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Searching large-scale scRNA-seq databases via
unbiased cell embedding with Cell BLAST
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Single-cell RNA-seq (scRNA-seq) is being used widely to resolve cellular heterogeneity. With

the rapid accumulation of public scRNA-seq data, an effective and efficient cell-querying

method is critical for the utilization of the existing annotations to curate newly sequenced

cells. Such a querying method should be based on an accurate cell-to-cell similarity measure,

and capable of handling batch effects properly. Herein, we present Cell BLAST, an accurate

and robust cell-querying method built on a neural network-based generative model and a

customized cell-to-cell similarity metric. Through extensive benchmarks and case studies, we

demonstrate the effectiveness of Cell BLAST in annotating discrete cell types and continuous

cell differentiation potential, as well as identifying novel cell types. Powered by a well-curated

reference database and a user-friendly Web server, Cell BLAST provides the one-stop

solution for real-world scRNA-seq cell querying and annotation.
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Technological advances during the past decade have led to
rapid accumulation of large-scale single-cell RNA
sequencing (scRNA-seq) data. Analogous to biological

sequence analysis1, existing annotations such as cell type and cell-
differentiation potential in curated references can be utilized to
annotate newly sequenced cells via a cell-querying algorithm,
which unsupervisedly searches reference data for similar cells
based on the transcriptome. Tools have been developed to achieve
this using approximate cosine distance2 or locality-sensitive
hashing (LSH) Hamming distance3,4 calculated from a subset of
carefully selected genes. While these metrics per se are intuitive
and computationally efficient, they may not reflect cell-to-cell
similarity faithfully, and suffer from nonbiological confounding
variation across datasets like batch effect5,6. Moreover, these
methods do not come with a large-scale reference database with
unified and comparable annotations, so users often need to search
for proper reference data by themselves.

To address these challenges, we introduce Cell BLAST, a cell-
querying tool employing a customized neural network-based
generative model that effectively handles batch effect, as well as a

cell-to-cell similarity metric specifically designed for the model
(Fig. 1). We evaluate the query-based cell typing performance of
Cell BLAST with extensive benchmark experiments, and use two
case studies to demonstrate that Cell BLAST can further be uti-
lized to predict continuous cell-differentiation potential and
identify novel cell types. Finally, we provide a well-curated mul-
tispecies single-cell transcriptomics database (Animal Cell Atlas,
ACA) and an easy-to-use Web interface for convenient explora-
tory analysis of hit cells.

Results
The Cell BLAST algorithm. Cell BLAST uses a neural network-
based generative model to adaptively learn a nonlinear projection
from the high-dimensional transcriptomic space to a low-
dimensional cell embedding space in an unsupervised manner
using reference single-cell transcriptomes, with intra-reference
batch effect corrected by adversarial alignment (“Methods”, also
see Fig. 1a for an illustrative diagram on the structure of the
generative model used by Cell BLAST). When presented with
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Fig. 1 Cell BLAST model and workflow. a Structure of the generative model used by Cell BLAST. b Overall Cell BLAST workflow.
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query data, Cell BLAST uses the pretrained model to project
individual query cells into the same low-dimensional space, and
then utilizes the posterior distribution in the low-dimensional
space, which characterizes the uncertainty of cell embeddings, to
estimate cell-to-cell similarity precisely (Fig. 1b). Such a design
also enables a special online-tuning mode that adaptively updates
the model during querying to handle batch effect between query
and reference data (e.g., in cross-species querying).

Reference cells with high similarity are then returned as query
hits, the existing annotation of which can further be utilized to
inform the annotation of query cells. Importantly, query cells
with no significant hits are identified as unseen rather than
incorrectly labeled, thus providing the opportunity to identify
novel cell types.

Evaluating cell-type resolution and batch-effect correction. The
effectiveness of our querying method relies on accurate dimen-
sion reduction and batch-effect correction by the generative
model, so we first benchmarked the model against popular
methods in each of these fields respectively (Supplementary
Table 1) using real-world datasets (Supplementary Table 2). In
the dimension-reduction benchmark, our model as well as DCA7,
PCA, and tSNE8 are among the best performing ones in terms of
cell-type resolution measured by mean average precision (MAP)
(Supplementary Fig. 3).

For benchmarking batch-effect correction, we used combina-
tions of datasets with overlapping cell types profiled, and treated
each dataset as a batch. Our model achieves significantly better
dataset mixing while maintaining high cell-type resolution at the
same time (Fig. 2a). Cell-embedding visualization also validates
that Cell BLAST effectively removed batch effect without blurring
biological signals for datasets with considerable cell-type composi-
tion difference (Supplementary Fig. 4, Supplementary Data 1).

Notably, we found that the correction of inter-dataset batch
effect does not automatically generalize to that within each
dataset, which is most evident in the pancreatic datasets: while
the canonical batch correction strategy works for cross-
dataset batch effect (i.e., the batch effect observed among six
independent datasets, Supplementary Fig. 4d), it does not handle
within-dataset batch effects correctly (i.e., different donors in
each dataset remain separated, Supplementary Fig. 5a–c). For
such complex scenarios, our adversarial batch alignment strategy
easily extends to correcting multiple levels of batch effect
independently and simultaneously (Supplementary Fig. 5d–h).

A posterior-based cell-to-cell similarity metric. A proper cell-
to-cell similarity metric in the embedding space should model the
inputs′ semantics accurately, and is critical for reliable cell
querying. Common distance metrics like the Euclidean distance,
though computationally efficient, may lead to unwanted artifacts
(Supplementary Fig. 6a–d). Intuitively, low-dimensional embed-
dings of cells from the same cell type should reconstruct each
other better than cells from different cell types. Thus, the pos-
terior density, which models the uncertainty in cell embeddings
(“Methods”), is expected to be flatter along the direction of the
cell cluster, reflecting the local structure of data manifold. We
reason that similarity metric could benefit from the additional
information encoded in the posterior distribution of our
generative model.

Employing a dedicated adversarial component9, our model
learns the genuine posterior distribution from data directly (in
contrast to the fixed diagonal-covariance Gaussian used by
methods based on canonical variational autoencoders10, e.g.,
scVI11). Two-dimensional visualization of the “Baron_human”12

and “Adam”13 dataset illustrates that the posterior distribution of

our model captures the local structure of data manifold
(Supplementary Fig. 6e, f), while the canonical model does not
(Supplementary Fig. 7e, f).

Inspired by the Mahalanobis distance14, we designed a custom
distance metric (normalized projection distance, NPD) to
quantify cell-to-cell similarity based on posterior distributions
(“Methods”, also see Supplementary Fig. 8a for an intuitive
illustration). Distance metric ROC analysis in the two-
dimensional embedding space shows that NPD is more accurate
than Euclidean distance in distinguishing whether nearest
reference cells are of the same type (Supplementary Fig. 6g, h).
A similar analysis using ten-dimensional embedding space and
independent query data also confirms the improvement in area
under curve (AUC) with Cell BLAST variational posterior, while
applying NPD with canonical Gaussian-based variational poster-
ior did not increase AUC regardless of KL regularization weight
(Supplementary Fig. 8c). To improve the comparability and
interpretability of querying results, we compute an empirical P-
value for each query hit as a measure of confidence during cell
querying, by comparing the NPD to an empirical NULL
distribution obtained from randomly selected pairs of cells in
the reference data.

Evaluating query-based cell typing. We then evaluated the cell-
querying performance against scmap2 and CellFishing.jl4 based
on four groups of datasets (Supplementary Table 3), each
including both positive queries (cell types existent in the refer-
ence) and negative queries (cell types non-existent in the refer-
ence). We compared the mean balanced accuracy (MBA) of each
method in query-based cell-type prediction. An ideal cell-
querying method should predict the correct cell types for posi-
tive queries, and reject negative queries at the same time (in
which case “rejection” is the correct prediction). Cell BLAST
achieves not only the highest overall MBA but also presents
significantly superior specificity (i.e., higher negative type MBA)
over others (Fig. 2b–c). Of note, the hits returned by Cell BLAST
are more evenly distributed across multiple reference datasets
(Supplementary Fig. 9e), further confirming better mitigation of
batch effect.

Neural network-based models are often deemed as black boxes
with no clear interpretation, impeding their adoption in high-
stakes applications where understanding the reason behind model
decisions is favorable. To help users′ interpretation, we computed
the gene expression gradient of the encoder neural network
toward the position of each cell type in the embedding space
(“Methods”). Larger gradient value for a gene means that cells
highly expressing the gene will be embedded closer to the
particular cell type, thus more likely to be predicted as the cell
type during querying. To evaluate whether the gradients are
reliable, we compared the gradient-based gene rankings with
manually curated cell-type markers in the PanglaoDB database15.
For the reference datasets used in the cell-querying benchmark,
we found that genes with larger gradients for each cell type are
significantly enriched for known markers of the particular cell
type (Supplementary Fig. 10), suggesting that the internal logic of
Cell BLAST models is generally consistent with prior knowledge.

Last but not least, we assessed scalability of these querying
methods using the 1.3 M mouse brain dataset16 subsampled to
1000–1,000,000 cells as reference. While scmap′s querying time
rises dramatically after 10,000 cells, Cell BLAST and CellFishing.jl
scale well with increasing reference size (Fig. 2d).

Rediscovery of a novel tracheal cell type. The high specificity of
Cell BLAST is critical for discovering novel cell types effectively. Two
recent studies (“Montoro”17 and “Plasschaert”18) independently
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reported a rare tracheal cell type, pulmonary ionocyte. We artificially
removed reported ionocytes from the “Montoro” dataset and used it
as reference to annotate the “Plasschaert” dataset. In addition to
achieving a high MBA of 0.873, Cell BLAST correctly rejected 14 of
19 “Plasschaert” ionocytes under the default cutoff (Fig. 3a), and
highlights the existence of a putative novel cell type as a well-defined
cluster (cluster 3) with large P-values (meaning higher confidence of
rejection) among all 134 rejected cells (Fig. 3b–c). Further differential
expression analysis shows that this is indeed an ionocyte cluster with
highly expressed ionocyte markers including Cftr, Foxi1, and Ascl3
(Supplementary Fig. 11).

As for other rejected cell clusters, we found that cluster 1, 2, 4,
and 5 (Fig. 3b) are similar to cells of their originally annotated cell
types (Supplementary Fig. 11, Supplementary Fig. 12a). Apart
from the similarities, these rejected cells also exhibit different

transcriptional states from their matched counterparts revealed
by GO enrichment analysis on differentially expressed genes
(Supplementary Fig. 12b, c). More interestingly, we found that
rejected cells in cluster 0 do not express markers of any retained
cell type, but with a subgroup specifically expressing genes like
Cd52, Cd53, Itgb2 (Supplementary Fig. 11) related to immune
response (Supplementary Fig. 12d). As an independent validation,
we conducted principal component analysis (PCA) for each
originally annotated cell type, and found that rejected cells and
cells predicted as other cell types reside in a lower density region
of the PC space (Supplementary Fig. 13), suggesting these cells are
more or less atypical.

We tried the same analysis with other cell-querying methods,
and found that scmap-cell2 merely rejected 8 “Plasschaert”
ionocytes (identified as cluster 4) out of all 319 rejections
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(Supplementary Fig. 14a–c). Rejected cell clusters 0, 1, and 2 are
similar to their originally annotated cell types. Cluster 3 is the
same group of immune-related cells identified by Cell BLAST.
Notably, lung neuroendocrine cells in rejected cluster 2 were
assigned lower cosine similarity scores than ionocytes in rejected
cluster 4 (Supplementary Fig. 14d, e), which is unreasonable.
Finally, CellFishing.jl returned an excessive number of false
rejections (Supplementary Fig. 14f). Among all methods, Cell
BLAST achieved the highest ionocyte enrichment ratio in rejected
cells (Supplementary Fig. 14g).

For ionocytes that are not rejected, we compared the prediction
of scmap and Cell BLAST (Supplementary Fig. 15a). All five
ionocytes predicted as club cells by Cell BLAST are also agreed on

by scmap. They express higher levels of club cell markers like
Scgb3a2, Bpifa1, Sftpd, and lower levels of ionocyte markers like
Asc3, Cfpr, Foxi1 compared with other ionocytes. With no
indication of doublets based on total UMI (Unique Molecular
Identifier) counts and detected gene numbers (Supplementary
Fig. 15b, c), the result may suggest some intermediary cell state
between club cells and ionocytes (but cross-contamination in the
experimental procedures cannot be ruled out). Ionocytes
predicted as other cell types by scmap, but rejected by Cell
BLAST, all express high levels of ionocyte markers, but not
markers of the alleged cell types (Supplementary Fig. 15a). These
results also demonstrate that the querying result of Cell BLAST is
more reliable.
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Prediction of continuous cell-differentiation potential. Beyond
cell typing, cell querying can also be used to infer continuous
features. Our generative model combined with posterior-based
similarity metric enables Cell BLAST to model the continuous
spectrum of cell states more accurately. We demonstrate this
using a study profiling mouse hematopoietic progenitor cells
(“Tusi”19), in which the differentiation potential of each cell (i.e.,
cell fate) is characterized by its probability to differentiate into
each of seven distinct lineages (i.e., cell fate probability, Fig. 3d,
“Methods”). We first selected cells from one sequencing run as
query and the other as reference to test whether continuous cell
fate probabilities can be accurately transferred between experi-
mental batches (Supplementary Fig. 16a). In addition to the cell-
querying methods benchmarked above, we also incorporated two
transfer learning methods recently developed for scRNA-seq data,
i.e., CCA anchor20 and scANVI21. Jensen–Shannon divergence
between predicted cell fate probabilities and ground truth shows
that Cell BLAST made the most accurate predictions (Supple-
mentary Fig. 16b).

We further extended to inter-species annotation by trying to
transfer cell fate annotation from the mouse “Tusi” dataset
to an independent human hematopoietic progenitor dataset
(“Velten”22) (Fig. 3e). Benefiting from its dedicated adversarial
batch alignment-based online-tuning mode (“Methods”), Cell
BLAST shows significantly higher correlation between the
predicted cell fate probabilities and expression of known lineage
markers for most lineages (Fig. 3f; also see Supplementary Fig. 17
for expression landscape of known lineage markers), while all
other methods failed to properly handle the batch effect between
species and produced biased predictions (Supplementary
Fig. 16d–g).

Constructing a large-scale well-curated reference database. A
comprehensive and well-curated reference database is crucial for
the practical application of Cell BLAST. Based on public scRNA-
seq datasets, we curated ACA, a high-quality reference database.
To ensure a unified and high-resolution cell-type description, all
records in ACA are collected and annotated using a standard
procedure (“Methods”), with 98.9% of datasets manually curated
with Cell Ontology, a structured controlled vocabulary for cell
types. With 2,989,582 cells in total, ACA currently covers 27
distinct organs across eight species and five whole-organism
atlases, offering a well-curated compendium for diverse species
and organs compared to existing databases2,23,24 (Fig. 3g–h;
Supplementary Data 2). We trained our model on all ACA
datasets. Notably, we found that the model works well in most
cases with minimal hyperparameter tuning (cell-embedding
visualizations, self-projection coverage and accuracy available on
our website, Supplementary Fig. 18b).

A user-friendly Web server is publicly accessible at https://
cblast.gao-lab.org, with all curated datasets and pretrained models
available. Based on the wealth of resources, our website provides
off-the-shelf querying service. Users can obtain querying hits and
visualize cell-type predictions with minimal effort (Supplemen-
tary Fig. 18). For advanced users, a well-documented Python
package implementing the Cell BLAST toolkit is also available,
which enables model training on custom references and diverse
downstream analyses.

Discussion
By explicitly modeling multilevel batch effect as well as uncer-
tainty in cell-to-cell similarity estimation, Cell BLAST is an
accurate and robust querying algorithm for heterogeneous single-
cell transcriptome datasets. Through extensive benchmark
experiments under realistic settings, we compared Cell BLAST

with relevant methods in the field of dimension reduction, batch-
effect correction, and cell-querying, respectively, and achieved top
or superior performance in most aspects.

The adversarial component in Cell BLAST enables a free form
of variational posterior distribution, which could be learned from
data directly. In contrast, the canonical variational autoencoder
model used by scVI and several other tools11,25–27 enforces
Gaussian distribution (with diagonal-covariance matrices) for the
variational posterior. Since the variational posterior is sufficiently
accurate and efficient to sample from, the Cell BLAST model
offers a unique opportunity of utilizing the posterior distribution
for an improved, manifold-aware cell-to-cell similarity metric
(NPD, see Supplementary Figs. 6–8 for more details). Two-
dimensional visualizations revealed that the Cell BLAST varia-
tional posterior is more accurate than that of scVI (Supplemen-
tary Fig. 6–7), and that the improved variational posterior is
crucial for the improvement in querying performance via pos-
terior NPD (Supplementary Fig. 8c).

Since the generative model underlying Cell BLAST is trained in
an unsupervised manner, Cell BLAST is not restricted to the task
of cell typing like many classification-based cell-type annotation
methods28–30. In fact, the same model can be applied to predict
various types of features, including continuous cell-differentiation
potential, as demonstrated in the case study of hematopoietic
progenitor cells. We also showed that Cell BLAST reliably detects
and highlights the existence of unseen query cells instead of
reporting false positive predictions, which is crucial to the iden-
tification of novel cell types or aberrant cell states.

We noticed that while our adversarial batch alignment strategy
can easily scale to a large number of batches (as the increase in
parameter burden and computational cost is trivial when more
batches are incorporated), integrating datasets in mega-scale may
incur additional challenges like over-correcting batches with
highly skewed cell-type composition. In addition, the Cell BLAST
model, like all neural network-based models, is over-para-
meterized, and requires a reasonable number of samples to train
properly. In our experiments, we found that a cell number of 3000
is generally sufficient for good performance, while small-sized
datasets with fewer than 1000 cells may suffer from under-
training issues.

Aiming to be a high-quality multispecies reference database,
ACA is under regular update (“Methods“). With more and more
scRNA-seq data generated recently, we, inspired by the classic
Blast2GO31 algorithm, implemented a query-based, ontology-
aware inference strategy for assigning Cell Ontology terms during
curation. Briefly, an unlabeled cell is first queried against existing
ACA records, and the returned hit list is further processed to
extract all Cell Ontology terms. For each identified Cell Ontology
term, BLAST2CO calculates a hit-based confidence score, and
then propagates the score to its ancestor terms. Finally, leaf terms
(among those exceeding a given confidence threshold, by default
0.5) with maximal confidence score is assigned to the unlabeled
cell as putative Cell Ontology curation (“Methods”; Supplemen-
tary Fig. 19a). Empirical case study shows that both the incor-
poration of hit similarity and ontology structure lead to improved
Cell Ontology assignment, especially for cells marked as
“ambiguous” by the standard majority voting strategy (Supple-
mentary Fig. 19b–e). As more and more scRNA-seq data are
being generated, we plan to continue maintaining the ACA
database, to cover more species and organs, as well as to expand
existing reference panels for increased generalizability.

In combination with a comprehensive, well-annotated database
and an easy-to-use Web interface, Cell BLAST provides a one-
stop solution for both bench biologists and bioinformaticians. We
believe that as more scRNA-seq data become available, the utility
of our toolkit will continue to improve over time.
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Methods
The generative model. In typical scRNA-seq experiments, single-cell gene

expression profiles are in the form of xðiÞ 2 R Gj j
≥ 0; i ¼ 1; 2; ¼ ;N , where G is the

complete set of detected genes and N is the total number of cells. To increase
signal-to-noise ratio and reduce parameter space, a subset of informative genes G*

is selected using an established unsupervised gene selection method based on
mean-variance relationship32.

Attempting to capture biological variation of interest, e.g., discrete cell types and
continuous cell states (but not technical factors, e.g., library size and batch effect, as
discussed later), we model single-cell gene expression data as generated by an
embedding variable l in D dimensional latent space ðD � jG*jÞ that follows a prior
distribution p(l)9. Briefly, we model l as determined by two auxiliary latent
variables of simple prior distributions:

l ¼ zþHc

H 2 RD ´K ; z 2 RD; z � N 0; IDð Þ; c 2 0; 1f gK ; c � Cat Kð Þ
: ð1Þ

The continuous variable z models continuous variation in the transcriptome
space, while the categorical variable c is set to model discrete cell clusters. Thus, the
prior distribution for l is effectively a Gaussian mixture with component means
parameterized by columns of the learnable matrix H:

p l;Hð Þ ¼ 1
K

XK
k¼1

N l;H�;k; ID
� �

: ð2Þ

If the data contain only continuous variation of cell states and no discrete cell types,
the categorical variable c can be left out and l= z directly.

The generative process is implemented by a decoder neural network, denoted as
Dec, which transforms l into parameters of the negative binomial distribution,
which is a common choice for modeling UMI count-based scRNA-seq data33–35:

p xjl;ϕDec
� �

¼ NB x;Decμ l; s; ϕDec
� �

;Decθ l; ϕDec
� �� �

; ð3Þ

NB x; μ; θð Þ ¼
Y
j2G*

Γ xj þ θj
� �

Γ θj

� �
Γ xj þ 1
� � μj

θj þ μj

 !xj θj
θj þ μj

 !θj

; ð4Þ

where μ 2 R
G*j j
≥ 0 is the negative binomial mean, and θ 2 R

G*j j
>0 is the negative

binomial dispersion. Each dimension of μ and θ corresponds to a gene in the
selected subset G* . ϕDec denotes learnable parameters in the decoder network. s is
the size factor computed as the sum of expression values in the selected genes
s ¼

P
j2G* xj . Variation in the size factor is primarily caused by technical factors,

such as capture/amplification efficiency and sequencing depth36. Feeding s to the
decoder makes it possible to decouple such technical factors from the cell
embedding, and concentrate the information learned in l on biological variations.

Apart from the negative binomial (NB) distribution, zero-inflated negative
binomial (ZINB) is also widely adopted when modeling scRNA-seq data, motivated
by the belief that scRNA-seq data contain excessive number of zero entries caused
by dropout events7,11,37. Nevertheless, recent studies38–40 have shown that most
zero entries can actually be explained by biological variation and random sampling
process, and that negative binomial is sufficient for modeling UMI-based scRNA-
seq data. Further considering the identifiability issue of ZINB and risk of
overfitting, we choose to employ the simpler NB as the generative distribution.

Approximate posterior and model optimization. For cell querying in the
embedding space, we are most interested in the posterior distribution
pðljx; ϕDec;HÞ of cell embedding l. It gives a probability density in the embedding
space RD that characterizes likely embedding positions of a cell based on its
observed gene expression profile:

p ljx; ϕDec;H
� �

¼
p xjl; ϕDec
� �

p l;Hð ÞR
p xjl; ϕDec
� �

p l;Hð Þdl
: ð5Þ

Note that the uncertainty in cell embedding l originate from the uncertainty in
generative distribution p xjl; ϕDec

� �
, which is designed to fit the noisy scRNA-seq

data in the first place.
It is acknowledged that the observation x of a cell′s gene expression profile

obtained by scRNA-seq is not an exact depiction of its transcriptional state, but
rather subject to both biological noise inherent in gene expression mechanisms,
and detection noise due to technical limitations33,41. Thus, it is natural to represent
cells in the embedding space by their posterior density, which captures the
uncertainty.

Given the complexity of the generative model, direct maximum likelihood
estimation and posterior inference are intractable. For efficient training and
inference, a stochastic encoder neural network is introduced to approximate
sampling from the actual posterior distribution, which we denote as q(l|x;ϕEnc,H),
where ϕEnc denotes the learnable parameters in the encoder network. The
stochastic encoder projects the gene expression profile x to the embedding l via the

following steps:

x̂ ¼ 104 � xP
j2G xj

; ð6Þ

~x � Poisson x̂ð Þ; ð7Þ

z ¼ Encz ~x; ϕEnc
� �

; c ¼ Encc ~x; ϕEnc
� �

; ð8Þ

l ¼ zþHc: ð9Þ
Note that we first normalize the input transcriptome to the same scale of 104, so

that the encoder can generalize across datasets with vastly different sequencing
depth. The normalization factor in Eq. (6) is computed using all genes G, instead of
the selected subset G* to avoid skewing the data. Stochasticity in the encoding
process is introduced by sampling from the Poisson distribution with rate ¼ x̂. The
choice of Poisson is arbitrary, and mainly serves as a source of randomness. The
Poisson samples then go through the encoder network to give final samples of the
approximate posterior. As a result, the approximate posterior is also parameterized
by the encoder neural network, making it more flexible than conventional
distribution families, like diagonal-variance Gaussian typically used in canonical
variational autoencoders10. To obtain point estimates of the cell embeddings, we
skip the Poisson sampling step and set ~x ¼ x̂ directly.

Training objectives for the model are:

max
ϕEnc ;ϕDec ;H

Ex�pdata xð Þ

El�q ljx;ϕEnc ;Hð Þ log p xjl;ϕDec
� �

þλz �Ez�q zjx;ϕEncð Þ logDz z;ϕDz

� �

þλc �Ec�q cjx;ϕEncð Þ logDc c; ϕDc

� �

2
66664

3
77775; ð10Þ

max
ϕDz

λz � Ez�p zð Þ log Dz z; ϕDz

� �
þEx�pdata xð ÞEz�q zjx;ϕEncð Þ log 1� Dz z; ϕDz

� �� �� �
;

ð11Þ

max
ϕDc

λc � Ec�p cð Þ log Dc c;ϕDc

� �
þEx�pdata xð ÞEc�q cjx;ϕEncð Þ log 1� Dc c;ϕDc

� �� �� �
:

ð12Þ
where samples from q(l|x;ϕEnc,H) can be obtained from Eq. (9), and samples from
q(z|x;ϕEnc) and q(c|x;ϕEnc) can be obtained from Eq. (8). Dz and Dc are
discriminator neural networks for z and c, respectively, which output the
probability that a sample of the latent variable is from the prior rather than the
posterior. ϕDz

and ϕDc
are learnable parameters in the discriminator networks. Eq.

(10) maximizes an approximate lower bound of data likelihood, while the
adversarial training between the encoder and discriminators effectively drives the
encoded z and c to match prior distributions p(z) and p(c). λz and λc are
hyperparameters controlling prior matching strength. Despite the use of adversarial
training, the model is much easier and more stable to train than canonical GANs,
because the adversarial component operates on low-dimensional spaces mapped
from high-dimensional gene expression data (in contrary to conventional GANs,
where the adversarial component operates on high-dimensional data generated
from low-dimensional variables). It effectively extricates the model from the
disjoint support problem, which is considered a major contributing factor to
training instability of canonical GANs42.

Stochastic gradient descent (SGD) with minibatches is applied to optimize the
loss functions. Each SGD iteration is divided into two steps. In the first step, all
discriminator networks (including Dz, Dc, and Db as described in the next section)
are updated simultaneously. In the second step, we update the encoder and decoder
networks to fit gene expression data and counteract the discriminator networks.
This keeps different network components synchronized as much as possible. The
RMSProp optimization algorithm with no momentum term is employed to ensure
stability of adversarial training. Meanwhile, we also incorporated some finer
architectural designs inspired by scVI11, specifically the logarithm transformation
before encoder input, and softmax output scaled by library size when computing μ.
The model is implemented using the Tensorflow43 Python library. Visualization of
loss values during training reveals stable training dynamics and fast convergence
(Supplementary Fig. 1a, b).

Model sensitivity to key hyperparameters is tested in Supplementary Fig. 1c.
Specifically, we start from a default set of manually optimized hyperparameters
(dimensionality= 10, hidden_layer= 128, depth= 1, cluster= 20, lambda_prior
= 0.001, prob_module= “NB”), and then alter each hyperparameter with the
others fixed. We found that the model is robust to hyperparameter settings within
reasonable ranges, and the effect of hyperparameter adjustment on performance is
similar across datasets.

A potential risk of choosing NB over ZINB is that the model may underfit data
generated by plate-based protocols like Smart-seq244, which could indeed be zero-
inflated, possibly due to the lack of UMI deduplication40. As such, we further
compared NB vs ZINB models fitted on Smart-seq2 vs UMI-based data
(Supplementary Fig. 2). The performance difference between NB and ZINB is
generally small (ΔMAP < 0.002 in 10 out of 11 datasets), though we indeed see that
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ZINB performs slightly better than NB in all three Smart-seq2 datasets, while it
performs slightly worse than NB in six out of eight UMI-based datasets, consistent
with the speculation that plate-based non-UMI protocols are more zero-inflated
than UMI-based protocols.

Adversarial batch alignment. As a natural extension to the adversarial prior
matching strategy described in the previous section, and following recent works in
domain adaptation45–47, we propose an adversarial strategy to correct batch effect
by aligning cells from different batches in the embedding space.

To perform adversarial batch alignment, we require the batch membership of
each cell to be known, which is typically the case for real-world data. We denote the
batch membership of each cell as b 2 0; 1f gB , where B is the number of batches. If
a cell belongs to the ith batch, then bi= 1 and bj ¼ 0; j≠i. Here, we write the
categorical batch distribution p(b) as:

p bi ¼ 1ð Þ ¼ wi;
XB
i¼1

wi ¼ 1; ð13Þ

where wi is the relative proportion of cells in the ith batch.
One problem with batch alignment is that, when batch information is

successfully erased in l, the decoder would struggle to fit the observed gene
expression data x, which is influenced by batch effect in the first place. So, the
generative distribution is extended to condition on b as well:

p xjl; b;ϕDec
� �

¼ NB x;Decμ l; b; s; ϕDec
� �

;Decθ l; b; ϕDec
� �� �

: ð14Þ

Model structure with the adversarial batch alignment component is also
illustrated in Fig. 1a.

Adversarial batch alignment introduces an additional loss:

max
ϕEnc ;ϕDec ;H

Eb�p bð ÞEx�p xjbð ÞEl�q ljx;ϕEnc ;Hð Þ Lbase � λb � b> logDb l; ϕDb

� �h i
; ð15Þ

max
ϕDb

Eb�p bð ÞEx�p xjbð ÞEl�q ljx;ϕEnc ;Hð Þ λb � b> log Db l; ϕDb

� �h i
; ð16Þ

where Lbase denotes the basic loss function in Eq. (10). Db is a multiclass batch
discriminator network of B outputs. It is trained to predict the batch membership
of cells based on their embeddings l (Eq. (16)). The encoder is trained in the
opposite direction to fool the batch discriminator (Eq. (15)), effectively aligning
different batches in the embedding space. λb is a hyperparameter controlling batch
alignment strength.

Below, we extend the derivation in the original GAN paper48 to demonstrate the
effect of adversarial batch alignment in Eqs. (15) and (16). We first focus on the
alignment term, ignoring the Lbase term and scaling parameter λb.

To simplify notation, we fuse the data distribution x∼p(x|b) and encoder
transformation l∼q(l|x;ϕEnc,H) into q(l|b;ϕEnc,H). The distribution q(l|b=i;ϕEnc,H)
thus represents the cell-embedding distribution of the ith batch. To further reduce
cluttering, we neglect the parameters ϕEnc, H and ϕDb

, but be aware that q(l|b=i) is
controlled by ϕEnc and H, while Db(l) is controlled by ϕDb

. We may then rewrite
Eqs. (15), (16) as:

min
ϕEnc ;H

XB
i¼1

wiEl�q ljb¼ið Þ logDbi
lð Þ; ð17Þ

max
ϕDb

XB
i¼1

wiEl�q ljb¼ið Þ logDbi
lð Þ: ð18Þ

Here Dbi
ðlÞ denotes the ith dimension of the discriminator output, which predicts

the probability of a cell belonging to the ith batch. We assume Db to have sufficient
capacity to approach the optimum, which is generally reasonable in the case of
neural networks. The global optimum of Eq. (18) is reached when Db outputs
optimal batch membership probabilities at every l:

max
Dbi

lð Þ

XB
i¼1

wiq ljb ¼ ið Þ logDbi
lð Þ; s:t:

XB
i¼1

Dbi
lð Þ ¼ 1: ð19Þ

The solution to the above maximization is given by:

D*
bi

lð Þ ¼ wiq ljb ¼ ið ÞPB
i¼1 wiq ljb ¼ ið Þ

ð20Þ

i.e., the ith output of optimal batch discriminator is the relative cell-embedding

density of the ith batch. Substituting D*
b lð Þ back into Eq. (17), we obtain:

XB
i¼1

wiEl�q ljb¼ið Þ log
wiq ljb ¼ ið ÞPB
i¼1 wiq ljb ¼ ið Þ

¼
XB
i¼1

wiEl�q ljb¼ið Þ log
q ljb ¼ ið ÞPB

i¼1 wiq ljb ¼ ið Þ
þ
XB
i¼1

wiEl�q ljb¼ið Þ logwi

¼
XB
i¼1

wi � KL q ljb ¼ ið Þ k
XB
i¼1

wiq ljb ¼ ið Þ
 !

þ
XB
i¼1

wi logwi

≥
XB
i¼1

wi logwi:

ð21Þ

Thus, the minimization of Eq. (21) is equivalent to minimizing a generalized
form of Jensen–Shannon divergence among cell-embedding distributions of
multiple batches, the global minimum being

PB
i¼1 wi logwi , reached if and only if

q ljb ¼ ið Þ ¼ q ljb ¼ jð Þ; 8i; j. In that case, the batch discriminator can no longer tell
which batch a cell belongs to based on its embedding l, and the only best guess it
can give is the overall proportion of each batch.

Note that in practice, model training balances between Lbase and pure batch
alignment described above. Aligning cells of the same type induces minimal or no
cost in Lbase, while improperly aligning cells of different types could cause Lbase to
rise dramatically since the model cannot generate drastically different gene
expression profiles from the same l.

The performance improvement delivered by this adversarial strategy in the
batch-effect correction benchmark suggests that the gradient from both batch
discriminators and decoder may provide better guidance to align different batches
than hand-crafted alignment strategies like CCA32 and MNN6.

If multiple levels of batch effect exist, e.g., within-dataset and cross-dataset, we
use an independent batch discriminator for each component, providing extra
flexibility.

Gene selection. Most informative genes for individual datasets were selected using
the Seurat32 function “FindVariableGenes” (v2.3.3). Briefly, it plots the
variance–mean–ratio of each gene against its mean expression level, group genes
into several bins based on their mean expression levels, and then select genes with
significantly higher variance in each bin. We tested a wide range of cutoff values
and found that the Cell BLAST performance is relatively stable as the number of
selected genes varies from 500–5000 (Supplementary Fig. 1d). For all other
experiments, we set the argument “binning.method” to “equal_frequency”, and left
other arguments as default. If within-dataset batch effect exists, genes are selected
independently for each batch and then pooled together. By default, a gene is
retained if it is selected in at least 50% of batches. In most cases, 500–1000 genes
are selected. For scmap and CellFishing.jl, which provide their own gene selection
methods, we used these recommended gene selection methods.

When merging multiple datasets (e.g., in batch correction evaluation), we first
merged expression matrices based on gene names. If datasets to be merged are
from different species, Ensembl ortholog49 information was used to map genes to
ortholog groups before merging. Then, to obtain informative genes in merged
datasets, we took the union of informative genes from each dataset, and then
intersected the union with the intersection of detected genes from each dataset.

Benchmarking dimension reduction. PCA, tSNE8, and ZINB-WaVE37 were
performed using R packages irlba50 (v2.3.3), Rtsne (v0.15), and zinbwave (v1.6.0),
respectively. UMAP51 and scPhere35 were performed using Python package umap-
learn (v0.3.8) and scPhere (v0.1.0), respectively. ZIFA52 (v0.1), Dhaka26 (v0.1),
DCA7 (v0.2.2), scVI11 (v0.2.3), scScope53 (v0.1.5), and SAUCIE54 source code were
downloaded from their Github repositories. For ZIFA and scScope, we removed
hard-coded random seeds and added options for manually setting them. For scVI,
minor changes were made to address PyTorch GPU compatibility issues. All the
modified packages are available in our Github repository (https://github.com/gao-
lab/Cell_BLAST/tree/master/local).

For PCA, ZIFA, Dhaka, scScope, and SAUCIE, data were logarithm
transformed after normalization and adding a pseudocount of 1. tSNE and UMAP
were applied on the first 50 principal components of PCA. ZINB-WaVE, DCA,
scVI, scPhere, and Cell BLAST were fitted on raw data. Hyperparameters of all
methods above were left as default. The input gene sets for all methods are
identical.

Cell-type nearest-neighbor mean average precision (MAP) was computed with
K-nearest neighbors of each cell based on low-dimensional space Euclidean
distance. If we denote the cell type of a cell as y, and the cell types of its ordered
nearest neighbors as y1,y2,…yK, the average precision (AP) for that cell can be
computed as:

AP ¼
PK

k¼1
1y¼yk

�

Pk

k0¼1
1y¼y0k

kPK

k¼1
1y¼yk

; if
PK

k¼1 1y¼yk
> 0

0; otherwise

8><
>: ð22Þ

where 1y= yk is an indicator function that evaluates to 1 when y= yk and 0 when
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y≠yk . Denote the average precision for the ith cell as AP(i), mean average precision
is then given by:

MAP ¼ 1
N

XN
i¼1

AP ið Þ: ð23Þ

Note that when K= 1, MAP reduces to nearest-neighbor accuracy. We set K to
1% of the total cell number throughout all benchmarks. The range of MAP is 0–1,
with higher values indicating better cell-type resolution.

We tested each method on a wide range of dimensionalities (except for tSNE,
UMAP, and SAUCIE, which are limited to dimensionality= 2), and picked the
optimal dimensionality for each method based on its average performance across
all datasets. All experiments were repeated 16 times with different random seeds.

Benchmarking batch-effect correction. ComBat55, MNN6, CCA32, CCA
anchor20, Harmony56, scPhere35, and scVI11 were performed using R packages
sva57 (v3.32.1), scran58 (v1.6.9), Seurat (v2.3.3), Seurat (v3.0.2), harmony (v1.0),
and Python package scPhere (v0.1.0), scVI (v0.2.3), respectively. SAUCIE54 was
performed using the “SAUCIE.py” script provided in their Github repository.
Hard-coded random seeds in Seurat (both v2.3.3 and v3.0.2) were removed to
reveal actual stability. The modified versions of Seurat are available in our Github
repository. ComBat, MNN, CCA, CCA anchor, and SAUCIE were all performed on
normalized and logarithm transformed data, while scVI, scPhere, and Cell BLAST
were fitted on raw data. For MNN alignment, we set the argument “cos.norm.out”
to false. Harmony was performed on PCA of the normalized and logarithm
transformed data. All other hyperparameters were left as default. The input gene
sets for all methods are identical.

We use Seurat alignment score32 to evaluate the extent of batch mixing, and use
mean average precision to quantify the preservation of biological signal. Mean
average precision was computed as described in the “Benchmarking dimension
reduction” section. Seurat alignment score was computed as described in the
original CCA paper32:

Seurat alignment score ¼ 1�
�x � k

N

k� k
N

; ð24Þ

where �x is the average number of cells belonging to the same batch in k-nearest
neighbors (with different batches subsampled to the same size), and N is the
number of batches. The range of Seurat alignment score is 0−1, with higher scores
indicating better dataset mixing.

For best comparability, mean average precision and Seurat alignment score
should be computed in low-dimensional space. For CCA, Harmony, SAUCIE,
scPhere, scVI, and Cell BLAST, corrected data are already in low-dimensional
spaces, while for ComBat, MNN, and CCA anchor which return corrected
expression matrices, PCA was applied to reduce the dimensionality afterwards.

For Cell BLAST, we tested different values of λb, which determines batch
alignment strength, and fixed embedding dimensionality at 10 (as determined in
the previous dimensionality reduction benchmark). Other methods do not provide
a similar hyperparameter that specifically controls batch alignment strength, so we
tested on a wide range of dimensionalities (either the dimensionality of the method
itself, or the post hoc PCA dimensionality). Optimal configuration for each method
was picked based on the average of sum of mean average precision and Seurat
alignment score across all datasets. We noted that the range of mean average
precision among different methods is much smaller than that of Seurat alignment
score, so we assigned larger weight (0.9) to mean average precision and smaller
weight (0.1) to Seurat alignment score to balance them. All benchmarked methods
were repeated 16 times with different random seeds.

Posterior visualization and comparison. We fitted scVI11 and Cell BLAST on the
“Baron_human”12, “Adam”13, and “Guo”59 dataset with identical gene sets and
two-dimensional embedding space, and then sampled from their variational pos-
terior and true posterior distributions, respectively. For Cell BLAST, the variational
posterior samples were obtained as described in the “Approximate posterior and
model optimization” section. To sample from the scVI variational posterior, we
took the posterior mean (μ) and variance (σ2) from the encoder output, and then
sampled from N(μ,diag(σ2)). To sample from the true posteriors of scVI and Cell
BLAST, we used the Metropolis Hastings Markov chain Monte Carlo (MCMC)
algorithm60.

To examine the posterior distributions of cells along the border of the cell types
of interest, we fitted Gaussian kernel support vector machines (SVM) to classify the
cell types in the two-dimensional embedding space, and then used the support
vectors as border cells. Support vectors with small decision-function values were
excluded because their cell-type annotation can be unreliable. To summarize the
shape of posterior distribution in this region, we aggregated posterior samples from
multiple cells after subtracting the posterior point estimate to center them. SVD
was then performed on the aggregated samples to reveal the major and minor axes
of variation.

Distance metric ROC analysis. Distance metric ROC analysis was performed
using the pancreatic group in Supplementary Table 3. We fitted scVI11 and Cell
BLAST models on the reference datasets using the same gene set (with batch-effect

correction), and then applied the fitted models to all datasets including positive and
negative queries to obtain samples from the posterior distributions, as well as cell
embeddings (posterior point estimates). We then subsampled query datasets to
equal sizes, and searched for 50 nearest reference cells for each query cell. A query-
reference nearest-neighbor pair is defined as positive if the query cell and reference
cell are of the same cell type, and negative otherwise. Each distance metric was then
computed on the nearest-neighbor pairs and used as predictors for positive/
negative pairs. AUC values were computed for each distance metric based on the
ROC curves. Both scVI and Cell BLAST were repeated 16 times with different
random seeds.

Posterior distance estimation. We evaluated cell-to-cell similarity based on a
custom distribution distance between their posterior distributions in the embed-
ding space, which we termed normalized projection distance (NPD). To obtain a
robust estimation of the distribution distance with a small number of posterior
samples, we project the posterior samples of two cells onto the line connecting their
posterior point estimates, converting the multi-dimensional posterior distributions
to scalar distributions. NPD is then computed based on Wasserstein distance of
normalized projection values:

NPD p; qð Þ ¼ 1
2
� W1 Zp pð Þ;Zp qð Þ

� �
þW1 Zq pð Þ;Zq qð Þ

� �� �
; ð25Þ

where p and q are scalar projection values, and

W1 u; vð Þ ¼ inf
π2Γ u;vð Þ

Z
x � yj jdπ x; yð Þ; ð26Þ

Zu vð Þ ¼ v �E uð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
var uð Þ

p : ð27Þ

Normalization effectively rescales the local embedding space so that the cell-to-
cell distances reflect true biological similarity more accurately (see Supplementary
Fig. 8a for an intuitive illustration). By default, 50 samples from the posterior are
used to compute NPD, which produces sufficiently accurate results (Supplementary
Fig. 8b).

Cell querying using posterior distance. We first apply the pretrained models on
query cells to obtain cell embeddings (posterior point estimates) and samples from
posterior distributions. The definition of NPD does not imply an efficient nearest-
neighbor searching algorithm. To increase speed, we first perform nearest-neighbor
search based on Euclidean distance between cell embeddings to obtain the initial
query hits, which is highly efficient in the low-dimensional embedding space. We
then compute posterior distances only for these nearest neighbors. The empirical
distribution of posterior NPD for a dataset is obtained by computing posterior
NPD on randomly selected pairs of cells in the reference dataset. Empirical P-
values of query hits are computed by comparing the posterior NPD of query hits to
this empirical distribution.

We note that even with the strategy described above, querying with single
models still occasionally leads to many false-positive hits when cell types on which
the model has not been trained (non-existent cell types in the reference) are
provided as query. This is because embeddings of such untrained cell types are
more or less random, and could localize close to reference cells by chance. We
reason that the embedding randomness of untrained cell types could be utilized to
identify and correctly reject them. In practice, we train multiple models with
different starting points (as determined by random seeds) and compute query hit
significance for each model. A query hit is considered significant only if it is
consistently significant across multiple models. We found that the strategy
improves specificity significantly without sacrificing sensitivity (Supplementary
Fig. 8d).

Hit-based predictions. Predictions can be made for query cells using the existing
annotations of significant hit cells. A minimal number (by default 2) of significant
hit cells (P-value smaller than a specified cutoff, by default 0.05) are required for
prediction to be made, otherwise the query cell is rejected. For discrete annotations,
e.g., cell type, majority voting among the significant hit cells is used. We require
that the majority votes exceed a threshold (by default 50% of all significant hits) for
confident prediction to be made, otherwise the query cell is labeled as “ambiguous”.
For continuous annotations like the cell fate probabilities, we use the arithmetic
average of hit cell annotations.

Online tuning. When significant batch effect exists between reference and query,
we support further aligning query data with the reference data in an online-
learning manner. All components in the pretrained model, including the encoder,
decoder, prior discriminators, and batch discriminators, are retained. The
reference-query bias is added as an extra batch effect to be corrected using
adversarial batch alignment. Specifically, a new discriminator dedicated to the
reference-query batch effect is added, and the decoder is expanded to accept an
extra one-hot indicator for reference and query. The expanded model is then fine-
tuned using the combination of reference and query data. Two precautions are
taken to prevent a decrease in specificity caused by over-alignment. First,
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adversarial alignment loss is constrained to cells that have mutual nearest neigh-
bors6 between reference and query data in each SGD minibatch. Second, we
penalize the deviation of tuned model weights from the original weights. Among all
experiments in the paper, online tuning is only used when performing cross-species
querying between the “Velten” and “Tusi” dataset in the hematopoietic
progenitor study.

Benchmarking query-based cell typing. Cell ontology annotations in ACA were
used as ground truth. Cells without cell ontology annotations were excluded in the
analysis. For clarity, we use the notation Q for the complete set of query cells, T þ
for the set of positive cell types (cell types existent in the reference), T � for the set
of negative cell types (cell types not existent in the reference), f and g as functions
that map cells to their actual cell types and predicted cell types, respectively.

For evaluating cell-type prediction accuracy, we manually compiled expected
prediction matrices M based on descriptions in the original publications as well as
cell ontology (Supplementary Data 3). This improves the estimation of prediction
accuracy by accommodating negative queries (with “reject” as correct prediction)
as well as reasonable predictions that would be otherwise considered incorrect, e.g.,
“blood vessel endothelial cell” being predicted as “lung endothelial cell” when using
pulmonary references, “cytotoxic T cell” being predicted as “T cell” when using
pancreatic references (immune cells annotated in lower resolution in the pancreatic
studies because they were not the research focus), etc. Rows of M represent actual
cell types, and columns represent predictions. A cell-type prediction is considered
correct if the corresponding entry in M is 1, and incorrect otherwise. Prediction
accuracy for each cell type t is computed as:

Accuracy tð Þ ¼
qjq 2 Q; f qð Þ ¼ t;Mf qð Þ;g qð Þ ¼ 1
n o��� ���

qjq 2 Q; f qð Þ ¼ tf gj j : ð28Þ

Mean balanced accuracy (MBA) can then be computed as the equally weighed
arithmetic mean of prediction accuracy of each cell type:

MBA Tð Þ ¼ 1
Tj j
X
t2T

Accuracy tð Þ; ð29Þ

where T denotes the set of cell types under consideration. In our evaluation
(Fig. 2b, c; Supplementary Fig. 9a, c), we reported both MBA T þ

� �
and MBA T �ð Þ.

For the average MBA, we used
MBA T þð ÞþMBA T �ð Þ

2 rather than MBA T þ ∪ T �
� �

,
because of the imbalance nature of query cell types (i.e., much larger number of
negative cell types than positive cell types would dominate the latter).

Scmap2 and CellFishing.jl4 were performed using R package scmap (v1.6.0) and
Julia package CellFishing (v0.3.0), respectively. For all experiments with scmap, we
used the scmap-cell algorithm. For each method, its own recommended gene
selection method was used. Default cutoff of scmap (cosine similarity= 0.5) and
Cell BLAST (P-value= 0.05) were used to reject unmatched cells. As CellFishing.jl
does not come with a query-based prediction method, we used the same strategy as
Cell BLAST, with Hamming distance= 120 as cutoff determined from grid
searching for best balance between correctly predicting positive types, i.e.,
MBA T þ

� �
, and rejecting negative types, i.e., MBA T �ð Þ across all four dataset

groups (Supplementary Fig. 9c). Of interest, the grid searching found that scmap
shows slightly higher average MBA at a stricter cutoff (cosine similarity= 0.6) than
its default one (0.5), but still lower than that of Cell BLAST (Supplementary
Fig. 9c).

All benchmarked methods were repeated four times with different random
seeds. Several other cell querying tools (CellAtlasSearch3, scQuery28, scMCA61)
were not included in our benchmark because they do not support custom reference
datasets.

Benchmarking querying speed. To evaluate the scalability of querying methods,
we constructed reference datasets of varying sizes by subsampling from the 1M
mouse brain dataset16. For query data, the “Marques” dataset62 was used. The
input gene sets for all methods are identical. Benchmarking was performed on a
workstation with 40 CPU cores, 100GB RAM and GeForce GTX 1080Ti GPU. For
all methods, only the querying time was recorded, not including the time con-
sumed to index the references.

Identifying cell typing-important genes. For each dataset, we used each cell type
in turn as query data, and the remaining cells as reference data to perform Cell
BLAST querying. The embedding space deviation of query cells from their refer-
ence hits (Δl 2 RD) are propagated back to the original gene space via the gradient
of the encoder neural network:

Δ~x ¼ ∂l
∂~x

� 	>
�Δl; ð30Þ

where ∂l
∂~x 2 RD ´ G*j j;Δ~x 2 R G*j j . Deviation Δl is first normalized to unit vectors.

By averaging Δ~x across all reference hits of all query cells, we obtain the gene-
wise gradient from surrounding cell types towards the cell type of interest. We also
average Δ~x across multiple Cell BLAST models to improve reliability. Large
gradient value for the ith gene (Δ~xi) indicates that higher expression of the gene

causes cell embedding to move towards the cell type of interest. In other words, the
gene is an important feature for the specific cell type. To test whether gene
importance as derived above is consistent with prior knowledge, we downloaded
the manually curated cell-type marker list from PanglaoDB15 (Jan 21, 2020). Gene
rankings based on the gradient values were fed to the GSEA prerank algorithm63 as
implemented in gseapy (v0.9.16) to test whether PanglaoDB markers are
significantly enriched in genes with larger gradient values. PanglaoDB markers
were first filtered based on whether mean expression in the asserted cell type is
among the top three in the reference dataset. FDR correction was applied to control
false positives in multiple tests. Only cell types in which the number of PanglaoDB
marker genes intersecting G* is greater than 10 were tested. We were able to
perform the above analysis for three of the four reference datasets in the cell-
querying benchmark (Supplementary Table 3). The mammary dataset was
discarded because only one cell type exists in the PanglaoDB marker list.

Application to trachea datasets. We first removed cells labeled as “ionocytes” in
the “Montoro_10x”17 dataset and used Seurat function “FindVariableGenes” to
select informative genes using the remaining cells.

For Cell BLAST, four models with different starting points were trained on the
tampered “Montoro_10x” dataset. We used the default cutoff of empirical P-value
> 0.05 to reject query cells from the “Plasschaert”18 dataset. We clustered the
rejected cells using Louvain community detection64 on shared nearest-neighbor
(SNN) graph constructed based on cell embeddings.

For scmap2, we used the default cutoff of cosine similarity < 0.5 to reject query
cells. Louvain community detection on SNN graph was also used to cluster rejected
cells, but we used cosine similarity to construct the SNN graph instead. For other
cell-querying methods, we used their overall optimal cutoff as determined in the
query-based cell typing benchmark.

Ionocyte enrichment ratio in Supplementary Fig. 14g was computed as follows:

Enrichment ratio ¼ #Ionocytes=#All cells
#Rejected ionocytes=#Rejected cells

: ð31Þ

Genes in the expression heatmaps of Supplementary Figs. 11, 14e, 15a were
selected in two ways. For markers of the retained cell types (cell types except
ionocyte), we directly obtained known marker genes from the “Montoro” study.
For markers of the rejected cell clusters (only in Supplementary Figs. 11, 14e), we
performed one-versus-rest differential expression analysis using two-sided
Wilcoxon rank-sum test to find genes highly expressed in each cluster, and selected
the most significant genes with Bonferroni corrected P-value < 0.05. GO
enrichment analysis was conducted using Metascape65.

Application to hematopoietic progenitor datasets. For within- “Tusi”19

querying, we trained four models using only cells from sequencing run 2, while
cells from sequencing run 1 were used as query cells. Population balance analysis
(PBA) inferred cell fate probabilities provided by the authors were used as the
ground truth. Below, we denote the cell fate probabilities as a seven-dimensional
vector p 2 R7. Each dimension 0 ≤ pi ≤ 1, i= 1,2,…,7 corresponds to the prob-
ability that the cell would differentiate into a specific terminal cell lineage. The
seven probabilities are normalized and form a probability distribution, i.e.,P7

i¼1 pi ¼ 1.
The visualization in Fig. 3d–e, Supplementary Fig. 16c–g are obtained by

applying SPRING66 to the cell embeddings. Each cell lineage is assigned a distinct
color. Each cell is then colored according to the cell lineage of largest differentiation
probability. In addition, the saturation of each cell is determined by the cell fate
entropy H p½ � ¼

P7
i¼1 �pi log pi . Thus, cells committed to a specific lineage would

have more saturated colors, while undifferentiated cells would appear gray.
For Cell BLAST, the cell fate predictions are obtained as described in the

“Predictions based on query hits” section. Scmap2 and CellFishing.jl4 do not
support predicting continuous variables, so we extended them using the same
strategy as Cell BLAST. CCA anchor20 natively supports transferring continuous
variables in its “TransferData” function. scANVI21 was designed as a semi-
supervised classifier that returns the probability distribution over different classes.
We used reference cells with maximal lineage probability > 0.5 as labeled data, and
the remaining cells as unlabeled data when train scANVI. The batch effect between
reference and query data was also specified to be corrected. The resulting class
distribution in the query data was then interpreted as transferred lineage
probability.

Jensen–Shannon divergence (JSD) between true and predicted cell fate
distributions was computed as below:

JSD p k qð Þ ¼ 1
2
�
X7
i¼1

pi log
pi

piþqi
2

þ qi log
qi

piþqi
2

; ð32Þ

where p and q denote the ground truth and predicted cell fate distribution,
respectively.

For cross-species querying between “Tusi” and “Velten”22, we mapped human
genes to mouse orthologs before merging. The online-tuning mode of Cell BLAST
was used to correct for the cross-species batch effect. Due to the significant cross-
species batch effect, CellFishing.jl produced excessive number of false negative
rejections under the previously determined cutoff of Hamming distance= 120, so
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we used a more permissive cutoff of Hamming distance= 170 to achieve a smaller
rejection rate comparable to scmap and Cell BLAST. Since no ground truth cell fate
probabilities are available for the “Velten” dataset, we used the Spearman
correlation between predicted cell fate probabilities and expression level of known
cell lineage markers from the “Velten” study (Supplementary Fig. 17) as a
quantitative metric. We report the average of three marker genes of the highest
correlation coefficient for each cell lineage in Fig. 3f. Since the “Velten” dataset does
not distinguish between the monocyte (M) and the dendritic cell (D) lineage, we
merged them into a single M/D lineage by summing up the PBA probabilities.

ACA database construction. We searched Gene Expression Omnibus (GEO)67

using the following search term:

(
expression profiling by high throughput

sequencing[DataSet Type] OR
expression profiling by high throughput

sequencing[Filter] OR
high throughput sequencing[Platform

Technology Type]) AND
gse[Entry Type] AND
(
single cell[Title] OR
single-cell[Title]) AND
(2013[Publication Date]: 3000[Publication

Date]) AND
supplementary[Filter]

Datasets in the Hemberg collection (https://hemberg-lab.github.io/scRNA.seq.
datasets/) were merged into this list. Only animal single-cell transcriptomic
datasets profiling samples of normal conditions were selected. We also manually
filtered small-scale or low-quality data. In addition, several other high-quality
datasets missing in the previous list were included for comprehensiveness.

The expression matrices and metadata of selected datasets were retrieved from
GEO, supplementary files of the publication or by directly contacting the authors.
Metadata were further manually curated by adding additional descriptions in the
paper to acquire the most detailed information of each cell. We unified raw cell-
type annotation by Cell Ontology68, a structured controlled vocabulary for cell
types. Closest Cell Ontology terms were manually assigned based on the Cell
Ontology description and context of the study.

Building reference panels for the ACA database. Two types of searchable
reference panels are built for the ACA database. The first consists of individual
datasets with dedicated models trained on each, while the second consists of
datasets grouped by organ and species, with models trained to align multiple
datasets profiling the same species and same organ.

Data preprocessing follows the same procedure as in previous benchmarks.
Both cross-dataset batch effect and within-dataset batch effect are manually
examined and corrected when necessary. For the first type of reference panels,
datasets too small (typically <1000 cells sequenced) are excluded because of
insufficient training data. These datasets are still included in the second type of
panels, where they are trained jointly with other datasets profiling the same organ
in the same species. For each reference panel, four models with different starting
points are trained.

BLAST2CO. BLAST2CO can perform Cell Ontology (CL) inference for query cells
as long as the reference datasets are annotated with Cell Ontology (see Supple-
mentary Fig. 19a for a schematic diagram of the BLAST2CO workflow). For each
CL existent in the hit cells, BLAST2CO calculates its confidence score by summing
up the similarity (defined as 1−"P-value") of all hit cells belonging to the particular
CL, normalized by the sum in all hits. The confidence scores are assigned to
corresponding nodes in the CL graph, and then propagated to parent nodes along
the graph. CLs with confidence scores exceeding a given threshold (by default 0.5)
are retained to form a subgraph. Finally, the leaf node of the subgraph with
maximal confidence score is chosen as final prediction. We additionally require the
longest path length to root of the predicted CLs to exceed a given threshold, to
guarantee that the final predictions are not too coarse. If more than one CLs match
the above conditions, the query cell is labeled as “ambiguous”. If no CL matches the
above conditions, the query cell is labeled as “rejected”.

In the human kidney case study (Supplementary Fig. 19b–e), both the
incorporation of hit similarity and ontology structure contribute to the improved
predictions. On the one hand, hits for many “stromal cells” consisted of the same
number of “fibroblasts” and “mesangial cells”, causing majority voting to fail.
BLAST2CO was able to break the tie by considering the similarity of each hit. On
the other hand, hits for many “epithelial cells of nephron” and some “stromal cells”
consisted of several different yet related CLs. By leveraging prior knowledge
encoded in the CL graph, BLAST2CO identified the most confident ancestor CLs
for these cells (“epithelial cell” for “epithelial cell of nephron”, “connective tissue
cell” for “stromal cell”).

To quantitatively evaluate the performance of Cell Ontology inference, we
designed an ontology-aware accuracy metric called CL accuracy. Denote CL terms
in the CL directed acyclic graph as ci ∈ C, where C is the set of all CL terms. Let ≺
be the “is_a” relationship, i.e., ci ≺ cj denotes that fact that ci is a subtype of cj. Note
that ≺ includes indirect relationships, i.e., ci ≺ cj, cj ≺ ck leads to ci ≺ ck. Let ci ≼ cj
denote ci ≺ cj or ci= cj. For simplicity, let ci ≼ C* denote the fact that ∃cj ∈ C*, ci ≼
cj, where C* ⊆ C is an arbitrary subset of CL terms. Similarly, C* ≼ ci denotes ∃cj ∈
C*, cj ≼ ci. Further, we use ∇ci

¼ cjjcj ≼ ci
n o

to denote the descendent set of ci.

Let Cref and Cquery be the set of all CL terms existent in the reference and query
dataset, respectively. When computing CL accuracy, we first determine whether
query CLs are positive or negative cell types. A query CL ci ∈ Cquery is considered
positive if ci ≼ Cref or Cref ≼ ci. Otherwise the query CL is considered negative.
When a positive query CL ci is predicted as cj (note that in BLAST2CO, it is
possible that cj ∉ Cref), CL accuracy is computed as:

CL accuracy ci; cj
� �

¼

1
CIj j
P
ck2CI

∇ck

�� ��
∇cj

��� ���; ci � cj

1; cj ≼ ci
0; otherwise

8>>>><
>>>>:

ð33Þ

where CI is the set of intermediate CL terms between ci and cj which are also
theoretically inferable from Cref.:

CI ¼ ckjci ≼ ck ≼ cj;Cref ≼ ck
n o

: ð34Þ
For negative query CLs, CL accuracy= 1 if the cells are rejected, otherwise CL

accuracy= 0. CL MBA can then be calculated by averaging the above CL accuracy
across different CL terms.

Web interface. For conveniently performing and visualizing Cell BLAST analysis,
we built a one-stop Web interface. The client-side was made from Vue.js, a single-
page application Javascript framework, and D3.js for cell ontology visualization.
We used Koa2, a web framework for Node.js, as the server side. The Cell BLAST
Web portal with all accessible curated datasets is deployed on Huawei Cloud.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All scRNA-seq datasets used in this study were obtained from public data repositories,
with detailed information including accession codes and URLs available in
Supplementary Data 2. Source data for the benchmark experiments are available in
Supplementary Data 4. Curated datasets in ACA are available through our Web portal
https://cblast.gao-lab.org/download.

Code availability
The full package of Cell BLAST is available at https://cblast.gao-lab.org. Code necessary
to reproduce results in the paper is deposited at https://github.com/gao-lab/Cell_BLAST.
To ensure reproducibility, all benchmarks and tests are assembled using Snakemake, and
environment configuration files are provided. The Cell BLAST python package is also
available as Supplementary Software.
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