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Abstract
A subset of regions in the lateral and medial prefrontal cortex and the anterior insula increase their activity level whenever a 
cognitive task becomes more demanding, regardless of the specific nature of this demand. During execution of a task, these 
areas and the surrounding cortex temporally encode aspects of the task context in spatially distributed patterns of activity. It 
is not clear whether these patterns reflect underlying anatomical subnetworks that still exist when task execution has finished. 
We use fMRI in 12 participants performing alternating blocks of three cognitive tasks to address this question. A first data 
set is used to define multiple demand regions in each participant. A second dataset from the same participants is used to 
determine multiple demand voxel assemblies with a preference for one task over the others. We then show that these voxels 
remain functionally coupled during execution of non-preferred tasks and that they exhibit stronger functional connectivity 
during rest. This indicates that the assemblies of task preference sharing voxels reflect patterns of underlying anatomical 
connections. Moreover, we show that voxels preferring the same task have more similar whole brain functional connectivity 
profiles that are consistent across participants. This suggests that voxel assemblies differ in patterns of input–output connec-
tions, most likely reflecting task demand-specific information exchange.

Keywords Cerebral cortex organisation · Inferior frontal junction · PreSMA · Resting state functional connectivity · Task-
related fMRI · Anterior insula

Introduction

The ability to select in each situation the most appropriate 
action, given the available options and the learned regulari-
ties of that situation, is largely depending on a network of 
brain areas in the parietal and prefrontal lobes (Goldman-
Rakic 1988; Miller and Cohen 2001; Corbetta and Shul-
man 2002; Duncan 2013). Particularly, the areas around 
the inferior frontal sulcus have been associated with the 

maintaining of task rules (Bengtsson et al. 2009; Wallis et al. 
2001; White and Wise 1999), whereas the superior parietal 
regions are thought to be involved in tracking the available 
environmental cues in task relevant priority maps (Bisley, 
and Goldberg 2010; Womelsdorf and Everling 2015).

Areas in the lateral and the medial posterior prefrontal 
cortex, together with the anterior insula, have been shown 
to be active during a wide range of tasks (Duncan and Owen 
2000; Mennes et al. 2006). Moreover, they have been shown 
to modulate their level of activation with cognitive effort, 
regardless of the specific demands of the task (Duncan 2010; 
Stiers et al. 2010). Thus, the neural activity in these areas 
increases when the number of elements in a working mem-
ory task increases, but also when the stakes in a gambling 
task become more risky. This has been referred to as their 
“multiple demand property” (Duncan 2010, 2013).

The neural mechanism behind this multiple demand prop-
erty is not yet clear. The property may arise because these 
areas have the same functional contribution in each of these 
tasks. However, increasing evidence suggests that areas in 
the prefrontal cortex represent different aspects of the task 
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context in a unique, spatially distributed pattern of neuronal 
activity. Thus, activity patterns in the cortical region cov-
ering the inferior frontal sulcus allow decoding specific 
aspects of the task context, such as what stimulus feature 
a person attends to, or the specific response mapping rule 
that s/he follows (Woolgar et al. 2011; Waskom et al. 2014). 
Moreover, physiological recordings in animals have shown 
that the pattern of neural activity in this area changes with 
the task being performed or the particular phase of a task 
the subject is in (Saga et al. 2011; Sigala et al. 2008; Kaping 
et al. 2011). These results suggest that even though different 
tasks significantly activate the same region of cortex, spe-
cific tasks induce a unique pattern of activity. This is con-
firmed by the fMRI finding that subsets of voxels distributed 
throughout the multiple demand nodes show reliable prefer-
ences for one or more of a set of tasks (Stiers et al. 2010).

At the neural level, these unique patterns are thought to 
reflect the activity of different, but spatially intermingled 
subpopulations of neurons that are engaged during the 
execution of the different tasks. Physiological recordings of 
local field potentials suggest that these subpopulations form 
task context-specific assemblies (Sigala et al. 2008; Voloh 
et al. 2015). Differences in task preferences of fMRI voxels 
are then thought to reflect differences in densities of task 
context tuned cell assemblies within these individual voxels 
(Haynes and Rees 2005; Kamitani and Tong 2005; Norman 
et al. 2006; But, see Gardumi et al. (2016) for a discussion 
of alternative views). The neurons across network nodes 
that constitute assemblies during a particular task context 
are assumed to be interconnected and to exchange informa-
tion relevant for the execution of their preferred task. This 
assumption receives support from fMRI data, showing that 
multiple demand voxels preferring the same task have a 
stronger functional coupling during execution of that task 
than voxels that differ in preference (Stiers et al. 2010). This 
is not only true for voxels within a particular node, but also 
for voxels located in different nodes of the network.

In the present study, we further elaborate on this model of 
the intrinsic organisation of the multiple demand network. 
A question of particular interest is the temporal flexibility 
of neuron assemblies. Within the time frame of on-going 
performance, the flexibility of neural assemblies has been 
convincingly demonstrated. Multi-array cell recordings 
show that assemblies of neurons and their representation 
contents appear and disappear as the animal transits from 
one task phase to the next (Saga et al. 2011; Sigala et al. 
2008; Stokes et al. 2013). This flexibility is comparable to 
the emergence and disappearance of activation patterns in 
early sensory areas contingent upon receptor stimulations. 
The rapid transitions between activity patterns in PFC are 
thought to rely on a special form of “dynamic” coding in 
large arrays of neurons (Duncan 2001; Riggotti et al. 2010; 
Stokes et al. 2017). These arrays allow the formation of 

functional episodes (Duncan 2013) or (effective) connectiv-
ity states (Stokes et al. 2017) that variably bind combinations 
of sensory, motivational and motor contexts relevant for the 
current task. An unanswered question is what happens to 
assemblies after activity in their circuits has disappeared 
because the person transited to a new task phase. On one 
end of the theoretical continuum, the neurons in the array 
exhibit equipotentiality for representing information that is 
relevant for the task. The array is wired in such a way that 
it can temporally represent any task context for the time 
needed, much in the same way that a sensory input array 
temporarily represents a particular sensory input pattern. As 
is the case for sensory neurons, representational equipoten-
tiality translates into unbiased interconnections between the 
dynamic coding neurons. On the other end of the continuum, 
there is the view that the task context specific assemblies are 
established during acquisition of the specific tasks and rely 
on hard-wired connections between the neurons, which still 
exist when not engaged in the specific task.1 A first indica-
tion that task context specific patterns of activation are sta-
bly formed was provided in Stiers et al. (2010). They found 
stronger functional coupling between multiple demand vox-
els tuned to the same task than voxels with non-matched 
preferences, even when the task executed was not the task to 
which the voxels were tuned. A further step in demonstrating 
the stability of task context-specific assemblies was recently 
provided by Waskom and Wagner (2017). They showed 
that voxels in the larger inferior frontal sulcus cortex that 
contributed to decoding attention to a particular stimulus 
dimension (i.e. shape, colour or structure) showed stronger 
functional coupling also outside of the task, i.e. during rest. 
These findings suggest that the specific prefrontal paths of 
neuronal information exchange underlying performance in 
different tasks do not cease to exist upon task termination, 
but are still present at a later time point.

In the present study, we investigated whether stable 
functional coupling, i.e. beyond the time window of task 
execution, also exists between multiple demand voxels 
that share a tuning for a specific task across nodes of the 
multiple demand network. To identify task preference 
sharing voxels, we administered short blocks of three dif-
ferent tasks to 12 participants while in the scanner. Mul-
tiple demand nodes were identified by isolating voxels 
that were activated by all three tasks and by showing that 
their activity was modulated by task difficulty in all three 
tasks. Based on our previous work (Stiers et al. 2010), 

1 It should be noted that these two views do not need to be mutually 
exclusive, and that coding equipotentiality may exist in some neuron 
arrays, whereas task-specific changes in interconnections are formed 
in other neuron populations, located in different areas or maybe even 
in subpopulations within one area.
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four different multiple demand nodes were selected (see 
Table 1) in each participant, and the node voxels were 
sorted based on their preference profile for the three tasks. 
This allowed us to study functional couplings between 
classes of voxels sharing the same preference profile. We 
studied functional coupling strength during task execution 
and during independently acquired fMRI data during rest, 
and compared same and differently tuned voxels within 
nodes and between nodes. The analyses show evidence 
of stronger coupling of voxels, forming an interregional 
task-specific assembly, in all measures. These results could 
be expected given neuroanatomical reports of discrete 
groups of neurons, organized in stripe-like patterns that 
form subnetworks across the areas of the association cor-
tex (Pucak et al. 1996; Selemon and Goldman-Rakic 1988; 
Marconi et al. 2001). Such a structural skeleton might be 
the basis of the functional subnetworks evidenced in our 
fMRI measurements.

Methods

Participants

Twelve people participated voluntarily in this study. Their 
age ranged from 20 to 47 years and 7 were females. They 
were right handed and free of any neurological or psy-
chiatric conditions. All participants gave their informed 
consent to participate in the study, which was approved 
by the local ethics committee.

Behavioural tasks

Three different cognitive tasks were administered in each 
imaging run. The task paradigms were created and admin-
istered using Presentation software (Neurobehavioral Sys-
tems, Albany, CA, USA). The stimuli used are illustrated 
in Fig. 1a–c. They consisted of black and white patterns 
set at maximum contrast against an intermediate grey back-
ground [RGB settings (1, 1, 1), (255, 255, 255), and (127, 
127, 127), respectively]. The stimuli were optically back-
projected from the technical room of the scanner onto a 
semi-transparent plastic screen 17 cm high and 25 cm wide 
positioned vertically against the upper internal surface of the 
scanner bore. Participants saw the reflections of the stimuli 
in a mirror fixed at the top of the head coil at 29 cm from the 
screen and ± 6 cm from the participants’ eyes. The stimuli 
comprised a visual angle of ± 15.5° (9.5 cm) horizontally.

The tasks were administered in blocks of five consecu-
tive trials of the same task. The tasks were alternated in a 
pseudo-random order with the restriction that no task was 
administered in two consecutive blocks. The time between 
blocks was 14 s (Fig. 1d). One run consisted of 6 blocks of 
each task for a total of 18 blocks. Two types of runs were 
created. In the first type, half of the blocks of each task con-
tained easy trials, requiring less cognitive effort, while the 
other half included difficult trials. Three such runs were 
administered to the participants in one scanning session. 
Data from these runs were used to identify multiple demand 
areas. In the second type of runs, all six blocks of each task 
contained difficult trials. Six runs of this type were adminis-
tered to each participant in a separate scanning session and 
these data were used to study voxel preference profiles and 
functional couplings during task execution.

Table 1  Regions of interest location

IFS inferior frontal sulcus, INSa anterior insula, MSFG medial superior frontal gyrus, preSMA presupplementary motor area, RCZ rostral cingu-
late motor zone, MNI Montreal Neurological Institute
a Number of individual data sets in which the shared activation side could be identified, either bilateral or unilateral

Activation sites N of  subjectsa MNI coordinates N voxels Anatomy

x (mm) y (mm) z (mm)

Name Side Bilat Unilat M SD M SD M SD M SD

IFS1 Left 12 12 − 50.2 7.4 3.8 3.9 35.7 6.3 170.3 49.3 Inferior frontal junction
Right 12 12 50.8 6.5 6.3 3.6 34.3 3.6 203.8 44.8

IFS2 Left 9 10 − 47.3 8.5 18.0 4.6 26.2 2.1 58.3 44.3 Inferior frontal sulcus
Right 9 10 51.6 3.8 18.9 5.1 28.7 6.9 63.9 71.1

INSa Left 12 12 − 33.8 4.2 20.1 4.8 4.2 4.7 70.1 56.9 Anterior bend of circular sulcus
Right 12 12 37.8 4.3 18.7 4.3 3.0 2.3 88.9 47.9

MSFG Left 12 12 − 8.3 1.9 7.3 4.4 53.8 4.5 257.3 95.9 Superior frontal gyrus 
(preSMA) and cingulate 
sulcus (RCZ)

Right 12 12 8.8 2.0 8.6 4.7 57.0 3.4 255.8 97.1
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What task would be administered in each block was indi-
cated by a cue prior to the start of the first trial. This cue 
was visible for 500 msec and consisted of the first letter of 
the task (“E” for Eriksen, “B” for Backmatching, etc.). The 
colour of the letter indicated the difficulty class of the block, 
with white letters indicating easy blocks and black letters 
indicating difficult blocks. The first trial in each block started 
4 s after the onset of the cue. For subsequent trials, the trial 
onset interval varied randomly between 1.5 and 2.0 s, in 
100 ms steps. For the Eriksen and Backmatching tasks, 
1000 ms of this interval was occupied by the presentation 
of the stimulus. For Switching, the stimulus remained visible 
for the entire interval to avoid working memory demands.

In each trail, participants had to make their choice known 
via a standard MRI-compatible key pad, which was operated 
by the index and middle finger of the right hand. For direc-
tion responses in the Eriksen and the Switching task, left 
and right directions were indicated by the index and middle 
finger, respectively. For match/non-match responses in the 
Backmatching task, the index finger indicated a match and 
the middle finger a mismatch. Hence, a motor response was 
required in all trials. A description of the stimulus material 
and difficulty level for each task is provided below:

Eriksen task (Fig.  1a) In each trial, participants had 
to indicate the left or right direction in which a centrally 
positioned arrow head was pointing. The arrow head was 
flanked on the left and the right with similar arrow heads 
that pointed either in the same (congruent) or the opposite 
direction (incongruent) as the central arrow head. In the 
“easy” block, all five trials were congruent, whereas dif-
ficult blocks consisted of a random alternation between two 
congruent and three incongruent stimuli.

Backmatching task (Fig. 1b) The spatial lay-out of the 
stimuli in this spatial Backmatching task was a three-by-
three array of empty squares. A stimulus consisted of the 
appearance of the letter “X” centrally in one of the nine 
squares for 1 s. Participants had to match the position of 
the X in the current trial with its position in previous trials 
and indicate by key press whether the positions matched. In 
the “easy” blocks, all trials were 1-back, meaning that the 
participant had to match stimulus position between the cur-
rent and the just preceding trial. In the “difficult” blocks, all 
trials were 2-back, requiring a key press whenever the cur-
rent stimulus position was identical to its position two trials 
back in time. Because information needs to be retained over 
trials, the first trial in a 1-back and the first two trials in a 

Fig. 1  Behavioural paradigm. 
a–c Illustration of the type of 
stimuli used in each of the three 
tasks: a Eriksen flanker task; 
b Backmatching; c response 
scheme switching. d Temporal 
organization of the paradigm. 
The three tasks were admin-
istered alternatively in block 
of five trials per task with an 
inter-block interval of 14 s. 
Each block was initiated by a 
cue stimulus indicating which 
task participants were going 
to perform. See text for more 
detailed description of the tasks. 
e–f Summary of behavioural 
performance. Reaction time (e) 
and percentage of error trials 
(f) in the low and high difficulty 
conditions of each of the three 
tasks. Data set 1 consisted of 
blocks of easy and difficult trials 
for each task, whereas data set 2 
only had blocks of difficult tri-
als. Error bars indicate ± 1 SE. 
Error trials were excluded from 
these behavioural analyses as 
well as from the fMRI analyses 
where they were modelled as 
separate events of no interest
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2-back block could not be a target. Therefore, targets could 
only appear in the last three trials of a difficult block. None-
theless, participants needed to start monitoring and feeding 
information into their working memory starting with the first 
trial.

Response scheme switching task (Fig. 1c) In the last 
task, the stimulus array consisted of five potential stimulus 
positions horizontally arranged and marked with five open 
squares. A stimulus consisted of a full square that filled one 
of the place holders. Participants had to indicate with a left 
or right hand key press whether the square in the current trial 
had jumped to the left or to the right relative to its position 
on the preceding trial. In the easy trials, the stimulus square 
was black, and in that case they had to press the key on the 
side towards which the square had jumped (congruent trial). 
In difficulty trials, the stimulus square turned white, and in 
that case the stimulus response mapping rule reversed and 
participants had to press the key opposite to the direction of 
the jump (incongruent trial). In easy blocks, the colour of 
the stimulus square remained black throughout the five trials, 
whereas in difficult blocks the colour of the stimulus square 
turned white on two of the five occasions. The first stimulus 
in a block was always black and did not require a response 
from the participants.

Although difficult blocks of the Eriksen and the Switch-
ing task contained both easy and difficult trials, all trials in 
a difficult block will be called “difficult trials”, because the 
mixed organisation of trials within these blocks increases the 
cognitive effort of the block as a whole. The average reaction 
times of individual participants in each of the tasks and dif-
ficulty levels were subjected to a repeated measures analysis 
of variance with three task types (Eriksen, Backmatching, 
Switching) and three difficulty level of the trials (Easy-data 
set 1, Difficult-data set 1, Difficult-data set 2). Greenhouse-
Geisser correction was applied to compensate for deviations 
of sphericity. Follow-up analyses comprised paired t tests, 
with Bonferroni correction for multiple comparisons.

MRI image processing

Data were collected on a Siemens MAGNETOM Allegra 3T 
MRI head-only scanner. Head motion was constrained by the 
use of foam padding. All functional images were acquired 
with a T2*-weighted gradient echo planner pulse sequence 
covering the whole brain including the cerebellum with 32 
axial slices (TR 2000 ms, TE 30 ms, FA 90°, FOV 224, slice 
thickness 4 mm, matrix size 64 × 64, flip angle 90°). Voxel size 
was 3.5 × 3.5 × 4 mm. A gradient echo image (TR 704 ms, TE 
5.11 and 7.57 ms; flip angle 60°) with the same grid and slice 
orientation as the functional images was acquired to generate a 
field map for correcting susceptibility-related distortions in the 
functional images. A T1-weighted anatomical scan was also 
acquired (TR 2250 ms, TE 2.6 ms, flip angle 9°, FOV 256 mm, 

slice thickness 1 mm, matrix size 256 × 256, number of slices 
192). Voxel size was 1 × 1 × 1 mm.

Preprocessing

The data were pre-processed using the SPM5 software 
(Wellcome Department of Cognitive Neurology, Univer-
sity College, London, UK). Functional volumes were re-
aligned, spatially corrected using the field map, slice time 
corrected, and co-registered with the anatomical scan. The 
individual T1-weighted anatomical scan was segmented into 
tissue density maps (grey matter, white matter and CSF) 
and non-linearly normalized to the MNI template in an inte-
grated procedure. The resulting normalization parameters 
were applied to the functional data of that participant. In the 
process, the functional volumes were re-sampled to 2 mm 
isotropic voxels.

Handling of data set 1: three runs with task difficulty 
manipulation

The three runs with easy and more difficult blocks of each 
task were analysed separately to identify voxels that were 
activated by all three tasks and to establish their multiple 
demand property. We will refer to these data as data set 1. 
These data were smoothed with a 6 mm FWHM Gaussian 
kernel prior to entering first level statistical analysis.

In the first level analysis, individual time fluctuations in 
the BOLD signal were modelled with variables marking the 
occurrence of individual trials. For each task, the easy and 
difficult trials were modelled as separate events. Error trials 
were modelled separately as variables of no interest, as were 
the task cues preceding each block of trials. Each of these 
variables was convoluted with the theoretical hemodynamic 
response function and its time and dispersion derivatives. 
Session-specific mean regressors were added to neutralize 
baseline signal differences per run. Lastly, the six realign-
ment variables were included in the model. After estimation 
of the weights associated with each of the components in the 
model, contrasts were defined to estimate the strength of the 
BOLD response in each difficulty level and task type relative 
to baseline. The resulting weight maps were used to compute 
whole brain percent signal change maps, which were used in 
the follow-up region of interest-based group level analysis 
to confirm the multiple demand property of voxels selected 
for further analysis (see “Methods”, subsection “Regions of 
interest identification”).

Handling of data set 2: six runs without task difficulty 
manipulation

The six runs with only difficult blocks of each task were used 
as an independent data set to study task preference profiles 
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of and functional couplings between the voxels selected 
based on data set 1. These data will be referred to as data set 
2. No smoothing was applied to data set 2.

Analysis of the data was again at the level of individual 
participants. The modelling of task-induced BOLD fluctua-
tions was similar to that in data set 1, including the model-
ling of error trials and task preceding cues as events of no 
interest, but now all trials were of the difficult type. Again, 
for each task a present signal change map was created based 
on the estimated model weights. These maps were used to 
quantify task preferences of individual voxels (see “Meth-
ods”, subsection “Voxel-wise task preference profiles”). In 
addition, a disjunctive F-contrast was computed that moni-
tored any pairwise difference between the tasks. The result-
ing F-map was used to establish whether the profile of task 
preferences of individual voxels was statistically significant 
(see “Methods”, subsection “Voxel-wise task preference 
profiles”). The statistical criterion applied was 0.05, false-
discovery rate corrected for multiple comparisons (Genovese 
et al. 2002).

Handling of data set 3: resting state fMRI data

In addition to the task-related fMRI data described above, 
we also collected 10 min of resting state data with the same 
epi sequence and imaging parameters. Participants were 
instructed to fixate a central fixation cross while remaining 
in a relaxed state, avoiding mentally engaging thoughts. The 
resting state data were always collected as the first run in a 
scanning session. In two participants, they were collected 1 
and 2.5 months prior to entering this experiment. In 1 par-
ticipant, they were collected during the first scanning session 
in which data were collected for the current experiment. In 
the remaining nine participants, the resting state run was 
collected at the start of the second scanning session. In these 
nine participants, the average time interval between the two 
sessions was 7.1 days. Apart from one participant in which 
the second session was later on the same day, the minimal 
interval was 5 days.

The resting state data set was preprocessed as described 
above. No smoothing was applied. A regression analysis was 
performed on the data from individual participants to further 
prepare the data. Linear trends were removed by applying 
a whitening filter as a standard SPM procedure. Realign-
ment parameters were included as regressors in the analysis 
model, in addition to the average signal from the white mat-
ter and from the CSF. The global brain signal or average 
grey matter signal was not included as a regressor. Lastly, 
the session-specific mean and intrinsic autocorrelations were 
removed from the data, following the standard SPM proce-
dures. Finally, the residual signals of the multiple regression 
were Fourier band pass filtered from 0.1 to 0.01 Hz to retain 
only the low-frequency fluctuations in the signal. Only after 

filtering, volumes contaminated with excessive head move-
ment (volume to volume displacement > 10% of slice thick-
ness, or 0.4 mm) were eliminated.

Region of interest identification

Regions of interest were identified using data from the three 
difficulty manipulation runs after smoothing the data with 
a 6 mm FWHM Gaussian filter. Regions of interest were 
identified at the level of individual participant data in a GLM 
conjunction analysis including all three tasks. For each task, 
a separate t-contrast was constructed that pooled the easy 
and difficult condition effects. This contrast identified for a 
particular task the voxels that showed an increased BOLD 
signal in the easy and/or difficult trials. Next, a conjunc-
tion contrast was created involving these three task-specific 
contrasts to delineate the voxels that showed a significant 
BOLD response in all three tasks. The statistical significance 
threshold for this conjunction t-map was FDR corrected for 
multiple comparisons at the alpha level of 0.05 (Genovese 
et al. 2002).

The thresholded conjunction maps were used to manu-
ally identify the activation clusters corresponding to known 
commonly activated cognition-related areas in the prefron-
tal-insular cortex, using anatomical landmarks and spatial 
coordinates described in Stiers et al. (2010). The following 
areas were sought for in both hemispheres: on the lateral 
side at the inferior frontal junction (IFS1), in the inferior 
frontal sulcus (IFS2), and the anterior insula (INSa), and on 
the medial side two regions in the middle cingulate cortex 
(referred to as MF2 and MF3in Stiers et al. 2010). Area 
MF2, which showed the multiple demand property only on 
the right side in Stiers et al., was not retained in the analyses 
for the current study because it was difficult to dissociate 
from MF3 in the data from many participants. Hence, the 
area referred to as medial superior frontal gyrus (MSFG) in 
the current paper may well combine voxels from both MF3 
and MF2. Each ROI was defined by a local maximum of 
BOLD modulation in the conjunction map, and comprised 
all the voxels within a certain radius of the local maximum 
that were significant (as defined above) in the conjunction 
analysis. The radius was selected to reflect the overall activa-
tion size at each location and was 6 mm for INSa and IFS2, 
8 mm for IFS1 and 10 mm for MSFG.

A ROI-based group analysis was performed on the con-
dition-specific percent signal change (PSC) data derived 
from the single participant GLM analyses described above, 
in order to confirm that the activity in these clusters was sig-
nificantly modulated by task difficulty across the three tasks. 
This would establish the multiple demand feature of the 
voxel clusters selected. This analysis comprised a separate 
three-way repeated measures ANOVA including task (Erik-
sen, Backmatching and Switching), task difficulty (easy vs. 
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difficult) and hemisphere (left, right) for each of the ROIs. 
The multiple demand property was indicated by a region-
specific main effect of task difficulty (Stiers et al. 2010).

Voxel‑wise task preference profiles

Co-activated voxels in the four regions of interest were the 
focus of all subsequent analyses. They were categorized 
according to their response strength during each of the three 
tasks into one of the several task preference profile catego-
ries. Unsmoothed data from data set 2, comprising the six 
runs of blocked task performances as described above, were 
used for this. Measures of response strength during task exe-
cution were derived from percent signal change maps com-
puted from the estimated regressor weights in the first level 
event-related GLM analysis. In these six runs, there was 
no manipulation of task difficulty. For each task, a separate 
percent signal change image was computed over the six runs. 
These images were sampled to get for each of the selected 
voxels 3 signal change values, one for each task.

The task-specific percent signal change values were used 
to determine the task preference profile for each voxel. Six 
possible prototypical profiles were each represented by a 
binary vector in which each position represents one task and 
the binary value at each position indicates whether the cor-
responding task is being preferred or not by the voxel. Thus, 
[1 0 0] indicates preference for the Eriksen task, and [0 1 
0] indicates preference for the Backmatching task, while [1 
0 1] indicates preference for the Eriksen and the Response 
Scheme Switching task. For each voxel, the observed profile 
of task response strengths was correlated with each of the 
possible binary profile types. The type with the highest cor-
relation was assigned to the voxel.

In parallel, a disjunctive F-contrast evaluating any pair-
wise difference between the three tasks, and computed from 
the single subject GLM analysis of the six runs (see above, 
“Six runs without task difficulty manipulation”), was used 
to establish whether the assigned task preference profile type 
was significant. This independent characterization of profile 
significance allowed us to conduct two analyses. The first 
analysis included only voxels for which the above F test was 
significant. While this focusses the analysis on voxels with 
a clear and meaningful difference in task responsiveness, it 
also reduced the number of voxels in the analysis. Therefore, 
a back-up second analysis was conducted which included 
all the multiple demand voxels regardless of whether the 
assigned profile was significant or not. This second analysis 
allowed us to observe whether this voxel reduction might 
have affected the analysis outcome.

Functional couplings between voxels are likely to become 
less specific if the voxels respond to more than one task, 
since the time courses of these voxels reflect activity in 
two or more neuron populations of different functional 

specialization. Therefore, our main interest was in voxels 
with a significant preference for one of the three tasks (i.e. a 
“mono-preference”). However, in parallel we also performed 
similar analysis including voxels of all six task preference 
types (multi-preference voxels).

This led us to conduct a total of four analyses organized 
along two dimensions: (1) mono-preference voxels or all 
preference type voxels, and (2) only voxels with significant 
preference profiles or all voxels regardless of the signifi-
cance of task response differences. The largest number of 
voxels is obtained in the analysis including all preference 
types disregarding the significance of the profiles. While 
this analysis yields the highest statistical power, it also most 
likely comprises the functionally noisiest data set.

To demonstrate the reliability of the preference types, we 
performed a split half analysis in which the first three runs 
were used to assigned preference profile types as described 
above, while the last three runs were used to obtain an inde-
pendent confirmation of the assigned types. The confirma-
tory analysis was performed for the voxels in each of the six 
preference type separately and consisted of 2nd level pair-
wise comparisons on the percent signal change estimates for 
each of the three tasks. Voxels with a non-significant pref-
erence profile were excluded from the reliability analysis. 
For a particular preference type and for each participant, the 
average task-specific percent signal change was computed 
over the voxels of that type. These average values were nor-
malized prior to entering the second level analysis to reduce 
the error variance. Repeated measures t tests were chosen 
and Bonferroni correction was applied within each analysis 
to reduce the chance of false positives.

Voxel‑wise functional coupling data

The commonly active voxels across four ROIs were selected 
because they showed a significant increase in BOLD signal 
contingent upon presentation of task trials in three different 
task paradigms. Despite their activation in all three tasks, 
the selected voxels differ in their response profile over these 
tasks. The question that we wanted to address is whether 
voxels with the same task preferences show a stronger func-
tional coupling between them. The strength of functional 
coupling was quantified in different ways, which will be 
described below.

Task‑related functional coupling

Trial-to-trial variation in response strength provides infor-
mation on the strength of neural communication between 
the cell populations at the time of task execution. We refer 
to this trial-to-trial correlation in the BOLD response ampli-
tude as the task-related functional coupling. To avoid cir-
cularity in our results, we eliminated the signal increase 
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relative to baseline which is induced by the engagement 
during the task—this overall response strength measure was 
already used in the previous step to quantify task preference 
profiles. We epoched the unsmoothed time series data from 
all six runs from + 3 to + 7 volumes relative to the volume 
during which the first trial in a block started (i.e. from 4–6 s 
to 14–16 s). Then for each epoch, we subtracted from the 
value of the separate time points the average voxel signal 
over all five time points. This eliminated signal increase 
relative to baseline (i.e. the periods when no task was being 
performed). These standardized time courses from blocks of 
the same task were concatenated across runs, yielding per 
voxel and per task a time series vector showing the signal 
fluctuations during the task execution relative to zero. For 
each of the voxels in the selected ROIs, there were three such 
vectors, one for each task. For each of the three tasks, the 
task-related functional coupling vectors of all voxels were 
used to create a separate voxel-by-voxel Pearson correlation 
matrix. The correlation matrix was Fisher-Z transformed to 
correct for the non-normal distribution of the correlation 
statistic. From these matrices, voxel pairs could be selected 
based on their task preference profiles (for details, see sub-
section of the “Methods”, “Relating functional coupling of 
voxel pairs to their task preference”). This allowed us to 
investigate the dependency of coupling strength between 
voxels on their similarity or difference in task preferences.

Resting state functional coupling

In addition to task-related functional coupling, we quantified 
the strength of functional coupling outside of the time win-
dow of task execution, when the brain was at rest. For this, 
we used the third dataset of fMRI images acquired during 
10 min of rest. These data were preprocessed as described 
above (see “Methods”, subsection “Handling of dataset 3: 
Resting state fMRI data”), retaining only the low-frequency 
(0.01–0.001 Hz) fluctuations in BOLD signal. For each of 
the selected commonly active voxels, a voxel-by-voxel low-
frequency time course correlation matrix was computed 
using the Pearson correlation coefficient. The correlation 
matrix was than Fisher-Z transformed to correct for the non-
normal distribution. From this matrix, subgroups of voxel 
pairs were selected in order to investigate a relationship 
between task preferences of the voxels and the strength of 
their low-frequency fluctuation coupling during a state of 
rest (for details, see subsection of the “Methods”, “Relating 
functional coupling of voxel pairs to their task preference”).

Resting state functional connectivity profiles

The resting state data were used in yet another way to 
study neural communication in relation to task preferences 
of individual voxels. For each of the selected commonly 

active voxels, a whole brain functional connectivity profile 
was computed. This connectivity profile is a vector of the 
Pearson correlation between the voxel’s low-frequency time 
course and similar time courses of all the grey matter vox-
els of the participant’s brain image. Next, for each of the 
selected commonly active voxels, a voxel-by-voxel func-
tional connectivity profile similarity matrix was computed, 
with  Eta2 as measure of similarity (Cohen et al. 2008). Sub-
groups of voxel pairs with same and different task prefer-
ence profiles were selected from this matrix to investigate 
the dependency of whole brain functional connectivity 
similarity of commonly activated voxels upon specific task 
preferences (for details, see subsection of the “Methods”, 
“Relating functional coupling of voxel pairs to their task 
preference”).

Relating functional coupling of voxel pairs to their 
task preferences

The subsequent investigation of task preference dependency 
of functional couplings between voxels was conducted in a 
similar matter for the different types of coupling data (task-
specific functional coupling, resting state functional cou-
pling, and resting state functional connectivity similarity). 
The analyses were performed on correlation matrices from 
individual participant data and are only integrated at the 
group level for the sake of ease of presentation. Correla-
tion matrices comprising Pearson correlation coefficients 
were Fisher-Z transformed prior to entering the analyses to 
improve the parametric distribution of the values.

Voxel pairs were created by selecting one position on 
each dimension of a matrix and the value in the matrix cell 
defined by these two positions was the coupling or similar-
ity value for that voxel pair. Subgroups of voxel pairs were 
created by selecting from the correlation matrix all the voxel 
pairs meeting particular requirements, such as the task pref-
erence type of the voxels in the pair, the significance of the 
differential task responsiveness, the ROI they were located 
in and for pairs located within the same ROI the Euclid-
ean distance between the voxels in the pair. Because of the 
inherent local spatial smoothness of fMRI data, which exists 
even if the data are not explicitly spatially smoothed prior 
to analysis as in the current study, voxels at short distances 
from one another are more likely to exhibit more similar 
time courses than voxels further apart in space. This spatial 
relatedness does not pertain to the voxels located in differ-
ent ROIs. Therefore, we conducted a separate analysis for 
voxel pairs in which the voxels were located in the same ROI 
and for voxel pairs where each element of a pair belonged 
to a different ROI. For the within ROI analysis, the voxel 
pairs were first ordered according to the Euclidean distance 
between the elements of each pair, and this ordered distance 
range was divided into 100 bins. Within each bin, voxel pairs 
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from the class of same and different preference types were 
selected to ensure that the classes were matched for distance. 
This was started by selecting the class with the fewest pairs 
within the bin. For each pair in this least frequent class, a 
voxel pair from the other class was selected. This selection 
was biased towards a larger or equal distance for the same 
preference voxels, because only a smaller distance for this 
class would undermine conclusions regarding a stronger 
functional coupling between voxels in this class. If no such 
voxel was found, both pairs were excluded from the analysis. 
As a result, the same numbers of voxel pairs were selected 
within the two classes, matched for similar or larger Euclid-
ean distance in the same preference class. Because this pro-
cedure considerably reduces the number of voxel pairs that 
can be entered into the analysis, a similar constraint was not 
imposed on the between ROIs voxel pairs, where the spatial 
signal contamination does not pose a problem.

Voxel preference profile‑specific whole brain 
functional connectivity

Starting from the single voxel whole brain functional con-
nectivity profiles that were used to compute the connectivity 
profile similarity matrix (see subsection “Resting state func-
tional connectivity profiles”, above), a statistical assessment 
was made of the task preference-specific functional connec-
tivity profiles across participants. For each participant, each 
of the two IFS1 ROIs, the single voxel functional connec-
tivity maps were average for voxels of the same mono-task 
preference type. This resulted in three FC maps per ROI 
and per participant. These average FC maps were Fisher-
Z transformed and smoothed with a 6 mm FWHM Gauss-
ian kernel to compensate for interindividual anatomical 
variation. These maps were used in a second level repeated 
measures GLM analysis with two ROIs (left and right) and 
three task preference types (Eriksen, Backmatching and 
Switching) as the independent factors. A general preference 
type-specific functional connectivity map was generated by 
a contrast that combined the left and right data into a sin-
gle statistical image of voxels with an association strength 
that significantly differed from zero. The statistical image 
was corrected for multiple comparisons using a whole brain 
FDR-corrected significance level of 0.05.

Results

Behavioural data

The reaction time of the participants was significantly 
dependent both on the type of task [Eriksen, Backmatch-
ing, Switching: F (1.92, 21.01) = 8.1, p < 0.001] and on the 
difficulty level of the trials [Easy-data set 1, Difficult-data 

set 1, Difficult-data set 2: F (1.35, 14.89) = 44.6, p < 0.001]. 
However, there was a strong interaction between these two 
factors [F (2.26, 24.88) = 28.1, p < 0.010, Fig. 1e]. This was 
due to only a weak positive effect of difficulty in the Eriksen 
task [F (1.275, 14.026) = 10.9, p = 0.003] and in the Back-
matching task [F (1.92, 21.11) = 0.8, p = 0.442], but a strong 
positive difficulty effect in the Switching task [F (1.91, 
21.01) = 128.8, p < 0.001]. The easy Switching trials yielded 
on average the lowest reaction times, while the difficult 
Switching trials generated the largest reaction times of all 
conditions. At the level of data set 2, with only difficult task 
blocks, the reaction times for Switching (558.7 ± 82.1 ms) 
were significantly higher than those for Backmatching 
[497.2 ± 77.0; t(11) = − 3.9, p 2-tailed = 0.003] and for Erik-
sen [472.8 ± 60.6 ms; t(11) = − 6.1, p 2-tailed < 0.001]. The 
latter two did not differ significantly at the Bonferroni cor-
rected significance level [t(11) = − 2.0, p 2-tailed = 0.069].

A somewhat comparable pattern of results was observed 
when analysing the percentage of errors made, although in 
this case the interaction between task type and difficulty 
level only reached borderline significance [F(4, 44) = 6.5, 
p = 0.062]. Nevertheless, post hoc analyses learned that there 
was no significant effect of difficulty on the percentage of 
errors made in the Eriksen task [F (2, 22) < 0.1, p = 0.991] 
and the Backmatching task [F (2, 22) = 0.1, p = 0.932], but 
a strong positive effect was observed during the Switching 
task [F (2, 22) = 10.4, p = 0.001, Fig. 1f]. For data set 2, 
with only difficult task blocks, the percentage of errors was 
significantly lower in the Eriksen task compared to both 
Backmatching [t(11) = − 3.4, p 2-tailed = 0.006] and Switch-
ing [t(11) = − 3.9, p 2-tailed = 0.002], which did not differ 
[t(11) = 0.4, p 2-tailed = 0.685].

In summary, while the manipulated difficulty level had no 
or only a small effect on the reaction times and the number 
of errors made for the Eriksen task and for the Backmatch-
ing task, it clearly affected performance on the Response 
Scheme Switching task, with increased reaction times and 
more errors in the difficult blocks. Therefore, only for the 
Switching task there was clear behavioural evidence that 
our manipulation increased the difficulty. When taking the 
perspective of inter-task differences in difficulty, the reaction 
times in data set 2 showed that Backmatching and Eriksen 
required equal response times, whereas Response Scheme 
Switching required significantly larger response times, prob-
ably reflecting increased motor conflict and selection (Wong 
et al. 2015). In contrast, the percentage of errors made sug-
gests that Eriksen was the easier task, while Backmatching 
and Switching were equally more difficult.

Region of interest delineation

Voxels that were commonly activated by the three tasks were 
identified using task data set 1. In each of the 12 participants, 
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clusters of voxels that were significantly activated by all 
three tasks (pooling over the easy and difficult conditions) 
were found in the vicinity of the a priori selected anatomi-
cal locations of interest at least in one, but mostly in both 
hemispheres. These voxel clusters observed in individual 
data sets, summarized in Table 1 and visualized in Fig. 2a, 
are the regions of interest for the current study.

To confirm that these commonly activated voxel clusters 
exhibited the multiple demand property, we compared their 
percent signal change during execution of easy and diffi-
cult trial blocks in each task. It was found that regardless 
of the task, anatomical region or hemisphere, difficult tri-
als induced higher signal change in these voxels compared 
to easy trials [F (1,11) = 26.8, p < 0.0001]. Modulation of 
the BOLD signal by task difficulty was also examined for 
each anatomical location separately (see Fig. 2b). For three 
of the four locations, there was a significant main effect of 
task difficulty. For the INSa ROIs, however, the main effect 
of task difficulty did not reach significance [F(1, 9) = 2.67, 
p = 0.1367]. This was due to a reversed difficulty effect in the 
Eriksen task compared to the other two tasks (Fig. 2b, lower 
right panel), which lead to a significant interaction between 
task and difficulty level [F(2, 22) = 7.2, p = 0.005]. This 
interaction term was not significant for the other ROIs or for 

the global analysis over anatomical locations. For the INSa 
voxels, the difficulty modulation in the Backmatching and 
the Switching tasks was significant [smallest t(11) = 2.75, 
p = 0.0189].

This analysis allows us to conclude that the four regions, 
in addition to common activation by the three tasks, also 
show a multiple demand activity, although in the anterior 
insula the functional characterization appeared more com-
plex than in the other three regions. This consistent finding is 
despite the less consistent effect of these difficulty manipu-
lations on the behavioural measures of response time and 
errors made (see “Results” section, subsection “Behavioural 
data”).

Task preferences in commonly activated voxels

While all the selected voxels were active during the three 
tasks, this does not imply that they were equally activated 
by the three tasks. The task-specific response strength of the 
selected voxels was quantified using the six runs of data set 
2, with only trials of the difficult type. Because we wanted to 
look at individual voxel responses no smoothing was applied 
prior to analysis. The percent BOLD signal change induced 
by trials of each task was estimated per voxel from first level 

Fig. 2  Identification of commonly activated multiple demand 
regions. a Regions of the brain where voxels are commonly acti-
vated by the three cognitive tasks. The graded colour map shows the 
amount of overlap across participants in the first level conjunction 
maps (F-statistic) of activation in the three tasks. The colour range 
is from zero (no colour = no significant voxel) to yellow (significant 
in 1/3rd of participants). The spherical foci mark the local maxima 
of the conjunctive activation in individual maps that were chosen 
as the center to delineate the individual regions of interest (ROI). 
Thus, each focus is the center of the ROI of a particular participant. 
The four classes of individual ROIs are distinguished by four differ-
ent colors; IFS1 = blue, IFS2 = green; MSFG = red; INSa = fuchsia. 
b Multiple demand property of the four classes of ROIs. While part 
a shows more than four regions that are commonly activated by the 

three tasks, not all the commonly activated regions have the multiple 
demand property—i.e. showing increased activation with increased 
task difficulty regardless of task content. Each graph presents the 
percent signal change, averaged across participants (error bars indi-
cate + 1 SE), in each task and each level of task difficulty, with green 
bars representing activity during easy trials and orange bars during 
difficult trials. In ISF1, IFS2 and MSFG, the percent signal change 
is systematically higher in difficult conditions compared to easy con-
ditions, resulting in a significant main effect of difficulty level, not 
interacting with the type of task (see text for details). In INSa, the 
activation pattern is reversed for the Eriksen flanker task, yielding a 
significant interaction between task and difficulty level, with no main 
effect of task difficulty
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GLM analyses that combined all the six runs of one par-
ticipant. This yielded for each participant per voxel three 
percent signal change values, one for each task.

Voxels were categorized in discrete task preference types 
based on their percent signal change profile over the three 
tasks. First, a global any-difference F test was used to estab-
lish for each voxel whether its response strength was signifi-
cantly modulated by the type of task being performed. If this 
test was not significant for a particular voxel, that voxel was 
considered to have no task preference. Second, the voxels 
that did show a significant task modulated response were 
categorized into discrete classes depending on the shape 
of their task response profile. Thus, a voxel with a higher 
percent signal change response during the Eriksen task 
was placed in the category [1 0 0], while a voxel preferring 
switching was categorized as [0 0 1], and a voxel prefer-
ring both was placed in [1 0 1], etc. The categories were 
assigned by correlating a voxel’s observed percent signal 
change profile with each of these prototype vectors (six in 
total), and assigning the voxel to the category with the high-
est prototype vector correlation (see “Methods”, subsection 
“Voxel-wise task preference profiles”).

The distribution of voxels over the six possible task 
preference types is summarized in Fig. 3a. Averaged over 
participants, the mean number of selected voxels across all 
four ROIs was 1168.3 (± 297.3), with a minimum of 821 
and a maximum of 1599. The average number of voxels 
with a significant preference profile was 675.0 (± 242.5), or 
42.2 ± 14.1% of selected voxels, with a minimum of 19.4% 
and a maximum of 69.3%. This means that on average 493.3 

(± 210.5) voxels did not show a significant preference for 
one or other of the three tasks. As can be seen in Fig. 3a, 
within the mono-preference types (e.g. [1 0 0], [0 1 0], etc.) 
the voxels with a stronger Backmatching response were most 
frequent. For the dual preference types, the voxels preferring 
both Backmatching and Switching were the most frequent. 
The distribution patterns were very similar when consider-
ing all voxels, or only the voxels with a significant task pref-
erence profile. The distribution of voxels within each ROI 
separately over the different preference types is described 
in Table S1.

To demonstrate the reliability of the task preference 
assignment, we applied a split-half validation (Baker et al. 
2007), in which we used the first three runs of dataset 2 to 
assign voxels to task preference profiles, and the last three 
runs to independently study the percent signal change for 
the three tasks. Only voxels with a significant task profile 
were included. This analysis shows that the profiles assigned 
to the voxels based on data from the first three runs are on 
average well replicated in the percent signal change data 
(Fig. 3b). The results confirm the expectations for four of the 
six profiles. For voxels of the [1 0 0] type, the percent sig-
nal change data only partially confirm the preference type, 
while for voxels of type [1 1 0], which are the least frequent 
category (cf. Fig. 3a), the profile is not confirmed.

Task‑related functional coupling

The basic idea investigated here is that multiple demand vox-
els that are more active during one or more tasks compared 

Fig. 3  Frequency distribution and reliability of task preference pro-
files. a Numbers of selected voxels, averaged over participants, 
assigned to each of the task preference profiles, when only voxels are 
considered with a significantly different response strength between 
tasks (black bars) and when all voxels are considered regardless of 
whether task differences were significant (white bars). Error bars 
indicate + 1 SE. b Normalized percent signal change induced by each 

of the three tasks in voxels assigned to different task preference pro-
files. Only voxels with significant task profiles were included. The 
assignment to preference types was based on data from the first three 
runs of the task, while the percent signal change was estimated from 
the last three runs of the same task. Error bars indicate + 1 SE. **Sig-
nificant at the Bonferroni corrected significance level, *significant 
without correction for multiple comparisons
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to others, and hence share a task preference, reflect intercon-
nected neuron populations within and across network nodes 
that are recruited by specific demands of these tasks. We 
want to show that these interconnections exist, and can be 
traced in functional connectivity data, independent of the 
execution of the tasks. Before doing so, however, it needs to 
be confirmed that these connections exist during the execu-
tion of the tasks. Therefore, we quantified the trial-to-trial 
variation in BOLD amplitude strength during execution 
of the three tasks and computed how well these correlated 
between the selected multiple demand voxels. The results 
show that the strength of these functional couplings depends 
on the task preferences of the voxels. The results for voxels 
with a significant preference profile favouring one task over 
the other two (mono-preference voxels) are summarized in 
Fig. 4a. Voxels preferring the same task exhibit a signifi-
cantly stronger coupling between their response amplitude 
fluctuations than voxel pairs preferring a different task. This 
was the case for pairs in which each voxel was located in 

a different one of the eight ROIs and for pairs of voxels 
located in the same ROI. In the latter case, the pairs were 
chosen in such a way that the Euclidean distance between 
the voxels in the pairs was equal or larger in same pref-
erence voxel pairs compared to different preference voxel 
pairs [same preference: M = 7.92 ± 1.20 mm; different prefer-
ence: M = 7.91 ± 1.19 mm; t(11) = 4.4, 1-tailed p = 0.9995]. 
The stronger functional coupling in same preference profile 
voxel pairs was also evident when data from each task were 
analysed separately (Fig. 4b). Moreover, the results were 
also similar when different criteria for voxel pair selection 
were used, such as when in addition to mono-preference 
voxels (e.g. [1 0 0], etc.) also voxels were considered that 
preferred two tasks (e.g. [1 1 0], etc.), or when also voxel 
were included in which the preference profile was not sig-
nificant (see lower panel of Table S2).

We also looked at the strength of task-induced functional 
coupling between same preference voxels, when they were 
engaged by their preferred task and during execution of the 

Fig. 4  Task-based (high-frequency) functional coupling (Fisher-Z 
transformed Pearson correlation) between multiple demand voxel 
pairs with significant task profiles preferring one task over the other 
two (mono-preference). a Functional coupling between pairs of vox-
els preferring the same task (same preference profile) and pairs of 
voxels preferring different tasks (different preference profile); data are 
pooled across the three tasks. b Same data as in a presented for each 
task separately. c Functional coupling between voxels with the same 

task preference, when the task being executed is the preferred task 
(“Pref. task”) or when the task being executed is not the preferred 
task (“¬Pref. task”), pooled across preference profiles. d Same data 
as in c presented separately for voxel pairs preferring the Eriksen task 
(“[1 0 0]”), the Backmatching task (“[0 1 0]”), and the Switching task 
(“[0 0 1]”). Error bars indicate + 1 SE. **Significant at the Bonferroni 
corrected significance level, *significant without correction for multi-
ple comparisons
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tasks that they did not prefer. This analysis revealed that 
the coupling did not become weaker when the participant 
engaged in a task that was not the voxels’ preferred task. The 
results are summarized for the significant mono-preference 
voxels in Fig. 4c–d. Even without a correction for multiple 
comparisons, we did not find a significant difference in the 
coupling strength computed from the trials of the preferred 
task, compared to trials from the non-preferred task, nei-
ther in the voxel pairs spanning different ROIs nor in the 
voxels located in the same ROI. This result was also not 
dependent on the inclusion or not of only mono-preference 
voxels, or voxels of all preference types, or the inclusion of 
voxels with statistically non-significant task preference pro-
files (see Table S3). The stability of the functional coupling 
between same task preferring voxels regardless of the task 
being performed is a first indication that their coupling is not 
merely a temporal configuration, but the result of anatomical 
connections between the neuron populations responsible for 
the task preference observed in these voxels. Our functional 
coupling analyses during rest corroborate this suggestion.

Functional coupling during rest

The stability over time of functional couplings between mul-
tiple demand voxels was examined in resting-state fMRI data 
collected in an independent run preceding the acquisition of 
dataset 2. Low-frequency signal couplings in resting state 
data are thought to reflect structural connections between 
neuronal populations established by repeated use (e.g. Mar-
gulies et al. 2009; Miranda-Dominguez et al. 2014). There-
fore, if the functional coupling patterns observed between 
voxels during task execution reflect established anatomical 
connections, these patterns should be observed also in the 
low-frequency couplings of their activity during rest. The 
resting-state functional connectivity analyses are summa-
rized in Fig. 5 and detailed in Table S4. Pooling together the 
data from the voxels with a significant task preference pro-
file preferring one task over the other two (mono-preference 
profiles), voxels with the same task preference show a sig-
nificantly stronger low-frequency functional coupling than 
similar voxel pairs with different task preferences (Fig. 5a). 
This was the case for pairs of voxels located in the same ROI 
[t(11) = 3.6, p < 0.01] matched for inter-voxel Euclidean dis-
tance, and for voxels located in different ROIs [t(11) = 7.6, 
p < 0.01]. The results for the three different types of mono-
preferences are in the same direction (Fig. 5b), but some-
what less strongly, with some effects not reaching statistical 
significance. However, the strong effect in the pooled analy-
sis was replicated regardless of whether all preference types 
were included or whether the voxels with non-significant 
preference profiles were included or not (Fig. 5c–e).

A plausible reason for this configuration of segregated 
subnetworks of interconnected neuron populations is that 

their functional specialisation requires that they receive 
input from different source regions and project to differ-
ent target regions. Different tasks involve different types 
of sensory input, require attention to different aspects of 
this input and demand specific processing of it. Hence, 
depending on the task executed, different remote regions 
target different subpopulations of neurons within the multi-
ple demand regions. To investigate this hypothesis, we used 
the resting state functional connectivity data to compute a 
whole brain functional connectivity profile for each multi-
ple demand voxel. Next, whole brain connectivity similarity 
was quantified by computing the voxel-to-voxel correlations 
between their functional connectivity profiles. We predicted 
that voxels with similar task preferences had more similar 
whole brain functional connectivity profiles than voxels with 
different task preferences. The results of this analysis for the 
mono-preference voxels with significant profiles are summa-
rized in Fig. 6a (see details in Table S5). As predicted, the 
similarity in functional connectivity was significantly higher 
for voxels preferring the same task compared to voxels pre-
ferring a different task. This is true for voxels located in the 
same network node (with matched inter-voxel distance) and 
for voxels located in different nodes of the network. While 
the effect was in the same direction for each of the prefer-
ence profiles separately, statistical significance was reached 
only for the voxels preferring the Switching task (Fig. 6b; 
see statistical details in Table S5). When the voxels were 
pooled across preference types, however, the effect was con-
vincingly strong regardless of whether all preference profiles 
were included or whether the significance of these profiles 
was taken into account (Fig. 6c–e).

Visualization of task preference‑specific 
connectivity profiles

To further validate the hypothesis that multiple demand vox-
els with a particular task preference represent a unique pat-
tern of functional connections to the multiple demand area, 
we asked whether this unique connectivity profile could be 
identified across participants. To answer this question, a 
voxel-wise GLM analysis was conducted with the average 
mono-preference functional connectivity maps, computed 
for each participant separately, as dependent variable. Since 
it is not likely that voxels in different multiple demand areas 
have the same profile of connections, we focused this analy-
sis on the mono-preference voxels in inferior frontal junc-
tion (IFJ), the largest voxel cluster investigated. Figure 7a 
shows the cortical distribution of the grey matter voxels that 
are significantly functionally coupled with left and right IFJ 
voxels across the 12 participants, as a function of the task 
preference profile of the IFJ voxels. While a core of brain 
regions are commonly functionally associated with each of 
the three classes of multiple demand voxels, there are also 
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substantial areas where only two or only one of the three 
subclasses of voxels show significant functional coupling.

The overall lay-out of regions functionally coupled with 
the IFJ voxels reflects the spatial lay-out of the task-positive 
network (Dosenbach et al. 2007; Fox et al. 2005). First, in the 
peri-IFJ area the coupled voxels covered the precentral gyrus 
and sulcus (premoter cortex) and extending into the central 
sulcus’ (primary motor cortex) hand representation. For IFJ 
voxels preferring Switching or Eriksen, the regions of signif-
icant coupling extended more posteriorly, and more ventrally 
to BA 44 and into the sensorimotor regions of mid-insula. 
For IFJ voxels preferring Switching and Backmatching, the 
coupling extended to the anterior bank of the precentral sul-
cus and further into the inferior frontal sulcus (particularly 
left). Second, functionally connectivity regions included two 

of the other multiple demand nodes studied here: anterior 
insula and preSMA. The last node, in anterior inferior fron-
tal sulcus, was only coupled to IFJ voxels preferring Back-
matching and Switching, but not Eriksen, which may reflect 
differences in task complexity (Badre and D’Esposito 2007; 
Crittenden and Duncan 2013). In contrast, the dorsolateral 
PFC and specifically region BA46, which are also consid-
ered MD (Woolgar et al. 2011), showed coupling with IFJ 
voxels preferring Eriksen, but only very few of those prefer-
ring the other two tasks. Thirdly, the IFJ coupled areas also 
incorporated the frontal-parietal-collicular attentional prior-
ity maps network (Womelsdorf, and Everling 2015) (bilater-
ally FEF, IPS and superior colliculi), with the coupled region 
for all three voxel classes extending through the IPS to the 
dorsal visual system including the hMT + area. Fourth, the 

Fig. 5  Low-frequency (resting state) functional coupling (Fisher-Z 
transformed Pearson correlation) between multiple demand voxels in 
relation to task preference similarity. a Functional coupling between 
pairs of voxels significantly preferring one task over the other two 
(mono-preference). Pooled over the three task preference profiles, 
pairs of voxels with the same preference profile (“same profile”) show 
significantly stronger functional coupling during rest than pairs of 
voxels preferring different tasks (“different profile”). b Same data as 
in a presented for each preference type separately: voxels preferring 
the Eriksen task (“[1 0 0]”), the Backmatching task (“[0 1 0]”), and 

the Switching task (“[0 0 1]”). c Similar data as in a, but including 
all voxels preferring one task over the other two (mono-preference) 
regardless of whether the profile was statistically significant. This 
lenient inclusion criterion increases the number of voxels in the anal-
yses and statistical power. d Similar data as in a, but including addi-
tionally voxels with significant profiles that preferred two tasks over 
the third task. e Similar data as in a, but including all six task prefer-
ence profiles regardless of the significance of the profile. Error bars 
indicate + 1 SE. **Significant at the Bonferroni corrected significance 
level, *significant without correction for multiple comparisons
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coupled region further included retinotopic visual areas in 
the dorsal and ventral occipital lobe, as well as lateral and 
ventral occipital–temporal cortex associated with visual 
form analysis. Remarkably, Eriksen preferring IFJ voxels 
were coupled with a larger area of occipital visual cortex 
than the other two tasks, possibly reflecting the need in this 
task to supress interference from the surrounding distrac-
tors. Fifth, there was a strong coupling of IFJ voxels to the 
anterior supramarginal cortex. Although it is co-activated 
across cognitive tasks, this region is directly linked to the 
ventral premotor cortex (Kelly et al. 2010) and exhibits 
motor action sensitivity without the multiple demand prop-
erty (Stiers et al. 2010). In addition, the IFJ voxels were 
also functionally coupled with voxels in the orbital frontal 
cortex (in and lateral to the medial orbital sulcus) with only 

minimal overlap across the three voxel classes. And lastly, 
the IFJ voxels showed significant functional coupling with 
subcortical structures (not shown in Fig. 7). All three IFJ 
voxel classes showed only partially overlapping coupling 
with the putamen (MNI ± 22, 2, 7), extending anteriorly to 
caudate/putamen (± 14, 8, 7). Moreover, all three voxel types 
were coupled with the posterior–ventral thalamus (± 8, − 21, 
− 1), the lateral geniculate nucleus (± 16, − 28, 1) and the 
superior colliculi (± 4, − 27, − 4).

While group level functional connectivity data empha-
size central tendencies in brain organisation that are shared 
across individual brains, they obscure the more detailed 
organisational features of networks (Braga and Buckner 
2017). Therefore, Fig. 7b shows a selection of detail views 
on the voxel task preference-related differential connectivity 

Fig. 6  Similarity  (eta2) in whole brain functional connectivity profiles 
(low-frequency fluctuations in resting state signal) between multiple 
demand voxels as a function of similarity in their task preferences. a 
Multiple demand voxels with significant task profiles preferring one 
task over the other two (mono-preference). Pooled over the three task 
preference profiles, pairs of voxels preferring the same task (“same 
profile”) have significantly higher while brain connectivity similar-
ity than pairs of voxels preferring different tasks (“different profile”). 
b Same data as in a presented for each preference type separately: 
voxels preferring the Eriksen task (“[1 0 0]”), the Backmatching 
task (“[0 1 0]”), and the Switching task (“[0 0 1]”). c Similar data as 

in a, but including all voxels preferring one task over the other two 
(mono-preference) regardless of whether the profile was statistically 
significant. This lenient inclusion criterion increases the number of 
voxels in the analyses and statistical power. d Similar data as in a, but 
including additionally voxels with significant profiles that preferred 
two tasks over the third task. e Similar data as in a, but including all 
six task preference profiles regardless of the significance of the pro-
file. Error bars indicate + 1 SE. **Significant at the Bonferroni cor-
rected significance level, *significant without correction for multiple 
comparisons
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patterns in individual data from three representative par-
ticipants. These details reveal a more variable and patch-
like organisation of the connectivity pattern compared to 
the group level statistical images, associated with different 
subclasses of IFJ voxels preferring a specific task. This pat-
tern of variation in the strength of the functional coupling 
of the three subclasses of IFJ voxels suggests a variation 
across multiple demand voxel classes in the regions with 
which they exchange information. A subcomponent of this 
variation is consistent across participants.

Discussion

We investigated the stability in functional organization of 
four multiple demand regions in the prefrontal cortex. We 
confirmed the earlier finding that although the voxels in 
these regions significantly activate during different tasks, 
individual voxels reliably show stronger responses during 
execution of particular tasks than other tasks. As shown 
in Stiers et al. (2010), the voxels with specific task pref-
erences are distributed throughout the multiple demand 
regions. The main analyses were focused on the functional 
couplings between voxels in relation to their specific task 
preferences. To disentangle spatial separation of voxels from 

their functional coupling, we either controlled the distance 
between voxels within one node, or looked at voxels located 
in different nodes.

The analyses revealed that during task execution voxels 
with the same task preference have stronger functional cou-
plings. This is regardless of whether the task executed is 
the preferred task or not. These couplings express the trial-
to trial amplitude variations around the mean task-induced 
BOLD response. Thus, while these voxels overall respond 
less strong during execution of none preferred tasks, the trial 
to trial co-fluctuation of their activity level remains equally 
strong regardless of the task that is executed. This particular 
aspect of their functional coupling suggests that the coupling 
reflects not just a temporary exchange of information, but 
that it is also based on more stable connectivity patterns. 
While neurophysiological recordings show that over an array 
of monitored neurons a particular activity pattern disappears 
when the task phase is over (Lapish et al. 2008; Sigala et al. 
2008; Stokes et al. 2013), these recordings centre on the 
information load carried by the activity of the neurons: does 
the population response allow to predict a particular task 
context? This activity content ceases to exist when the neu-
rons in the assembly are no longer active—and their activ-
ity no longer increases the BOLD signal. But the particular 
wirings that allowed them to act as an assembly remain and 

Fig. 7  Functional connectivity profiles of multiple demand voxels 
in IFJ. a Group summary. Statistical maps of functional connectiv-
ity of voxels in left and right IFJ that share the same task preference, 
either for the Eriksen task (red), the Backmatching task (blue), or the 
Response Scheme Switching task (green). Each map was thresholded 
at a t value of 3.25, corresponding to an uncorrected single voxel sig-
nificance level of 0.001. However, visualized data were significant at 
the FDR-corrected significance level of 0.05, which is a correction for 
multiple comparisons at the whole brain level. While there are several 
areas where all the IFJ voxels show significant functional couplings 

(colored white), there is also clear differentiation between the three 
task-preference type with respect to the cortex to which they show a 
significant functionally connection. These patterns of only partially 
overlapping connectivity profiles reflect what is consistent across 
the 12 participants. b Details of individual functional connectivity 
in three representative participants. Shown are average connectivity 
strength maps [Z(r) > 0.3] of voxels in right IFJ preferring the Erik-
sen, the Backmatching, or the Switching task (same colour scheme 
as in a). mSFG medial superior frontal gyrus, lPFC lateral prefrontal 
cortex, lOcc lateral occipital cortex, IPS intraparietal sulcus
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are reflected in the co-fluctuation of their idle state activity 
over time.

In accordance with this interpretation, our further analy-
ses revealed that the observed functional coupling patters are 
also present in the low-frequency fluctuations of the BOLD 
signal at rest, i.e. when participants are no longer engaged 
in the cognitive tasks. Even more than the coupling data 
during task execution, this result suggests that the voxels 
that are more engaged during execution of a particular task 
form stable subnetworks throughout the multiple demand 
network independent of task execution. These subnetworks 
are task specific and seem to be specialized for the particular 
demands and requirements of a concrete task. Our result 
confirms the earlier report by Waskom and Wagner (2017) 
that lateral prefrontal cortex voxels coding for particular task 
relevant stimulus features show stronger functional connec-
tivity during subsequent rest. We here show that this is also 
true for the subsets of voxels from the multiple demand net-
works, both within and between the nodes of this network.

Lastly, we found that the voxels forming these subnet-
works have significantly more similar whole brain func-
tional connectivity profiles across participants. This find-
ing suggests that subnetworks within the multiple demand 
network reflect different patterns of inflow and outflow of 
information—comparable to how in sensory areas spatially 
different subregions are defined by the different origin of 
their sensory input (e.g. different loci in retina or parts of 
the body). Different tasks involve different types of sensory 
input, require attention to different aspects of this input and 
demand specific processing of it. Hence, depending on the 
task being performed information received by the multiple 
demand regions is likely generated in different peripheral 
source regions and sent to other target regions. The axons 
coming from the remote cortical regions likely target differ-
ent subpopulations of neurons within these multiple demand 
regions, which may be also spatially segregated, since 
invasive tract-tracing studies have revealed a “stripe-like” 
organization of projection neurons in spatially interdigitated 
patterns in the areas of the association cortex (Pucak et al. 
1996; Marconi et al. 2001; Selemon and Goldman-Rakic 
1988). It seems, therefore, that not only a cortical field is 
defined by its incoming and outgoing connections (Krubi-
tzer 1995; Passingham et al. 2002), but that the same holds 
for subpopulations of neurons within a field (Selemon and 
Goldman-Rakic 1988; Park et al. 2017). As such, our results 
further substantiate the notion of connectional heterogeneity 
at the subregional level. Multivariate functional connectivity 
studies have delineated several large-scale brain networks 
that break up the cerebral cortex in vast functional territo-
ries (Beckmann et al. 2005; Damoiseaux et al. 2006; Kivin-
iemi et al. 2009). In vivo parcellation studies have shown 
that connectivity similarity analyses allow to further break 
up these territories into smaller fields, each with a unique 

connectivity profile resembling the organization of the larger 
network to which they belong, but uniquely different across 
individuals and species (Goulas et al. 2012, 2017; Sallet 
et al. 2013; Braga and Buckner 2017). Our current findings, 
together with those of some other studies (Park et al. 2017; 
Waskom and Wagner 2017), go a step further by showing 
that even within this connectionally more homogeneous 
fields, unique and function-specific subpatterns of connec-
tivity can be demonstrated to exist.

As discussed above, it has repeatedly been demonstrated 
that the neural assemblies formed to encode task contexts, 
with their specific stimulus categories, response alternatives 
and mapping rules, are dynamic in nature. This means that 
they can no longer be demonstrated to exist in the functional 
responses within an assembly outside of the particular task 
phase. The most temporally restricted interpretation of this 
dynamic feature of assemblies is that they exist only for the 
short time that they can be traced. They are expressed in 
a fixed array of neurons that can randomly represent any 
task context for the time that it is needed, without leaving 
any trace of it afterward. Our results do not support this 
interpretation. Our study shows that the assemblies remain 
traceable in the functional coupling characteristics during 
execution of another than the preferred task and even in low-
frequency BOLD fluctuations during rest. This raises the 
question how long they are traceable. While there is ample 
evidence that low-frequency functional coupling is con-
strained by anatomical connections (Johnston et al. (2008); 
Margulies et al., 2009; Miranda-Dominguez et al. 2014), 
several studies observed local task performance induced 
changes in functional connectivity of the areas engaged 
during the performance (Gordon et al. 2014; Hasson et al. 
2009). Such results raise the possibility that the functional 
couplings during rest observed here are only temporal altera-
tions in coupling that merely reflect the network dynamics 
of the task performed just earlier. A first point against this 
interpretation is that in our paradigm all three tasks were 
administered intermingled in short blocks. Therefore, each 
of the observed task-specific coupling patterns at least sur-
vived the execution of and switching between the other two 
tasks. A second observation supporting a larger temporal 
stability of the coupling patterns is that in nine of our 12 
participants the resting state data were collected at the begin-
ning of the second scanning session, which was after an 
interval of 5–15 days in eight of them. This suggests that 
the task-related patterns were stable over a considerable time 
window, and not just temporal changes induced by the just 
preceding tasks. Such longer lasting changes of functional 
connectivity have been demonstrated in the context of visual 
learning (Urner et al. 2013).

An even more intriguing question is whether the observed 
coupling patterns are induced by these specific three tasks, 
or whether they reflect stable processing paths established 
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over longer time spans of engaging into similar types of 
cognitive activity. This would provide an interesting per-
spective on the implementation of cognitive functions or 
specific cognitive demands in the multiple demand network. 
It would imply that specific cognitive demands recruit dedi-
cated subpopulations of neurons—assemblies that exist in 
parallel and constitute unique subnetworks that span the 
entire multiple demand network. This interpretation of the 
observed functional connectivity features would require that 
these couplings were already present before the participants 
learned to perform the three specific study tasks. While in 
most of our participants the resting state data were collected 
after learning to perform the tasks, in two of our participants 
these data had already been collected prior to entering the 
study. In both of them, the voxels, selected after they had 
been trained and had practiced for some time these three 
tasks, showed the task-specific functional coupling patterns 
already before the participant started to train on the tasks 
(see supplementary information, Table S6). While this is 
only a fragmentary observation, it does point out the direc-
tion for intriguing and promising future studies.
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