linked to the improvement of the growth and reproductive 
performances, and the resistance of the fish toward pathogens 
(Allameh et  al., 2015; Akbari Nargesi et  al., 2020; Hasan and 
Banerjee, 2020; Kong et al., 2020; Ringø et al., 2020b; Montazeri-
Parchikolaei et  al., 2021). One approach to induce a healthy 
gut microbiome in fish has been through the administration 
of probiotics – live microorganisms that, when administered 
in adequate amounts, confer a health benefit on the host (Aydin 
and Şehriban, 2019; Cámara-Ruiz et  al., 2020). Numerous 
probiotic studies have evaluated the effects of various genera, 
species, and strains of bacteria on the health status, disease 
resistance, and growth performance of farmed aquatic animals 
(Ashouri et  al., 2018; Tan et  al., 2019; Kuebutornye et  al., 
2020; Mohammadi Arani et  al., 2021). These studies showed 
that the most common type of bacteria that are effective in 
improving the microbiota balance in the intestine of the host 
are the ones that belong to the Lactobacillus and Bifidobacterium 
genera (EFSA FEEDAP et  al., 2018), although other bacteria 
and certain yeasts were also effective (Guluarte et  al., 2019; 
Tarnecki et  al., 2019; Banu et  al., 2020). Bacteria belonging 
to Lactobacillus species have been used as probiotics in many 
economically important farmed fish, and it has been reported 
to improve the growth performance as well as to control 
infections caused by bacteria (such as Aeromonas salmonicida, 
Vibrio anguillarum, Flavobacterium psychrophilum, and 
Edwardsiella tarda) in fish species (Shabirah et al., 2019; Hasan 
and Banerjee, 2020; Kuebutornye et  al., 2020; Mora-Sánchez 
et  al., 2020; Ringø et  al., 2020a). Despite all the health benefits 
of probiotics, a major limitation that remains for their uses 
as gut/health beneficial agents in farmed fish is related to the 
poor capacity of the administered probiotic strains to stably 
or even transiently colonize the host gastrointestinal mucosal 
surface (Suez et al., 2019; Amenyogbe et al., 2020). To overcome 
these limitations of probiotics, prebiotics are used together with 
probiotics to have a synergistic effect (an approach referred 
to as synbiotics) to markedly inhibit the growth of pathogenic 
microbes and improve the growth and/or activity of the beneficial/
probiotic microorganisms in the host gut (FAO, 2007). Prebiotics 
are a non-viable food component that confers health benefit(s) 
on the host associated with modulation of the microbiota 
(Okolie et  al., 2017; Carlson et  al., 2018; Van Doan et  al., 
2020). The majority of studies dealing with synbiotics are 
conducted in humans, but over the past few years, increasing 
research has been focused on farmed aquatic animals (Hasan 
et  al., 2019; Dawood et  al., 2020). There is evidence to suggest 
that synbiotics influence the microbial ecology of the 
intestines of fish and play a role in causing beneficial effects 
on the health and growth traits of farmed fish, e.g., by 
preventing the negative effects imposed by infection as well as 
environmental stress, and by elevating the activities of 
the digestive enzymes, which eventually contribute to improved 
feed utilization and growth performances (Huynh et  al., 2017; 
Kumar et al., 2018; Mohammadian et al., 2019; Hasyimi et al., 2020; 
Moustafa et  al., 2020; Kong et  al., 2021).

As prebiotics, the most studied in fish were inulin, mannan 
oligosaccharides, fructooligosaccharides, galactooligosaccharides, 
and nano-oligosaccharide (Cid García et  al., 2020; Kishawy 
et al., 2020; Pietrzak et al., 2020; Zhou et al., 2020; Ghafarifarsani 
et  al., 2021). These types of prebiotic molecules are present in 
a variety of plants, such as Jerusalem artichoke, cereals, leeks, 
asparagus, and garlic with varying degrees of polymerization, 
which is associated with their different functional features 
(Mensink et  al., 2015; Bharathi et  al., 2019; Harris et  al., 2019; 
Khangwal and Shukla, 2019; Sribounoy et al., 2021). It is however 
important to mention that the use of food-grade prebiotic 
compounds derived from plant sources as a functional feed 
additive in the aquafeed industry is limited by the cost of the 
extraction process. In the interest of addressing the production 
cost, increasing attention has been paid to the direct use of 
raw plant extracts as potential sources of natural prebiotics. 
Jerusalem artichoke (Helianthus tuberosus), a natural prebiotic 
enriched with inulin and fructooligosaccharides, has become a 
focus for use as a functional feed ingredient in the diets of 
farmed (aquatic) animals (Tiengtam et al., 2017; Abedalhammed 
et  al., 2020). An improvement in the growth performance, 
resistance toward bacterial disease, and immune responses in 
farmed (aquatic) animals like common carp diets (Cyprinus 
carpio L.), juvenile red tilapia (Oreochromis spp.), and sea 
cucumber as well as in poultry and swine in response to feeding 
Jerusalem artichoke-supplemented diet have been reported 
(Sewaka et  al., 2019; Abedalhammed et  al., 2020; Jia et  al., 
2020). Another plant of interest as a source of natural prebiotics 
is the edible mushroom owing to its richness in bioactive 
substances, such as functional polysaccharides, terpenes, peptides, 
glycoproteins, mineral elements, unsaturated fatty acids, phenolic 
substances, vitamin E, and vitamin C (Aida et al., 2009; Rathore 
et  al., 2017; Safari et  al., 2019; Ansari and Jadhav, 2021; Das 
et al., 2021). Mushrooms and their derivatives have been widely 
used in aquaculture for improvement of growth performance, 
hematological parameters, innate immunity, and diseases resistance 
in many cultured species (Ahmed et  al., 2017; Amiri et  al., 
2018; Hoseinifar et  al., 2019a,b; Safari et  al., 2019; Rattanachan 
et al., 2020; Al-Maadhedy et al., 2021; Harikrishnan et al., 2021; 
Kumar et al., 2021). Among different cultured mushroom species, 
the white button mushroom, Agaricus bisporus, represents an 
interesting source of natural prebiotics because it is a safe food 
that is cultured worldwide (Hoseinifar et al., 2019b), and hence 
it is easily available for applications. Additionally, it contains 
a wide variety of nutraceutical substances, such as polyphenols, 
ergothioneine, vitamins, minerals, and polysaccharides (Tian 
et  al., 2012; Ramos et  al., 2019; Usman et  al., 2021). Agaricus 
bisporus mushroom has been well-documented for its growth-
promotion, immune-enhancing, and disease-resistance in some 
farmed fishes like grass carp (Ctenopharyngodon idella), common 
carp (Cyprinus carpio), catfish (Silurus asotus), and rainbow 
trout (Oncorhynchus mykiss) Nile tilapia (Oreochromis niloticus; 
Van Doan et  al., 2017; Amiri et  al., 2018; Harikrishnan et  al., 
2018, 2021; Hoseinifar et  al., 2019b; Safari et  al., 2019; 
Habib et  al., 2021).

In this study, we tested two plant extracts (Jerusalem artichokes 
and button mushrooms) as potential sources of prebiotics using 
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in vitro assay for their ability to facilitate the growth of two 
probiotic strains of interest [Lactobacillus acidophilus ATCC4356 
(La) and L. delbrueckii subsp. bulgaricus ATCC11842 (Lb)]. 
Subsequently, the preferred prebiotic candidate, which showed 
the most prominent effect, was combined with each of the 
probiotic strains in an attempt to move toward identifying 
synbiotic combinations. The effectiveness of the synbiotic 
preparation was verified in vivo using zebrafish as a model 
organism by focusing on the following readouts: growth traits, 
survival, and reproductive performances.

MATERIALS AND METHODS

Probiotic Bacterial Strains
Two probiotic bacterial strains, L. acidophilus ATCC4356 (La) 
and L. delbrueckii subsp. bulgaricus ATCC11842 (Lb), purchased 
from Persian Type Culture Collection, Iran, were used in this 
study. Stock cultures were prepared by mixing a pure culture 
of the strain, grown overnight at 37°C in De Man Rogosa 
Sharpe (MRS) broth medium (Merck, Darmstadt, Germany), 
with 25% (v/v) sterile glycerol as cryoprotectant and stored 
at −80°C (Haj-Mustafa et  al., 2015).

Inoculum Preparation
Working inoculums were prepared by subculturing the stock 
culture in MRS broth overnight at 37°C. After that, a certain 
volume of the subculture was transferred (1% v/v) to a 
fresh volume of MRS broth and incubated with shaking at 
150 rpm for 18 h at 37°C. The bacterial suspension was then 
centrifuged at 8,000 x g for 20 min (4°C), the cell pellet 
washed twice with sterile phosphate buffer saline (PBS), 
and subsequently used for the inoculation of the culture 
medium (Haj-Mustafa et  al., 2015).

Bacterial Growth Analysis
Growth of La and Lb was monitored by measuring the optical 
cell density at 600 nm using a UV/Visible spectrophotometer 
(Shimidzo, Japan). The measured values were plotted on 
growth curves. The maximum specific growth rate during 
the exponential growth phase was calculated following the 
equation of Kask et  al. (2003):
 Ln LnNN t t− = −( )0 0µ .

Where t = time, N = optical density at the end of the exponential 
growth phase (t), N0 = optical density at the beginning of the 
exponential growth phase (t0), and μ = specific growth rate 
constant (h−1).

The doubling time was determined by the equation: Td = ln2/
μmax, where, μmax – maximum specific growth rate, td- 
doubling time.

Preparation of Plant Extracts as Prebiotic 
Sources
Two plants, Jerusalem artichokes (H. tuberosus; hereafter referred 
to as artichoke) and white button mushrooms (A. bisporus; 

hereafter referred to as mushroom), procured from a private 
company in Iran, were used as sources of prebiotics. The plant 
materials were repeatedly washed with tap water to remove 
the presence of any dirt and then allowed to dry until the 
water droplets disappeared from their surface. Each one of 
the artichokes and the mushroom was cut into small slices. 
The slices were then dipped in a 0.5% (w/v) citric acid solution 
for 15 min to avoid browning (Mahore and Shirolkar, 2018) 
and dried in an oven at 50°C for 48 h. The dried samples 
were ground in a household grinder. The extraction process 
was performed by the soaking method as previously described 
(Harborne, 1980). Briefly, 100 g of each dry powder was added 
in 1 l of distilled water, and the mixture was kept in dark for 
48 h. After that, the concentrated liquid was centrifuged (10, 
000 x g at 4°C, 15 min; Sobye et  al., 2018), and the resulting 
precipitate was discarded. Finally, the supernatant was then 
filtered using a 0.22 μm syringe filter and used for preparing 
the desired prebiotic concentrations (2, 25, 50, 75, and 100%). 
In this assay, glucose was removed from all culture media 
(broth/agar) containing extracts as previously described 
(Hoseinifar et  al., 2017).

In vitro Evaluation of Prebiotics Properties 
of the Extracts
Each of the extracts from artichoke and mushroom was added 
to the glucose-free MRS medium at different concentrations 
(2, 25, 50, 75, and 100%). The MRS medium supplemented 
with glucose as a carbon source was maintained as a positive 
control group. The pH of the media was adjusted by 0.1 N 
HCl to 5.8. The glucose-free MRS and MRS media containing 
each of the extracts (50 ml) were inoculated with a culture of 
the probiotic strain La or Lb at a concentration of 107 cells/
ml. The solutions were incubated at 37°C for 48 h under aerobic 
conditions after which the optical density (600 nm) was measured 
as previously described (Hoseinifar et  al., 2017).

Diet Preparation
A commercial diet for small fishes, kindly provided by the 
Blue Line Company (Italy), was used as a basal diet and for 
the preparation of the experimental diets. The proximate 
composition of the diets is mentioned in Table  1. Based on 

TABLE 1 | Chemical composition of the basal diet.

Chemical composition (%)

Dry matter 0.5
Crude protein 60
Crude lipid 17
Ash 10.5
Mineral premix (%)
Na total 0.5
Ca total 1.5
P total 1.8
Vitamin premix (per kg of feed)
A 1,000 Ul
D3 1,000 Ul
E 300 mg/kg

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zakariaee et al. Synbiotic Activities of Mushroom Extract and Probiotic Lactobacillus

Frontiers in Microbiology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 758758

the outcome from in vitro studies, we designed seven experimental 
diets. Diet 1: the basal diet was used as the control diet, Diet 
2: the basal diet supplemented with 1% mushroom extract 
prepared from 50% concentrated extract, Diets 3 and 4: the 
basal diet supplemented with La at 107 colony-forming units 
per gram of diet (CFU g−1) and Lb at 107 CFU g−1, respectively, 
Diet 5: the basal diet supplemented with La at 107 CFU g−1 
and 1% of a mushroom extract prepared from 50% concentrated 
extract, Diet 6: the basal diet supplemented with Lb at 107 CFU g−1 
and 1% mushroom extract prepared from a 50% concentrated 
extract, and Diet 7: the basal diet supplemented with La and 
Lb, each at 107 CFU g−1 and mushroom extract at 1% prepared 
from a 50% concentrated extract. The supplements were sprayed 
on the feed, mixed manually, and then each experimental diet 
was coated with 5% gelatin. To avoid the possible effects of 
gelatin, the control diet was also coated with 5% gelatin. All 
the diets were dried in a clean place at room temperature 
(25°C) and were then stored at 4°C until use. Diets were 
prepared weekly throughout the feeding trial and also analyzed 
for the viability of bacteria by culturing random samples of 
diets containing probiotics in MRS broth (Ashouri et al., 2018).

Experimental Animals and Design
Before initiation of the feeding trial, zebrafish larvae, obtained 
from a private sector farm in Gorgan, Golestan province, Iran, 
were kept for 2 weeks in a holding tank for acclimatization 
during which they were fed with basal diet. The larvae were 
regularly monitored for their health and performance. No 
mortality was recorded during this period. After 2 weeks, a 
group of 840 larvae with a mean initial weight and length of 
75.9 ± 1.0 mg and 16.0 ± 1.0 mm, respectively, were randomly 
distributed into seven experimental groups (diets 1–7) with 
three replicates per group. Each group was maintained in an 
aquarium of 60 L capacity containing 30 L of water at a density 
of 40 fish per aquarium. Each diet was fed thrice daily (8:00, 
12:30, and 18:00 h) at 5% of the body weight for 120 days 
(Lin et  al., 2012; Hoseinifar et  al., 2015). Round-the-clock 
aeration was provided to all the aquaria. Siphoning of uneaten 
feed and faecal matter was done daily. An approximately 25% 
of the aquarium water was removed daily and replaced with 
well-aerated freshwater. The experiment was conducted in the 
14:10 h light–dark cycles (Mohammadi Arani et  al., 2019). 
Water temperature, pH, and dissolved oxygen were monitored 
daily and maintained approximately at 25 ± 2°C, 7 ± 0.2, and 
7.9 ± 0.1 mg L−1, respectively (Safari et  al., 2018). No mortality 
was recorded during the feeding period. The zebrafish larvae 
were kept and handled following the ethical guidelines for in 
vivo experiments developed by the Gorgan University of 
Agriculture and Natural Resources, Iran.

Sample Collection and Growth Study
At the end of the feeding trial, fish in each tank fasted for 
24 h, and then 10 fish per aquarium (30 fish per treatment) 
were randomly sampled. They were immediately anesthetized 
using 200 mg L−1 clove powder and their weight and length 
were measured at accuracy levels of 0.001 g and 1 mm, respectively 

(Mohammadi Arani et  al., 2019). The growth and survival of 
the fish were monitored based on the following standard formula 
(Abedian-Amiri et  al., 2017):

 Weight gain fW W W% / .( )= −( )×2 1 1100

 Specific growth rate day LnW LnW t% / .
−( )= −( )×1

2 1 100

 Food conversion ratio feed intake mg weight gain mg= ( ) ( )/ .

     

Condition factor final weight mg final 

length mm

= ( )×
( )

100

3

/

.

 
Survival rate number of fish survived after days

     

%( )= 120

                            initial number of fish stocke/ dd×100.

Where W2, W1, and t represent final weight (mg), initial 
weight (mg), and the trial period (day), respectively.

Analysis of the Reproductive Performance
Ten fish from each experimental group were randomly sampled 
and sacrificed using an overdose of 500 mg L−1 clove solution. 
The ovaries were completely dissected out and each of them 
was weighed with 0.0001 mg precision. The number of ovules 
in each ovary was counted using a microscope. The reproductive 
performance was calculated following standard formulae 
(Mohammadi Arani et  al., 2019) as listed below:

 
Gonadosomatic index Gonad weight mg

Final weight mg

= ( )×
( )

100

/ .

 
Absolute fecundity Number of the ovule in ovary sample

Wei

=
× gght of ovary mg Weight of sample mg( ) ( )/ .

 
Relative fecundity Total number of the ovule in the ovary=
×WWeight of fish mg( ).

 Working fecundity Number of hatched eggs= ;

 
Hatching percentage Number of hatched eggs

Total nu

%

/

( )=
×100 mmber of eggs.

 
Survival rate Number of larvae survived after days

Ini

%

/

( )= 14

ttial number of larvae×100.

Analysis of cyp19a Gene
Nine fish (three fishes/replicates) were randomly sampled from 
each treatment. They were anesthetized using clove solution 
(500 mg L−1), and then the ovaries were dissected out. Total RNA 
from each sampled ovary (100 mg) was extracted using RNAx-
PLUS extraction kit following the manufacturer’s instructions 
(Sinaclon, Iran). The samples were treated with RNAase-free DNase 
to remove DNA contamination. The quality and quantity of the 
isolated RNA were measured as described previously (Hosseini 
et  al., 2016). The first-strand cDNAs were synthesized from total 
RNA using the cDNA synthesis kit (Genet Bio-Synthesis, South 
Korea) according to the manufacturer’s instructions. The RT-PCR 
reaction was run in triplicate using a standard protocol (Hosseini 
et  al., 2016). β-actin was used as an internal control for gene 
expression normalization. The qPCR primers for cyp19a and β-actin 
were designed using Oligo7 as previously described (Mohammadi 
Arani et  al., 2021; Table  2). To validate primers, qPCR efficiency 
was also taken into account for choosing the best qPCR primers 
pair with specific and correct size. The PCR efficiency and relative 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zakariaee et al. Synbiotic Activities of Mushroom Extract and Probiotic Lactobacillus

Frontiers in Microbiology | www.frontiersin.org 5 October 2021 | Volume 12 | Article 758758

mRNA expression of cyp19a were calculated based on standard 
curve analysis with serial dilution of cDNA (including five dilutions) 
as previously described by Miandare et  al. (2019).

Amplification and detection of specific products were 
performed using StepOne Real-Time PCR System (Life 
Technologies, Carlsbad, CA, United  States), qPCR Master Mix 
containing SYBR® Green (Life Technologies, Carlsbad, CA, 
United States), and cyp19a specific primers (GenBank accession 
number AF183906). The samples were amplified in 25 μl reaction 
mixtures containing 5.5 μl of nuclease-free water, 1 μl of each 
primer, 12.5 μl of Maxima SYBR Green qPCR Master mix, and 
5 μl of cDNA template. The thermal cycle protocol was 
denaturation, annealing, and extension at 94°C for 20 s, 60°C 
for 30 s, and 72°C for 40 s, respectively. The present sizes of all 
PCR products were verified by inspection of the dissociation 
curve and gel electrophoresis. The relative quantification of gene 
expression was calculated using the following equation (Livak 
and Schmittgen, 2001):
 Relative gene expression

ct sample control
2 2−( )= − −( )DD ∆ ∆Ct Ct

.

Statistical Analysis
All the data were subjected to one-way ANOVA using statistical 
software Statistical Package for the Social Sciences (SPSS) version 
16.0. Duncan’s multiple range tests were used to determine 
the differences among treatment means at p < 0.05.

RESULTS

Impact of Jerusalem Artichoke Extract on 
the Growth of L. acidophilus
The growth rate of L. acidophilus in the function of time, 
cultured in the different experimental media was different 
(Figure  1). No growth was recorded in the glucose-free and 
artichoke extract-free culture medium. However, in the glucose-
free MRS medium with artichoke extract as a substrate, a 
marked increase in the growth of L. acidophilus was recorded. 
Maximum improvement in the growth of L. acidophilus was 
noted in the medium that contained 100% artichoke extract. 
This was followed by those that were grown in the medium 
that contained 75% extract. The growth of L. acidophilus cultured 
in the medium with 2, 25, or 50% artichoke extract as substrate 
was lower than that in the medium that contained a standard 
amount of glucose (i.e., positive control).

Impact of Mushroom Extract on the 
Growth of L. acidophilus
The growth of L. acidophilus was affected by the absence of 
glucose or mushroom extract in the medium (Figure  2). 

However, in the presence of mushroom extract, a marked 
improvement in the growth of L. acidophilus was observed, 
with the maximum being recorded in the medium that contained 
50% extract. The growth of L. acidophilus cultured in the 
medium with 2, 25, or 100% mushroom extract as substrate 
was lower than that in the medium that contained a standard 
amount of glucose (i.e., positive control). Lactobacillus acidophilus 
cultured in the medium containing only glucose or 75% 
mushroom extract as substrate exhibited a similar growth rate.

Impact of Jerusalem Artichoke Extract on 
the Growth of L. delbrueckii Subsp. 
bulgaricus
The growth of L. delbrueckii in the MRS culture medium was 
directly associated with the concentration of artichoke extract, 
which increased with the increase in the extract concentration 
(Figure  3). Maximum optical density reached by L. delbrueckii 
culture was in the medium that contained 100% artichoke 
extract. In the glucose-free MRS medium that contained artichoke 
extract at a concentration lower than 75%, the growth of L. 
delbrueckii in the function of time was relatively lower than 
that in the positive control.

Impact of Mushroom Extract on the 
Growth of L. delbrueckii Subsp. bulgaricus
The mushroom extract added at concentration of 50% in the 
culture medium markedly promotes the growth of L. delbrueckii 
in comparison to the controls (Figure  4). Increasing the 
extract concentration to 75% and higher did not further 
improve the growth of L. delbrueckii. In contrast, the growth 
exhibited a pattern similar to that in the positive control. 
The growth of L. delbrueckii cultured in the medium with 
2 or 25% mushroom extract as substrate was lower than that 
in the positive control.

Impact of the Plant Extracts on the 
Specific Growth Rate, Doubling Time of 
the Lactobacillus Probionts, and the pH of 
the Culture Media
A comparative analysis was carried out to determine the extracts 
that supported the best in promoting the growth indices, in 
terms of specific growth rate and doubling time, of the tested 
probiotic strains. The doses (50% of mushroom extract and 
100% of artichoke extract) that showed the best performances 
in the bacterial growth studies were used for comparison 
purposes. As shown in Figure  5A, the specific growth rate of 
both the Lactobacillus probionts cultured in the medium with 
50% mushroom extract was significantly (p < 0.05) higher than 
those that were cultured with artichoke extract (100%) as 
substrate. No significant difference was observed in the doubling 
time between L. acidophilus and L. delbrueckii cultured on 
mushroom extract as substrate (p > 0.05).

The doubling time of L. acidophilus and L. delbrueckii cultured 
in the medium containing 50% mushroom extract was 
significantly shorter in comparison to that of the probionts 
cultured on artichoke extract as substrate (p < 0.05; Figure 5B). 

TABLE 2 | List of forward and reverse primers for qPCR analysis in zebrafish.

Gene Primers Sequence (5'-3')

Cyp19a
Forward CCGTTCTTATGGCAGGTGAT
Reverse TTGTGTGGTCGATGGTGTCT

β-actin
Forward GGTACCCATCTCCTGCTCCAA
Reverse GAGCGTGGCTACTCCTTCACC
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No significant difference was observed in the specific growth 
rate between L. acidophilus and L. delbrueckii cultured on 
mushroom extract as substrate (p > 0.05).

The pH of the MRS medium containing a culture of L. 
acidophilus or L. delbrueckii in the presence of 50% mushroom 
extract was significantly lower than that of the medium containing 
L. acidophilus or L. delbrueckii culture in combination with 
100% artichoke extract (Figure  5C).

Growth Performances and Survival
The final weight of the fish after 4 weeks of feeding and the 
resulting average fish weight gain during this experimental 
period were determined for all the treatments. At the start of 
the experiment, the fish in all the experimental groups weighed 
between 75 and 77 mg and were not significantly different 
(Table  3). The weight of the fish in the experiment groups, 
irrespective of the treatment increased by 3–5-fold over the 

FIGURE 1 | Growth of Lactobacillus acidophilus in De Man Rogosa Sharpe (MRS) broth medium with and without Jerusalem artichoke extract added at an 
increasing concentration of 2, 25, 50, 75, or 100%. Lactobacillus acidophilus grown in MRS broth medium with a standard amount of glucose served as a positive 
control. The glucose-free MRS medium with 100% of artichoke extract and without L. acidophilus served as negative control 1. The MRS medium free from both 
glucose and extract but with L. acidophilus served as negative control 2. The data points are the mean values of three replicates.

FIGURE 2 | Growth of L. acidophilus in MRS broth medium with and without mushroom extract added at an increasing concentration of 2, 25, 50, 75, or 100%. 
Lactobacillus acidophilus grown in MRS broth medium with a standard amount of glucose served as a positive control. The glucose-free MRS medium with 100% of 
mushroom extract and without L. acidophilus served as negative control 1. The MRS medium free from both glucose and extract but with L. acidophilus served as 
negative control 2. The data points are the mean values of three replicates.
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4-week experimental period (Table  3). When calculating the 
growth variables, such as average fish weight gain and specific 
growth rate (SGR), no significant difference could be  observed 
between the groups of fish fed a control diet, diet 3 supplemented 
with only La, and diet 5 supplemented with both La and 
mushroom extract. However, the group fed diet 6 supplemented 
with Lb and mushroom extract exhibited the highest weight 
gain and SGR values, and was significantly different from that 

of the control. Fish fed diet 7 supplemented with La, Lb, and 
mushroom extract in combination, their weight gain and SGR 
values did not differ significantly from that of the fish fed 
diet 6, however, was significantly higher than that of the control. 
The weight gain and SGR values in the groups fed diet 2 
with mushroom extract as a supplement and diet 4 with Lb 
as a supplement were significantly higher than the control. 
However, the values were still significantly lower than the 

FIGURE 3 | Growth of Lactobacillus delbrueckii subsp. bulgaricus in MRS broth medium with and without artichoke extract added at an increasing concentration 
of 2, 25, 50, 75, or 100%. Lactobacillus acidophilus grown in MRS broth medium with a standard amount of glucose served as a positive control. The glucose-free 
MRS medium with 100% of artichoke extract and without L. acidophilus served as negative control 1. The MRS medium free from both glucose and extract but with 
L. acidophilus served as negative control 2. The data points are the mean values of three replicates.

FIGURE 4 | Growth of L. delbrueckii subsp. bulgaricus in MRS broth medium with and without mushroom extract added at an increasing concentration of 2, 25, 
50, 75, or 100%. Lactobacillus acidophilus grown in MRS broth medium with a standard amount of glucose served as a positive control. The glucose-free MRS 
medium with 100% of mushroom extract and without L. acidophilus served as negative control 1. The MRS medium free from both glucose and extract but with  
L. acidophilus served as negative control 2. The data points are the mean values of three replicates.
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highest values that were observed for the diet 6 fed group. 
The average food conversion ratio (FCR) was 2.4  in the case 
of the control group. A similar FCR of 2.3 was found for 
zebrafish fed with diet 3 or diet 5. The feeding of diet 7 with 
Lb, La, and mushroom extract as a supplement resulted in a 
significant decrease in the FCR value. This was translated in 
a value of 1.8 for the diet 7 fed group, while the largest effect, 
although not significantly different from the latter, was noted 
for the fish fed diet 6 with an FCR value of 1.7. No mortality 
was recorded during the feeding period and the condition 
factor of the fish remained the same among the different 
experimental groups.

Reproduction Performances
The results obtained for reproductive indices are shown in 
Table  4. As a general trend, the Gonadosomatic Index (GSI), 
absolute fecundity, and relative fecundity were influenced by 
the dietary supplements. No significant difference of the three 
indicated indices could be observed between the control groups, 
the group fed diet 3 supplemented with La, and the group 
fed diet 5 supplemented with both La and mushroom extract. 
However, the group fed diet 7 supplemented with a mixture 
of La, Lb, and mushroom extract exhibited the highest GSI, 
absolute fecundity, and relative fecundity values, and was 
significantly different from that of the control. The working 

A B

C

FIGURE 5 | Comparison of the (A) specific growth rate (μmax; h−1), (B) doubling time (Td; h), and (C) pH of the medium of L. acidophillus with that of L. delbrueckii 
subsp. bulgaricus grown in MRS medium containing 50% mushroom or 100% artichoke extract. Bars with different letters indicate a significant difference (p < 0.05). 
Data are presented as mean ± SE.

TABLE 3 | Growth performance and survival of zebrafish fed different experimental diets for 120 days.

Growth indices Control diet Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7

BWi (mg) 77.4 ± 1.1a 76.5 ± 0.9a 75.6 ± 1.0a 74.9 ± 0.9a 76.7 ± 0.5a 74.9 ± 0.7a 75.3 ± 1.0a

BWf (mg) 265.8 ± 5.4c 298.8 ± 4.7b 269.4 ± 2.5c 299.1 ± 3.7b 269.0 ± 5.9c 331.0 ± 4.4a 327.7 ± 5.7a

WG (%) 243.7 ± 11.9c 290.8 ± 10.6b 256.5 ± 11.5c 299.6 ± 14.0b 250.8 ± 8.8c 342.0 ± 12.7a 335.6 ± 13.1a

SGR (% day−1) 1.03 ± 0.03c 1.14 ± 0.02b 1.06 ± 0.00c 1.15 ± 0.01b 1.05 ± 0.02c 1.24 ± 0.01a 1.23 ± 0.02a

FCR 2.4 ± 0.1a 2.1 ± 0.1b 2.3 ± 0.0a 2.0 ± 0.0b,c 2.4 ± 0.1a 1.7 ± 0.0d 1.8 ± 0.1c,d

K Factor (%) 0.51 ± 0.02a 0.56 ± 0.05a 0.53 ± 0.02a 0.55 ± 0.03a 0.52 ± 0.03a 0.56 ± 0.02a 0.54 ± 0.03a

SR (%) 100.0 ± 0.0a 100.0 ± 0.0a 100.0 ± 0.0a 100.0 ± 0.0a 100.0 ± 0.0a 100.0 ± 0.0a 100.0 ± 0.0a

Data are represented as mean ± SE. Means with different superscript letters in each row represent significant differences (Duncan’s test, p < 0.05). Ab, Agaricus bisporus; La, 
Lactobacillus acidophilus; and Lb, L. delbrueckii subsp. Bulgaricus, BWi, initial body weight; BWf, final body weight; WG, weight gain; SGR, specific growth rate; FCR, food 
conversion ratio; SR, survival rate; and K Factor, Fulton’s condition factor. Diet 1 (control diet), Diet 2 (supplemented with 1% mushroom extract prepared from 50% concentrated 
extract), Diet 3 (supplemented with La at 107 CFU g−1 of diet), Diet 4 (supplemented with Lb at 107 CFU g−1 of diet), Diet 5 (supplemented with La at 107 CFU g−1 of diet +1% 
mushroom extract prepared from 50% concentrated extract), Diet 6 (supplemented with Lb at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% concentrated extract), 
and Diet 7 (supplemented with La and Lb, each at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% concentrated extract).
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fecundity of the fish fed different experimental diets did not 
differ significantly; neither did the hatching percentage of the 
fish in different experimental groups. The survival percentage 
of the fry after 4 weeks of hatching in the different experimental 
groups was between 71 and 77% and was not 
significantly different.

Expression of cyp19a Gene
The relative abundance of mRNA encoding for the cyp19a 
gene was determined by qPCR in the ovaries of female zebrafish 
fed different experimental diets for 120 days. At the end of 
the feeling trial, it could be  observed that in the group fed 
with diet 3 supplemented with La, and in the group fed diet 
5 supplemented with both La and mushroom extract, no 
significant upregulation of the cyp19a gene was recorded relative 
to the control. However, the groups fed diet 2, diet 3, diet 6, 
or diet 7; all these groups exhibited a significant increase in 
the expression level of cyp19a gene. Among all the experimental 
groups, those that were fed diet 7 supplemented with a mixture 
of La, Lb and mushroom extract recorded the highest expression 
level of cyp19a gene (p < 0.05; Figure  6).

DISCUSSION

Here, we  tested the compatibility of two extracts from the plant 
Jerusalem artichokes and button mushrooms with two different 
Lactobacillus probiotics to develop a synbiotic formulation with 
the aim to improve the growth and reproductive performances 
of farmed fishes. The two plant extracts were selected in this 
study because of their prebiotic potential as demonstrated in 
previous studies on farmed fishes (for details, see, Amiri et  al., 
2018; Boonanuntanasarn et  al., 2018; Hoseinifar et  al., 2019b; 
Sewaka et  al., 2019; Abedalhammed et  al., 2020). It is well-
established that prebiotics can selectively promote the growth 
of probiotics. The underlying mechanism behind this growth 
promotion is the enzymatic hydrolysis of the non-digestible 
polysaccharides, followed by the uptake of the hydrolysis products, 
or even the direct uptake of small oligomers (Huynh et al., 2017;  
Nunpan et  al., 2019; Massa et  al., 2020). Thus, one of the 

prerequisites of a synbiotic should be  the ability of the probiotic 
bacteria to ferment the prebiotic components. This ability of 
the probiotic bacteria is highly specific and is not only species 
and strain-dependent but also is markedly influenced by the 
dose, composition, and origin of the prebiotic (de Melo Pereira 
et  al., 2018; Zoumpopoulou et  al., 2018). Initially, we  employed 
in vitro approach to monitor the growth of the probiotic lactobacilli 
in the presence of the different doses of the plant-based prebiotics, 
with the aim to select interesting combination(s) for further 
verification under in vivo conditions. Our results showed that 
when the two probiotic strains were tested in the presence of 
the two different plant extracts, a clear increase in the growth 
rate was achieved by both the strains, however, the growth 
promotion effect of the plant extracts on the tested probiotic 
strains was dose-dependent. In the case of the artichoke extract, 
it was the dose of 100% that resulted in higher growth rates 
of the L. acidophilus and L. delbrueckii (see, Figures  1, 3) but 
in the case of the mushroom extract, it was at the dose of 
50% where the probiotic strain exhibited maximum growth rate 
(Figures  2, 4). The observed increase in the growth rate of the 
probionts in response to the addition of artichoke extract in 
the medium could be  attributed to the presence of inulin-type 
fructans, such as inulin, fructooligosaccharide, in the artichoke 
extract (Yaseen, 2018; Rattanakiat et  al., 2020; Zhu et  al., 2020). 
Fructans are one of the most known prebiotics that were shown 
to stimulate probiotics growth in several organisms, including 
fish (Li et  al., 2019; Manikandan et  al., 2020; Ghafarifarsani 
et  al., 2021; Zimmermann et  al., 2021). In an in vitro study 
conducted by Van Doan et al. (2015), it was noted that Jerusalem 
artichoke extract at 5% concentration caused maximum growth 
in the bacterial population of Lactobacillus plantarum, finding 
that is in line with that of ours. Similarly, the observed increase 
in the growth of each of the two probiotics cultured together 
with mushroom extract could be  attributed to the prebiotic 
components, such as chitin, hemicellulose, β- and α-glucans, 
mannans, xylans, and galatians, which are widely available in 
mushrooms (Mirończuk-Chodakowska and Witkowska, 2020; 
Atila et  al., 2021). The findings from our study are supported 
by several other studies. For instance, Sawangwan et  al. (2018) 
showed that the ability of edible mushroom extract as a prebiotic 

TABLE 4 | Reproduction performance and fry survival of zebrafish fed different experimental diets for 120 days.

Reproductive 
indices

Control diet Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7

GSI (%) 7.1 ± 0.1d 7.5 ± 0.1c 7.1 ± 0.1d 7.4 ± 0.1c 7.2 ± 0.1d 7.7 ± 0.1b 7.9 ± 0.1a

AF 100.0 ± 2.7c 104.0 ± 3.4a,b 99.0 ± 2.7b 104.0 ± 3.2a,b 100.0 ± 2.3b 105.0 ± 5.0a,b 110.0 ± 5.7a

RF 254.0 ± 5.0c 256.0 ± 7.0c 262.0 ± 3.0c,b 271.0 ± 4.0a,b 262.0 ± 5.0c,b 275.0 ± 3.0a,b 2,940 ± 6.0a

WF 75.7 ± 6.1a 73.0 ± 5.5a 76.0 ± 6.1a 75.0 ± 6.4a 71.3 ± 6.1a 75.0 ± 5.5a 75.3 ± 5.9a

HR (%) 83.0 ± 1.9a 82.0 ± 1.9a 84.0 ± 1.2a 84.0 ± 1.2a 84.0 ± 1.5a 83.0 ± 1.5a 84.0 ± 2.0a

SR (%) 71.0 ± 4.0a 75.0 ± 6.0a 72.0 ± 5.0a 72.0 ± 4.0a 71.0 ± 6.0a 75.0 ± 09.0a 77.0 ± 7.0a

Data are represented as mean ± SE. Means with different superscript letters in each row represent significant differences (Duncan’s test, p < 0.05). Ab, Agaricus bisporus; La, 
Lactobacillus acidophilus; Lb, L. delbrueckii subsp. Bulgaricus; GSI, gonadosomatic index; AF, absolute fecundity; RF, relative fecundity; WF, working fecundity; HR, hatching 
percentage; and SR, fry survival rate. Diet 1 (control diet), Diet 2 (supplemented with 1% mushroom extract prepared from 50% concentrated extract), Diet 3 (supplemented with La 
at 107 CFU g−1 of diet), Diet 4 (supplemented with Lb at 107 CFU g−1 of diet), Diet 5 (supplemented with La at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% 
concentrated extract), Diet 6 (supplemented with Lb at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% concentrated extract), and Diet 7(supplemented with La and 
Lb, each at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% concentrated extract).
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had a positive effect on the growth of probiotics L. acidophilus. 
This finding was complemented by other studies that showed 
that extract of oyster mushroom, Pleurotus eryngii, could promote 
the growth of not only Lactobacillus spp. but also other important 
probiotics species, such as Bifidobacterium spp., and Enterococcus 
faecium (Synytsya et  al., 2009; Van Doan et  al., 2016). It is 
interesting to mention that the artichoke and mushroom extracts 
at a concentration lower than 75% or mushroom extract at a 
higher concentration of 100% did not result in improvement 
in the growth-promotion of the probiotic species under study 
with respect to the corresponding species cultured in the presence 
of glucose. Reduced bacterial growth at lower and higher 
concentrations may be related to unavailability of suitable nutrients 
and unoptimized pH or high levels of beta-glucan in the culture 
medium, which has a negative effect on the bacterial growth; 
therefore, the optimization of nutrient concentration is very 
important (Reischke et  al., 2015; Meshram et  al., 2016; Rojo-
Cebreros et  al., 2017). As beta-glucan is made up of glucose 
monomers, when taken with probiotics, the bonds between them 
are broken down by beta-gluconase enzymes. Also, on the other 
hand, high levels of glucose have inhibitory properties for 
bacterial growth; the reduction in bacterial growth at a 
concentration of 100% of the mushroom extract can be  justified 
(Reischke et  al., 2015).

Our results showed that both the probiotic species showed 
a preference for 50% mushroom extract as a source of prebiotics 
since their growth with mushroom extract resulted in higher 
growth rates than those obtained in the presence of 100% 
artichoke extract (Figure  5). There is evidence suggesting that 
different prebiotic compounds display a varying degree of 
fermentability and short-chain fatty production in the presence 

of a probiotic strain (Carlson et  al., 2018; Wang et  al., 2019). 
It has been described that prebiotic compounds with higher 
polymerization degree are relatively more difficult to ferment 
than similar prebiotics with lower one (Mueller et  al., 2016; 
Langa et  al., 2019; Méndez et  al., 2019). The preference of 
the two probiotics under study for the mushroom extract, 
over the artichoke extract, could be  explained by the variation 
in the composition of the prebiotic compounds between artichoke 
and mushroom extracts, with the latter being more fermentable. 
A significant decline of pH in the medium that contained 
mushroom extract and each of the two probiotics relative to 
that in the medium that contained artichoke extract and the 
probiotics supports our above explanation that mushroom 
extract was better fermented by the tested probiotics.

Having observed that the mushroom extract at a concentration 
of 50% caused the most prominent growth-promoting effect, 
when cultured with each of the tested probiotic species response, 
we, therefore, selected the indicated dose of the mushroom extract 
and combined it with La and/or Lb to develop synbiotics. We then 
validate their beneficial effects using the in vivo model organism, 
zebrafish focusing on the survival, growth, and reproductive 
performances of zebrafish. Feeding of a diet supplemented with 
Lb and mushroom extract (diet 6) in combination caused a 
positive influence on the weight gain percentage and SGR of 
zebrafish. During the rearing periods of 120 days, the average 
fish weight gain percentage increased in the group fed diet 6 
increased to 342 and 335%, respectively, relative to 243% for 
the control group. Accordingly, the group fed diet 6 and diet 
7; both showed an increase in the SGR by a fold of 1.2. This 
resulted in an FCR that was significantly lower for the group 
fed a diet supplemented with Lb and mushroom extract (diet 

FIGURE 6 | Effects of feeding various experimental diets for 120 days on the relative expression of cyp19a gene in the ovary of zebrafish, normalized against 
β-actin factor as reference gene. Bars with different letters indicate significant differences (p < 0.05). Data are presented as mean ± SE of three replicates. Diet 1 
(control diet), Diet 2 (supplemented with 1% mushroom extract prepared from 50% concentrated extract), Diet 3 (supplemented with La at 107 CFU g−1 of diet), Diet 
4 (supplemented with Lb at 107 CFU g−1 of diet), Diet 5 (supplemented with La at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% concentrated 
extract), Diet 6 (supplemented with Lb at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% concentrated extract), and Diet 7(supplemented with La 
and Lb, each at 107 CFU g−1 of diet +1% mushroom extract prepared from 50% concentrated extract).
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6) or with La, Lb, and mushroom extract (diet 7) in combination. 
Our results also showed that the condition factor (K), which is 
an indicator of the fish general condition, remained within the 
optimum range during the entire experimental period, and this 
was reflected in the survival results as no significant mortality 
was observed due to feeding experimental diets. This result 
suggests that the selected Lactobacillus species and the mushroom 
extract (50%) either alone or in combination caused no harmful 
effect on the fish, at least in our described experimental condition, 
and hence can be  considered safe for use in fish feed. The 
underlying rationale for the observed improvement in the growth 
of zebrafish in response to feeding the developed synbiotic-
supplemented diet could be  multifactorial. For instance, (i) 
improvement in the gut microbial flora, (ii) inhibition of the 
attachment and cloning of pathogenic microorganisms to the 
intestinal wall of the fish, (iii) and maintenance of beneficial 
microbial population in the gut, (iv) improvement in the feed 
intake and digestion, (v) production of enzymes, vitamins, and 
other beneficial substances for the host, and (vi) improvement 
in the immune status of the fish (Aftabgard et  al., 2018; Ashouri 
et  al., 2018; Mirghaed et  al., 2018; Dawood et  al., 2020; Kazuń 
et  al., 2020; Yang et  al., 2020; El-Nobi et  al., 2021; Mohammadi 
Arani et al., 2021; Zhandalgarova et al., 2021). However, at present, 
this is mere speculation and warrants further research. To our 
knowledge, no report is available on the use of probiotics La 
or Lb in combination with mushroom extract as a synbiotic 
formulation compound in farmed fishes. However, the beneficial 
effects of the synbiotic formulation on zebrafish performance 
parameters including weight gain percentage, SGR FCR, and 
survival are in agreement with previous studies (Safari et  al., 
2018; Mohammadian et al., 2019; Priya et al., 2021). For example, 
a similar improvement in the growth performances was observed 
in a study with a commercial synbiotic that comprised of a 
probiotic Entercoccus faecium and fructooligosaccharide as a 
prebiotic in zebrafish (Nekoubin et  al., 2012b).

The reproductive performances of organisms, including fish, 
are gated by the state of energy reserves in the organism, and 
that there is a balance between energy homeostasis and fertility 
(Gioacchini et  al., 2010; Mohammadi Arani et  al., 2021). The 
impact of energy status on the reproductive axis is conveyed 
through several neuroendocrine hormones and metabolic cues, 
such as kiss1, kiss2, leptin, and Cyp19a, whose nature and 
mechanisms of action have begun to be  deciphered in fish 
(Carnevali et al., 2016; Doering et al., 2019; Mohammadi Arani 
et  al., 2021; Shan et  al., 2021). Cyp19a is the key steroidogenic 
enzyme that plays an important role in the conversion of 
androgens to estrogens in the sexual differentiation and 
reproductive cycles of vertebrates (Zheng et  al., 2019; Doering 
et  al., 2021). Over the past few years, evidence has been put 
forward to demonstrate that microbial supplements can improve 
the reproductive performances of fishes (for details see, 
Ahmadifard et  al., 2019; Gabriel, 2019; Mohammadi Arani 
et  al., 2021). For instance, in a study carried out on zebrafish, 
feeding of the probiotic Lactobacillus rhamnosus caused a 
significant effect on follicle development, production of ovulated 
eggs, and hatching rate (Gioacchini et  al., 2010). In another 
study, zebrafish fed a diet supplemented with probiotic Pediococcus 

acidilactici exhibited a significant improvement in the gonado 
somatic index, fecundity, and hatching percentage. Interestingly, 
this increase in the reproductive performances of the fish was 
associated with a significant increase in the expression of the 
cyp19a gene (Mohammadi Arani et  al., 2021). Similar results 
have also been obtained with a synbiotic product Biomin imbo, 
which improved several reproductive indices like fecundity, 
hatching rate, hatching time, and the rate of germinal vesicle 
breakdown in zebrafish (Nekoubin et  al., 2012b) and fecundity 
in angelfish Pterophyllum scalare (Nekoubin et  al., 2012a). In 
agreement with the above findings, our results also demonstrated 
a stimulatory role of the synbiotic comprising of La, Lb, and 
mushroom extract in combination (diet 7) on a set of key 
reproductive indices of zebrafish. It is worth highlighting that 
despite the improvement in the reproductive performances, 
the hatching percentage, and the survival rate of the fry were 
not influenced by the feeding of synbiotic. A possible explanation 
for the observed response could be  attributed to the culture 
conditions that were maintained at the optimum level for the 
culture of the fish. Consistent with our findings, Rodriguez-
Estrada et  al. (2009) observed no significant effect of feeding 
rainbow trout for 12 weeks with Enterococcus faecalis and MOS/
PHB on the survival rate of the fish. Also, similar results were 
observed in Japanese flounder (Paralichthys olivaceus) when 
fed with Bacillus clausii and MOS/FOS (Ye et  al., 2011).

The molecular mechanisms behind the stimulating effects 
of prebiotics, probiotics, and/or synbiotics on the reproductive 
performances in organisms are not yet fully known. However, 
in our study, we  found a significant upregulation of the cyp19a 
gene in the ovaries of the fish fed synbiotic-supplemented 
diet, and this coincided well with the improvement of the 
reproductive indices. The stimulatory role of synbiotic on female 
zebrafish reproductive performances may be  due to both the 
activation of the endocrine control described above and to 
the direct action of synbiotic-mediated cyp19a on the ovary. 
In this study, although the cyp19a gene induced by synbiotic 
appeared to improve the reproductive factors, the induction 
of other metabolic signals, such as kiss1, kiss2, and leptin by 
this product and their collective involvement in governing the 
reproduction process cannot be  excluded. Further studies are 
required to substantiate this assumption by developing or using 
primers specific for these genes of interest.

In essence, the in vitro screening assay in the broth showed 
a preference of L. acidophilus and L. bulgaricus for mushroom 
extract as a prebiotic. A synbiotic formulation, developed with 
the selected combination of L. acidophilus, L. bulgaricus, and 
50% mushroom extract, showed a positive influence on the 
growth and reproductive performances of the in vivo model 
organism zebrafish. Our findings also imply that the improvement 
in the reproductive indices was associated with the upregulation 
of a cyp19a gene. Overall results suggest that a combination of 
L. acidophilus, L. bulgaricus, and mushroom extract can 
be  considered as a potential synbiotic for aquaculture species. 
Further research is warranted to unravel the specific mechanisms 
involved in this synbiotic effect and the validation of this 
formulation following nutritional trials in aquaculture species 
of economic importance.
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