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Abstract
The need to address the challenge of vagueness across several domains of applicability of ontology is gaining research

attention. The presence of vagueness in knowledge represented with description logic impairs automating reasoning and

inference making. The importance of reducing this vagueness in the formalization of medical knowledge representation is

rising, considering the vulnerability of this domain to the expression of vague concepts or terms. This vagueness may be

addressed from the perspective of ontology modeling language application such as ontology web language (OWL).

Although several attempts have been made to tackle this problem in other disease prognoses such as diabetes and

cardiovascular diseases, a similar effort is missing for breast cancer. Minimizing vagueness in breast cancer ontology is

necessary to enhance automated reasoning and handle knowledge representation problems. This study proposes a

framework for reducing vagueness in breast cancer ontology. The approach obtained breast cancer crisp ontology and

applied fuzzy ontology elements based on the Fuzzy OWL2 model to formulate breast cancer fuzzy ontology. This was

achieved by extending the elements of OWL2 (a more expressive version of OWL) with annotation properties to fuzzify

the breast cancer crisp ontology. Results obtained showed a significant reduction of vagueness in the domain, yielding 0.38

for vagueness spread and 1.0 for vagueness explicitness. In addition, ontology metrics such as completeness, consistency,

correctness and accuracy were also evaluated, and we obtained impressive performance. The implication of this result is

the reduction of vagueness in breast cancer ontology, which provides increased computational reasoning support to

applications using the ontology.
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1 Introduction

Cancer is a chronic disease caused by uncontrolled cell

growth. Female breast cancer is a leading cause of cancer

death in women, with a record high of 48,530 cases in the

USA in 2020. New cases of cancer itself are surging

worldwide and are expected to rise to 15.5 million in 2030

with distribution according to 20–34 (0.9%), 35–44 (6.0%),

45–54 (15.0%), 55–64 (20.8%), 65–74 (19.7%), 75–84

(22.6%) and above 85 (15.1%) years [1–4]. As a result,

studies approached the problem of detection and diagnosis

of breast cancer using computational methods such as

computer-aided diagnosis (CAD) and artificial intelligence

[5–8]. But not many efforts are channelled toward knowl-

edge representation to aid knowledge-based systems in

detecting breast cancer. We observed that most CAD-based

solutions that apply a computational approach to tackling
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the problem depend on a kind of knowledge conceptual-

ization (explicitly or implicitly) and representation to

improve performance, accuracy, acceptance, and confident

value. Recently, the use of logic such as fuzzy and

description logics (DL) has gained significant research

interest in supporting this knowledge formalization or

representation of domain knowledge. Ontology, an out-

come of the application of DL, has proven to be useful for

this task.

Ontologies are a pillar of the Semantic Web considering

their roles in supporting the formalization and representa-

tion of domain knowledge by providing constructs for

formal relations. They allow for the organization of

biomedical concepts to describe domains such as anatomy,

environment, genetics and others. They have been widely

used in a machine-processable way for enhancing reason-

ing with domain knowledge [9]. Specifically, domain

ontology consists of a hierarchical description of concepts

and the description of the properties of each concept’s

instances in the domain. Domain ontology is constructed

using ontology languages like Web Ontology Language

(OWL), consisting of OWL1 and OWL2 versions is a

family of knowledge representation languages and have

variants such as OWL Lite, OWL full, and OWL DL.

Although OWL DL provides a richer construct, it is limited

where the knowledge in a domain consists of vague defi-

nition or expression as typical with medical sciences.

Hence, encoding domain knowledge using the language

often produce a knowledge-based system full of vagueness

and imprecision. Vagueness and uncertainty related to

domain knowledge arise from peculiarities of the domain,

context-dependency or differences in experts’ conceptual-

ization of a domain [10].

Vagueness is formally defined as a semantic phe-

nomenon that is exhibited through predicates that supports

borderline cases [11] and may appear as either degree or

combinatory vagueness. A study describes degree vague-

ness as a lack of precise boundaries, while combinatory

vagueness may be identifiable by lack of sharp discrimi-

nation between combinatorial conditions [12]. We

acknowledge that vagueness needs to be disambiguated

from similar notions such as uncertainty, inexactness, and

ambiguity. Although, both vagueness and uncertainty

remain a challenge that has motivated research gap inter-

ests in knowledge representation [13]. To demonstrate the

existence of vagueness in the domain, consider the fol-

lowing: the outcome of Positron Emission Tomography

(PET) scans may be reported as normal, abnormal Lymph

Nodes, advanced PET Scan; urokinase plasminogen acti-

vator and its inhibitor are reported as higher (2.81–5.7),

borderline (0.41–2.8) and normal (0.0–0.4) levels; carci-

noma is defined as well differentiated, moderately differ-

entiated, or poorly differentiated; results for estrogen

receptor (ER) and progesterone receptor (PR) are as neg-

ative, weakly positive, positive, percent positive, and

whether the staining is weak, moderate, or strong; all these

are strong indications of the existence of a high level of

vagueness in the domain.

Attempts have been made using fuzzy logic and prob-

ability [14] to address this gap in the literature. Fuzzy logic

has gained research focus in tackling borderline cases of

vagueness and cases of imprecision. The limitation of

natural language in addressing the challenge of vagueness

using a function that assigns fuzzy truth value has made it

possible for the use of fuzzy logic [15–18]. Fuzzy ontolo-

gies are an extension of crisp ontologies through the

addition of fuzzy elements like fuzzy concept, fuzzy object

property, fuzzy data property, and fuzzy datatype [19]. The

use of ontology annotation with fuzzy logic is applied to

combine both crisp ontology (CO), crisp ontology instan-

ces (COI), fuzzy ontology (FO), fuzzy ontology instances

(FOI) into a fuzzified ontology FO = (CO, FO, COI, and

FOI) [20]. Traditionally, plugins such as Fuzzy OWL2,

Fuzzy Protégé, and Extension of Protégé for automatic

fuzzy (EPAF) ontology building may be used in developing

fuzzified ontologies [20–22]. Fuzzy OWL2 allows for

better expressivity of concepts in ontology to reduce

vagueness. It supports the use of fuzzy membership func-

tion as a mechanism for modeling concepts with vague-

ness. These member function assigns to every presumably

vague concept x a degree of truth, measured as a value in a

truth space. Examples are left-shoulder, right-shoulder,

trapezoidal, and triangular.

Although crisp ontology of breast cancer has been ear-

lier developed in [23], however since the issue of vague-

ness was not addressed, we found that the computational

reasoning process was impaired. In addition, whereas

studies exist using fuzzy logic for breast cancer-based

CADs [4, 24–27], but none is reported on fuzzification of

breast cancer ontology. As a result, this study found it

relevant to consider fuzzy logic in addressing the reduction

of vagueness from domain knowledge used in knowledge

representation for breast cancer. This study handles both

degree and combinatory vagueness through the use of

fuzzy ontology. This study aims to improve computational

reasoning by reducing vagueness in the domain by fuzzi-

fication of crisp ontology. This is achieved using OWL2,

which provides annotations on ontologies, axioms, and

entities, which are then used to fuzzify the crisp ontology.

We leveraged Fuzzy OWL2, FuzzyDL, Hermit/Pellet rea-

soners, and Protégé editor to develop crisp and then the

fuzzification of OWL2 ontology.

The following are the contributions of the paper:

i Development of a Fuzzy OWL-2 framework to

improve computational reasoning on crisp ontology
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by reducing vagueness in the domain of breast cancer

by the fuzzification of crisp ontology.

ii Identification and implementation of a fuzzy concept,

fuzzy data property (attribute), fuzzy relation,

datatype, and modifiers to achieve a novel breast

cancer fuzzy ontology using Fuzzy OWL2

The remaining part of this paper is organized as follows:

Sect. 2 presents a review of related studies; Sect. 3 dis-

cusses the proposed framework; implementation and

querying of the fuzzy ontology are presented in Sect. 4. We

evaluated the quality of the resulting ontology and pre-

sented results and findings in Sect. 5; finally, the conclu-

sion of the study is discussed in Sect. 6.

2 Related works

This section presents studies focused on the development

of both fuzzy and non-fuzzy ontologies. The aim is to

allow readers to understand research efforts channeled

toward the reduction of vagueness in ontology and the

negligence of such vagueness in other studies. We

emphasize their approaches, contributions and limitation.

In addition, the presentation of the studies is done in

chronological order.

Dhingra and Bhatia, in their study, presented a strong

argument for the need for the development of the ontology,

related tools, query languages for knowledge formalism

and representation. The authors proposed three ontologies

for the domain of laptop usage. Their aim for this is to

motivate effective mechanisms to curb problems associated

with information retrieval. The study applied the use of DL

query languages to validate the ontologies created [28].

Although the development of ontologies was advocated in

the study, no consideration for tackling vagueness was

reported. In a related work focused on ontology develop-

ment alone, Chen and colleagues developed an ontology

for diabetic patients to aid doctors in reaching an efficient

diagnostic decision. They combined the ontology with

Semantic Web Rule Language (SWRL) to populate the

knowledge base with 766 cases, of which only 269 records

had diabetes [29]. Whereas this study supports inference

making through rule execution, we argue that the solution

does not address the challenge of vagueness in their

ontology. In an attempt to propose a CAD-based system

driven by the case-based reasoning (CBR) paradigm,

Oyelade & Ezugwu developed a COVID-19 ontology for

formalizing and representing domain knowledge and case-

level representation. The ontology assists the CBR rea-

soning framework for effective decision-making. The

ontology was instantiated with a record of 71 cases [30].

While these contributions are impressive considering the

case-level modeling using ontology, the crisp formalism

reveals the omission to mitigate the issue of vagueness in

the domain.

Considering the limitation of studies in [28–30] in

addressing the challenge of vagueness, we, however, found

some studies which made some attempts. For instance, in a

study, Parry emphasized the need to handle vagueness

through the postulation of fuzzy ontology. The author

revealed that when the value for the degree of membership

is added to every vague term, the ontology would have

attained fuzzification, hence eliminating vagueness. The

study applied its fuzzified ontology to the problem of

corpus analysis and the use of a relevance feedback

mechanism [31]. In a related study, the same author han-

dled document structure identification using fuzzy ontol-

ogy for knowledge representation in medical sciences. The

fuzzified ontology was applied to an intelligent system that

allows a group of users to identify the information they find

useful [32]. While the two studies appeared to handle

vagueness in ontology, we note that the method is ineffi-

cient. Gu and colleagues fuzzified a crisp ontology using

the fuzzy instance relation, fuzzy concept relation, and

fuzzy concept base relation fuzzy concepts element. The

resulting fuzzy ontology was applied to reduce uncertainty

in domain knowledge with the hope to improve domain

reasoning on the knowledge base [33]. The approach of the

study is interesting and presents the potential for reduction

of vagueness in the ontology.

Alexopoulos et al. developed an enterprise-based fuzzy

which modeled knowledge about the operation of a con-

sulting firm. The authors claimed that the fuzzification of

the ontology tackled vague knowledge in the domain,

thereby aiding computational reasoning on when to write

or not write a proposal for a tender call [11]. We found the

presentation of the method used in the study to be unclear.

Asma and Zizette fuzzified ontology to represent and

classify individuals. The fuzzied ontology aims to allow for

a reasoning mechanism capable of grouping individuals in

their respective hierarchies [34]. Also, Fouda et al. pro-

posed fuzzy ontology, modeled after the Disease Ontology

(DO), for the cardiac arrhythmias disease to reduce the

obvious level of real and uncertainty cases as seen in the

domain. The authors achieved this using the combination

of OWL2 and FuzzyOWL2 plugin in Protégé [35]. The

approach used in the study is standard and proof capable of

addressing the problem. A similar approach was applied to

reducing vagueness in a study on the development of

ontology on diabetes. The authors proposed a fuzzy case-

based OWL2 ontology for use in a CBR framework. To

demonstrate the usability of the ontology in a CBR

framework, the fuzzy ontology was populated with 60 real

diabetic cases [36].
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Furthermore, Elhefny and colleagues developed a fuzzy

ontology to represent obesity-related cancer. Using OWL2,

the fuzzy ontology tackled the overlapping or vague con-

cepts in the domain. The study was also able to cope with

the linguistic domain variables, which were impossible

using crisp ontology and query executed through the fuzzy

DL reasoner [37]. Lastly, a study related to Fouda et al.

proposed a novel case-base fuzzy OWL2 ontology and

claimed to be the first fuzzy case-base ontology in the

medical domain. The fuzzy ontology was based on a case-

based fuzzy Extended Entity Relation (EER) data model.

Fuzzified elements consist of fuzzy concepts/classes, fuzzy

object properties, fuzzy data, and fuzzy data. They applied

SPARQL-DL for query operation after instantiating the

ontology with 60 cases [38]. Studies in both [37, 38] pre-

sent an interesting approach for developing a medical

ontology, which supports computational reasoning for the

diagnostic process. In addition, they attempted to reduce

the vagueness in their ontology using fuzzy logic.

Although we found studies addressing the need to

reduce vagueness in ontologies on diabetes, obesity, and

cardiac arrhythmias in medical sciences from 2004 to 2020,

no report presented on breast cancer. In addition to the

need to reduce vagueness in breast cancer ontology, a

method capable of lowering the vagueness to the minimum

is needed. This study is aimed at addressing this research

gap.

3 Methods

The representation of the proposed breast cancer ontology

(BCO) and the improved breast cancer fuzzy ontology

(BCFO) are presented in this section. We first describe the

framework designed to guide the proposed work and then

present the structure of the BCFO. In Fig. 1, the proposed

framework showing the flow processes for the development

of the proposed BCFO is presented. This study acquired the

existing BCO ontology as presented in [39, 40]. However,

this study found that the acquired BCO requires updating

and improvement to allow omitted concepts and relations.

The resulting BCO became input into the methodologies

for the development of the BCFO.

The BCFO follows the methodologies described in [11]

to achieve its objective as described in the containing box

on the right-hand side of Fig. 1. The outcome of the

framework is the desired fuzzy ontology that may be

queried using a semantic web-based query language. In

addition, the resulting ontology may be applied to intelli-

gent systems developed to aid the diagnosis of breast

cancer.

Following the disease ontology (DO) [41], we generated

a structure for formalizing the proposed breast cancer fuzzy

ontology. Figure 2 shows the major classes, the object and

datatype properties and the use of the fuzzy OWL-2

plugging to add the fuzzy fragment of the breast cancer

fuzzy ontology. The figure presents a wider view of the

crisp ontology and a fragment of the fuzzy ontology. The

figure aims to give an overview of the basic skeletal rep-

resentation of the BCFO rooted in its source, the BCO. We

identified some terms or concepts which may need fuzzi-

fication, especially those with numeric values and other

datatype properties and even concepts. These fuzzified

elements are detailed in Sect. 3.3. For brevity, we have

excluded some other concepts, object and data properties

and present details of the two fragments of the ontology in

Sect. 4.

Fig. 1 Proposed framework for developing BCFO knowledge from BCO using Fuzzy OWL-2 plugging and Protégé
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3.1 The crisp breast cancer ontology

The crisp breast cancer ontology followed the structure of

the DO and was corroborated with the provision in breast

cancer-based clinical practice guidelines (CPG) in [42, 43].

This crisp ontology became the foundation for the pro-

posed BCFO, making it a special case of a fuzzy ontology.

The BCO does not allow for modeling vagueness; hence,

all representations such as classes, object and datatype

properties, and datatype belong to their membership class

to a degree equal to 1. Therefore, we exploited this limi-

tation to develop it further by identifying crisp elements

that can be fuzzified to achieve BCFO.

3.2 Need for the fuzziness of breast cancer
ontology

The need for fuzzification of the proposed BCO became

necessary in an attempt to tackle the problem of vagueness

resulting from the domain of consideration. In our previous

work [39, 40], we realized that the BCO ontology is mostly

limited and will be inefficient when vague descriptions are

presented to the underlying intelligent system been sup-

ported. As a result, this study is focused on modeling

vagueness without provision for handling uncertainty.

Uncertainty often includes cases of probability, ambiguity,

or inexactness, which we will leave for applying other

techniques in solving them.

3.3 Definition of fuzzy ontology elements

This section presents fuzzy elements grouped into fuzzy

concepts and fuzzy properties/relations, which allows for

modeling both degree vagueness and combinatorial

vagueness [10]. Our focus for the crisp ontology fuzzifi-

cation is on object properties, data properties and data

types contained in it. Therefore, we shall demonstrate the

application of fuzzy elements such as fuzzy data types,

weighted sum concepts, weighted concepts, fuzzy nomi-

nals, and Zadeh logic.

3.3.1 Representation of fuzzy concepts

Fuzzy concepts are so named because they are expected to

contain at least fuzzy property. The need for the fuzzifi-

cation of crisp concepts allows for the specification and

representation of concepts or classes that belong to another

class (superclass) to some degree. For instance, we may

want to say that a patient case is diagnosed with breast

cancer to a certain degree. We have the PatientCase class

and the subclass SuspectiblePatientCase, which belongs to

the parent class to a certain degree. The preceding

describes concepts whose instances may be its members to

Fig. 2 The structure of the BCO and BCFO as an addendum
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a certain degree. As another example, consider classifying

patients based on menopause status such as YoungPa-

tientCase, MenopausePatientCase, OldPatientCase. Cer-

tainly, we know that these classes will be allocated vaguely

due to different opinions held about young or old. Con-

sidering the preceding, a concept may have attribute values

with no vagueness, such as ‘‘age’’ as a linguistic variable

taking values ‘‘young,’’ ‘‘middle-aged,’’ or ‘‘old’’ defined

by means of fuzzy numbers.

In addition to the provision for modeling fuzzy con-

cepts, we can also achieve the fuzzification of concepts that

have already been declared fuzzy but having more prop-

erties such as weight, modified with adjectives, and sum-

mation of concepts with weights. These categories of fuzzy

concepts are the weighted concepts and the weighted sum.

Whereas the former describes a fuzzy concept that is being

weighted, the latter is created through the formation of a

union from the former. The two cases are referred to as

Weight Concepts and Weighted Sum Concepts. The need

for weighted concepts may arise when we assign a weight

to an already defined fuzzy concept. For instance, consider

the fuzzy concepts: FemaleBreastCancerSignAssumed,

FemaleBreastCancerRiskFactorAssumed, and

FemaleBreastCancerSymptomAssumed, which may be

assigned weights 0.3, 0.2, and 0.5, respectively, all sum-

ming to 1.0. Each of the weighted concepts has an impact

on the overall diagnosis of patients with breast cancer.

However, their weighted value on the overall decision is

being regulated by their individual weights.

3.3.2 Representation of fuzzy relations and data types

Two types of relations are considered here, namely the

fuzzy object property and the fuzzy datatype property.

These relations exist between entities in ontology and may

associate more than one paired entity. In our proposed

BCFO, an object relation or property may associate two or

more classes with different degrees of strength. For

instance, a fuzzy object property is useful when there is a

need to state that an instance of a class belongs to that class

to a particular degree. As an example, patiencase01 (an

instance of PatientCase, a crisp class) hasStage

FemaleBreastCancerStage at a degree of 0.6, and another

case where patiencase01 hasStage FemaleBreastTumorS-

tage at a degree of 0.4. We see that the hasStage object

relation associates two different entities at different

degrees. Hence, we can classify hasStage as a fuzzy object

relation.

The second fuzzy property is the fuzzy datatype prop-

erty or attribute. Whereas the fuzzy object property links

instances of two classes, the fuzzy datatype property links

the instance of a class to literal at a given degree. It also

associates instances of a class to fuzzy data types. An

example for the former is patientcase01 hasOccupation

‘Trader’ at a degree of 0.8, while an example for the latter

is patientcase01 has-Fuzzy-Age oldAge.

Another scenario requiring the use of fuzzy datatype or

concrete role is the representation of crisp numerical values

with linguistic values. For example, in Fig. 2 a PatientCase

may have age using the hasAge data property. But we

know that the age term may also assume a fuzzy definition

ranging from {youngAge, menopauseAge, oldAge}.

Hence, a concrete role otherwise known as fuzzy datatype

property will be created for relating each of the numeric

values to their linguistic values. As another example, we

consider the BMI representation such that four fuzzy

datatype data are created: hasUnderweight, hasNormal-

weight, hasOverweight, and hasObese. Using pre-defined

fuzzy data types (to be defined shortly), underweight,

normalweight, overweight, and obese. The fuzzy datatype

properties will use the fuzzy data types as a range, while

the class BMI is used as a domain. An example of usage is

BMI hasUnderweight underweight. Another example is the

age declaration which may have some form of vagueness

where patience’s age may be declared as falling into this

range: youngAge, menopauseAge, oldAge. Three fuzzy

object properties are applicable here which are called

hasYoungAge, hasMenopauseAge, and hasOldAge.

Assuming the creation of a crisp class Age, we then write

the axiom Age hasYoungAge youngAge.

In the case of fuzzy data types, we have chosen to

represent vague terms by using linguistic terms. We define

fuzzy predicate using the functions in Fig. 3 over the

interval [k1, k2], where k1, k2 are positive integers repre-

senting both minimum and maximum inclusive values. The

trapezoidal function, triangular function, left-shoulder

function, right-shoulder function, linear, and mod are

illustrated in Fig. 3. In addition to k1, k2, we also need to

state values for a, b, c, d.

The need to represent fuzzy data types became neces-

sary due to the availability of numerical values in ranges.

For example, in crisp ontology, patient blood pressure for

the systolic and diastolic are written as 90–120 and 60–80,

respectively. The cases of fuzzy terms as used in Fig. 2

such as {normal, abnormal} for a chest x-ray and abdom-

inal pelvic ultrasound, {low, normal, high} for renal, liver

and kidney tests, {underweight, normalweight, overweight,

obese} for BMI and lastly {youngAge, menopauseAge,

oldAge} for Age require the use of fuzzy data types for

encoding. In the following paragraphs, we shall be defining

the range, member function, equation and shape of items

needing representation using fuzzy data types. After con-

sidering input from domain experts and consultation from

domain-based clinical practice guidelines (CPG), range

values were carefully chosen. Member function graphs

were plotted using Python skfuzzy [44] library.
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BMI: People having BMI\ 19 are classified as under-

weight; 19.5–24.0 are classified as normal weight; 25–29

are classified as overweight, and[ 30 are classified as

obese; Considering the BMI linguistic variable, we have

four linguistic values listed below and the range of their

values. Taking the minimum BMI any person can have to

be 0 and maximum as 250 for k1 and k2, then the

following:

underweight = { (18.5,1), (19.5,0)} = [hasUn-

derweight (left shoulder (0, 250,

18.5, 19.5)).

normal = { (18.5,0), (19.5,1), (24,1),

(25,0)} = [hasNormal (trapi-

zoidal (0, 250, 18.5, 19.5, 19.5, 24.5)).

overweight = { (24,0), (25,1), (29,1),

(30,0)} = [hasOverweight(tri-

angle (0, 250, 24.0, 25.0, 29.0, 30.0)),

obese = { (29,0), (30,1)} = [hasObese

(right shoulder (0, 250, 29.0, 30.0)).

The BMI linguistic variable, which is expected to have

numerical features, has four concrete roles defined for each

of its linguistic values hasUnderweight, hasNormal,

hasOverweight, and hasObese, so that BMI is the

domain and the four linguistic values are the ranges.

Henceforth, the fuzzification function for numeric values in

the ontology will be model using Eqs. (1), (2) and (3)

based on the values of a and b.

f xð Þ ¼
0 x� a
a� x

b� a
; a� x� b

1 x� b

8
<

:
ð1Þ

when c is given:

f xð Þ ¼

0 x� a
a� x

b� a
; a� x� b

c� x

c� b
b� x� c

1 x� c

8
>>><

>>>:

ð2Þ

when d is given:

f xð Þ ¼

0 x� a
a� x

b� a
; a� x� b

d � x

d � c
; c� x� d

1 x� d

8
>>>><

>>>>:

ð3Þ

This study model each numeric attribute or linguistic

variable to have datatype properties of the form has-Fuzzy-

linguistic variable, e.g. has-Fuzzy-BMI, so that the

numeric value of BMI is assigned to it. An example of an

axiom using datatype property is patientcase01 has-

Fuzzy-BMI 22. Since BMI has numeric value 22, it is

modeled as funderweight(22) = 0, fnormal(22) = 0.5, fover-

weight(22) = 0, and fobese(22) = 0. Since fnormal(22) has the

highest value, BMI representative linguistic results to

normal, hence has-Fuzzy-BMI = normal. Therefore,

the fuzzification of the numeric value is as follows:

underweight xð Þ ¼

0 x� 18:5
18:5 � x

1
; 18:5� x� 19:5

1 x� 19:5

8
>><

>>:

;

fnormal xð Þ ¼

0 x� 18:5
18:5 � x

1
; 18:5� x� 19:5

24:5 � x

5
; 19:5� x� 24:5

1 x� 25:0

8
>>>>>><

>>>>>>:

foverweight xð Þ ¼

0 x� 24:0
24:0 � x

1
; 24:0� x� 25:0

30:0 � x

1
; 29:0� x� 30:0

1 x� 30:0

8
>>>>>><

>>>>>>:

fobese xð Þ ¼

0 x� 29:0
29:0 � x

1
; 29:0� x� 30:0

1 x� 30:0

8
>><

>>:

The fuzzy member function is shownin Fig. 4 as follows:

Age: We assumed that patients under the age of 40 are

classified as young; those within 40–60 are classified as

menopausal age; 60 and above are classified as old. Con-

sidering the Age linguistic variable, a numeric attribute,

we have four linguistic values listed below and the range of

Fig. 3 Fuzzy functions used for representing fuzzy datatype are as follows: trapezoidal function; triangular function; left-shoulder function; right-

shoulder function; linear function, respectively
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their values. Taking the minimum Age to be 0 and maxi-

mum as 120 for k1 and k2, respectively, the following hold:

youngAge = { (30.0,1),

(40.0,0)} = [hasYoungAge

(left(0, 120, 30.0, 40.0)).

menopauseAge = { (30.0,0), (40.0,1),

(60,0)} = [hasMenopauseAge

(triangle(0, 120, 30.0, 40.0, 60.0)).

oldAge = { (60,1), (100,0)} = [hasOl-

dAge (right(0, 120, 60.0, 120.0)).

The Age linguistic variable, which is expected to have

numeric feature, has three concrete roles defined for each

of its linguistic values: hasYoungAge, hasMenopau-

seAge, and hasOldAge. Age is the domain, and the

three linguistic values or data types are the ranges.

The fuzzification of the numerical value that a patient

case may present is as follows:

fyoungAge xð Þ ¼
0 x[ 40
x� 40

10
30� x� 40

1 x\30

8
><

>:
;

fmenopauseAge xð Þ ¼ �

0 x� 30

30 � x

40 � 30
; 30� x� 40

60 � x

60 � 40
; 40� x� 60

1 x� 60

8
>>>>>><

>>>>>>:

:

foldAge xð Þ ¼
0 x\40
x� 40

40
40� x� 80

1 x[ 80

8
><

>:

and the fuzzy member function is shown in Fig. 5 as

follows:

Liver Function Tests (LFTs): Consists of a set of tests

carried out to check the liver’s health through blood sam-

ples. These tests include alkaline phosphatase (ALP),

prothrombin time/international normalized ratio (PT/INR),

albumin, total protein, Gamma-glutamyl transferase

(GGT), bilirubin, alkaline phosphatase (ALP), alanine

aminotransferase (ALT) [45]. For instance, the range of

values considered are low, normal and high for albumin

(ALB) test are 1.4-3.4 g/dL, 3.4–5.4 g/dL and 5.5–7.4 g/dL

respectively [46]. Taking the minimum of ALB as 0 and

maximum as 10 for k1 and k2, then the following holds:

lowALB = { (1.1,1), (3.4,0)} = [hasLowALB

(left(0, 10, 1.4, 3.4)).

normalALB = { (1.1,0), (3.1,1), (5.1,1),

(7.1,0)} = [hasNormalALB (triangle

(0, 10, 1.1, 3.1, 5.1)).

highALB = { (5.5,1), (7.5,0)} = [hasHighALB

(triangle(0, 10, 3.1, 5.1, 7.1)).

The ALB linguistic variable which is expected to have

numeric feature has three concrete roles defined for each of

its linguistic values lowALB, normalALB, and high-

ALB, so that ALB is the domain and the three linguistic

values or data types are the ranges.

The fuzzification of the numeric value is as follows:

Fig. 4 Fuzzy member functions for BMI numerical attribute fuzzification

3060 Neural Computing and Applications (2022) 34:3053–3078

123



flowALB xð Þ ¼
0 x[ 3:4
x� 3:4

2
1:4� x� 3:4

1 x\1:4

8
><

>:
;

fnormalALB xð Þ ¼

0 x� 1:1
1:1 � x

3:1 � 1:1
; 1:1� x� 3:1

5:1 � x

5:1 � 3:1
; 3:1� x� 5:1

1 x� 5:1

8
>>>>>><

>>>>>>:

;

fhighALB xð Þ ¼

0 x� 3:1
3:1 � x

5:1 � 3:1
; 3:1� x� 5:1

7:1 � x

7:1 � 5:1
; 5:1� x� 7:1

1 x� 7:1

8
>>>>>><

>>>>>>:

and the fuzzy member function is shown in Fig. 6 as

follows:

Kidney Function Tests (KFTs): Test for the performance

state of the kidney is usually done by estimated glomerular

filtration rate (eGFR), which is computed by the

measurement of serum creatinine levels in combination

with age, sex, weight or race [47]. However, measurement

of eGFR is not sufficient alone to determine the kidney’s

health status, hence the need for other kidney function

tests. These tests include urinalysis, serum creatinine test,

blood urea nitrogen (BUN). A normal eGFR should be[
= 60, 20–60 means low, and\ = 15 is high [2, 48].

Considering the values of 0 and 120 for minimum and

maximum as it relates with k1 and k2, then these follow:

lowGFR = { (15.0,1), (65.0,0)} = [hasLowGFR

(left(0, 120, 15.0, 65.0)).

normalGFR = { (1.1,0), (60.0,1), (95,1),

(7.1,0)} = [hasNormalGFR (trapi-

zoidal (0, 120, 55.0, 60.0, 95.0, 110.0)).

highGFR = { (5.0,1), (15.0,0)} = [hasHighGFR

(right(0, 120, 5.0, 15.0)).

Fig. 5 Fuzzy member functions for Age numerical attribute fuzzification

Fig. 6 Fuzzy member functions for ALB numerical attribute fuzzification
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The eGFR linguistic variable which is expected to have

numerical feature has three concrete roles defined for each

of its linguistic values lowGFR, normalGFR, and

highGFR. This allows for eGFR to be used as the domain

and the three linguistic values or data types are the ranges.

The fuzzification of the numeric value is as follows:

flowGFR xð Þ ¼
0x[ 65

65 � x

50
15� x� 65

1x\15

8
><

>:

fnormalGFR xð Þ ¼

0x� 65

60 � x

15
; 35� x� 65

95 � x

15
; 65� x� 95

1x� 95

8
>>>>>><

>>>>>>:

fhighGFR xð Þ ¼
0x[ 15

x� 15

10
5:0� x� 15

1x\5:0

8
><

>:

and the fuzzy membership function is shown in Fig. 7 as

follows:

There are several other numerical values modeled in the

ontology. These include blood tests such as creatinine

levels, blood urea nitrogen, electrolytes, complete blood

count, and rate of coagulation. Others are urinalysis, which

measures the level of proteinuria; tumor markers, quanti-

fying substances produced by cancer cells blood or urine,

includes Alpha-fetoprotein (AFP), Lactate dehydrogenase

(LDH), Prostate-specific antigen (PSA), CA 125, CA 19–9,

CA 15–3, CA 27–29, Carcinoembryonic antigen (CEA),

and Neuron-specific enolase (NSE) [49]. For brevity, the

formalism given above will suffice to illustrate these

numerical values are encoded using corresponding fuzzy

values.

3.3.3 Representation and application of fuzzy modifier
to concepts, data types and relations

The cardinal objective of introducing the OWL2 is to

improve the web ontology language’s expressivity in

modeling de-vagued ontology. Fuzzy OWL2 plugin [50]

made provision for construct allowing for the use of

modifier. In addition to enhancing ontology expressiveness,

modifiers also improve semantic queries. The fuzzy mod-

ifier is denoted using a mod function that changes a fuzzy

set’s membership to triangular or linear. Fuzzy modifiers

are used to add semantics to existing constructs like data

types.

Considering the domain of the proposed BCFO, some

reoccurring terms suitable for representation as a modifier

were obtained, namely severe, very, mild, advance,

which are defined using fuzzy modifiers as linear (0.9),

linear (0.8), linear (0.3), and linear (0.7), respectively. For

instance, consider some of these fuzzy modifiers as they are

applied to fuzzy concepts, fuzzy data types, and fuzzy

relations already created in Sects. 3.3.1–3.3.2. The repre-

sentations in Code Listings 1, 2, 3, and 4 describe the

creation of the modifiers severe, very, mild, and

advance, respectively.

Fig. 7 Fuzzy member functions for eGFR numerical attribute fuzzification
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Fig. 8 Crisp ontology of domain-based knowledge representation of breast cancer
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a. Modified concept: We consider an example of ad-

vance in the use of stating an advance

BreastCancerPatientCase which is a subclass

of PatientCase. This is represented in Listing 5.

We could choose to describe the case of a patient whose

BMI value is very normal:

very(PatientCase G 9 hasBMI.Normal)

b. Modified data types: We earlier mentioned that eGFR

lower than 15 indicates a high tendency of kidney

failure. But assume a value of 7 will require using the

modifier very to represent it in the BCFO. Hence,

Listing 6 details the representation.

c. Modified relations: to represent modified fuzzy

relations like datatype properties, a modifier, say

severe, can be used to note that a patient case ALB is

severely low. This is formalized, as shown in Listing

7.

There are more cases of applying such modifiers in

the fuzzy ontology. However, the few examples given

above may suffice to describe the representation of modi-

fiers in the ontology.

3.3.4 Representation of fuzzy logic used in breast cancer
fuzzy ontology

As mentioned in the introduction of this section, this study

applies its fuzzification task through Zadeh fuzzy logic.

The motivation for this selection is based on the founda-

tional nature of Zadeh over others as an example, and the

Łukasiewicz many-valued logics are derived from Zadeh

algebra [51], designed initially for modeling vague notions

[52]. Fuzzy logic used in the proposed ontology is modeled

using [20] Listing 8.

Where options for the replacement of fuzzy logic may

assume any of these:

\FUZZY_LOGIC[:= ‘‘lukasiewicz’’ | ‘‘zadeh’’

And the fuzzy logic representation as in Listing 9:

3.4 Validation of the breast cancer fuzzy
ontology

Using the fuzzy ontology reasoners Fuzzy DL [53], similar

to DeLorean [54], we tested the consistency of the ontology

(BCFO). This is necessary to ensure that the knowledge of

the domain is not wrongly represented even though cor-

rectly elicited from the domain expert. Similarly, we had

previously applied OWL-based reasoners such as Pellet

[55], Fact ?? [56], and Hermit [57] for validation of the

crisp ontology. The result of the validation for the two

cases shows that our ontology is consistent. To demonstrate

ontology inconsistency, we allow for misrepresentation,

thereby making the reasoner detect inconsistency. Once the

inconsistency was removed, the reasoner confirmed its

consistency.
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4 Implementation and experimentation
on the fuzzified ontology

The implementation and experimentation for ontology

development and query were achieved using Protégé editor

version 4.3.0, build 304. This editor uses the Java platform

JVM 1.6.0_26-b03 and is pre-shipped with other plugins

such as Cajun Visualization Plugin, Dlquery, OWLViz,

SPARQL Plugin, HermiT Reasoner 1.3.8, the OWL API

3.4.2, and Factplusplus Plug-in 1.6.2. We added two plu-

gins, namely FuzzyOWL 0.1.0 and Fuzzy DL, to provide

support for the fuzzification process. The host system has a

configuration of Intel (R) Core i5-4210U CPU at

1.70 GHz, 2.40 GHz; RAM size of 8 Gbytes on a Windows

10 OS version.

4.1 Implementation of the crisp and fuzzy
ontology with protégé

The BCFO proposed in this study is built on the disease

ontology (DO) [41]representing human disease informa-

tion. The DO, which semantically integrates with other

standard ontologies such as MeSH, ICD, NCI’s thesaurus,

SNOMED and OMIM to enrich its disease and medical

vocabularies, has proven useful in the biomedical com-

munity and other studies [38, 58]. The motivation to build

the BCFO on DO is generated from its standards and

provision for consistency and sustainable descriptions of

human disease terms.

The root class in the DO is the disease concept that

subclasses disease by an infectious agent, disease of

anatomical entity, mental health disease, metabolism, cel-

lular proliferation, and others. The domain of consideration

in this study is rooted in the disease of cellular proliferation

class. Cancer is one of the subclasses, and it relates with

other subclasses such as organ system cancer. Furthermore,

we found breast cancer as one of the subclasses, which in

turn subclass female breast cancer. For brevity, we present

a visualization of subclasses associated with the domain of

interest, as shown in Fig. 8. Interestingly, we found that

even the female breast cancer class has different types

(subclasses)–providing our proposed BCFO with a rich,

crisp ontology.

4.1.1 Crisp ontology

The ontology development process for the crisp ontology

acquired an existing ontology for improvement and

enrichment. This study embarked on this enrichment con-

sidering two observations made on the existing ontology:

(a) that the existing ontology was initially built as a lexicon

of terms with no provision for associations of concepts

with properties (object and datatype), (b) there was some

observed structural deficiency in the existing ontology

which may yield a less optimal solution to any underlying

expert system being supported and (c) a further consider-

ation of related CPG revealed that not the existing ontology

captured sufficient domain knowledge.

Efforts were therefore made in this study to tackle the

limitations of the acquired breast cancer ontology. A well-

structured crisp ontology was actualized as shown in

Fig. 9, which shows a detailed listing of the classes in a

coordinated hierarchical structure.

The top-level classes consist of Patient, PatientCase (the

latter describes patients case as modeled by patient’s hos-

pital file while the former describes the patient), Disease

(detailing the structure acquired from the DO mentioned in

Sect. 3), MedicalIntervention (a class aimed for the

description of the two major interventions patients often

receive namely treatment and diagnosis), ClinicalInvesti-

gation and ClinicalProtocol classes differ in the sense that

one aim at collecting some categories of investigations

such as LaboratoryTest, BloodMakerTest, GeneticTest,

MolecularTest, PathologyTest, and other tests or investi-

gations, the other models well-known domain knowledge

such as Symptom, RiskFactor, and Sign/Manifestation. We

note that most of these classes were further redefined to

adhere to the domain of consideration in this study. For

instance, the Symptom, RiskFactor, and Sign or Manifes-

tation have subclasses such as FemaleBreastCancerSymp-

tom, FemaleBreastCancerRiskFactor, and

FemaleBreastCancerManifestation. This became necessary

because concepts may inter-relate with other diseases like

female breast cancer, though some are strictly used in the

field of interest.

In Table 1, a detailed listing of the object and data

properties are shown. Note that these properties were ini-

tially denoted by associating lines among classes in Fig. 9

4.1.2 Fuzzy ontology

Clearly, classical ontologies developed for different

domains are mainly crisp and inefficient in handling diffi-

cult expressions with imprecision and vagueness. A fuzzy

ontology, like the one proposed in this study, will exploit

the concept and theories of fuzzy logic to overcome these

limitations. To implement such fuzzy ontology for the

female breast cancer situation, this study approached this

by creating a fuzzy OWL ontology and fuzzy OWL2 rep-

resentation. Existing annotation properties in OWL2 are

backwardCompatibleWith, comment, deprecated, incom-

patibleWith, isDefinedBy, label, priorVersion, seeAlso and

versionInfo. The fuzzy OWL2 representation provides

additional annotation property named fuzzyLabel to

encode its fuzzification. This is done in such a manner as to
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allow wrapper annotation tags around elements in the

ontology.

Considering a wide range of crisp ontology elements

that require fuzzification, each has been fuzzified turn as

detailed in Sect. 3.3. The guiding principle for the fuzzi-

fication process is to recognize fuzzifiable terms such as the

linguistic variable and their corresponding values. For

instance, linguistic variables consist of items like Age,

BMI, TotalProtein, PT/INR, GGT, ALB, albumin, Height,

ALT, ALP, GFR, and several others. Also, some linguistic

values fuzzified are overweight, underweight, obese, nor-

mal, oldage, youngage, menopauseage, nromalGFR,

highGFR, lowGFR, normalALB, highALB, lowALB,

normalALP, shortHeight, tallHeight, averageHeight,

Table 1 A listing of object properties and data properties of the crisp ontology

ObjectProperty DataProperty

diagnosedBy

hasAgeVariable

hasBMIVariable

hasBiopsyTest

hasBloodMakerTest

hasBreastTumor

hasBreastTumorStage

hasDaignosis

hasDisease

hasE-cadherinTest

hasFuzzyVariable

hasGeneTest

hasHeightVariable

hasInvestigation

hasKidney

hasLiverTest

hasManifestation

hasMolecularTest

hasParity

hasPathologicalGrade

hasPatientCase

hasRadiolgyExamination

hasRenalTest

hasRiskFactors

hasStage

hasStaging

hasSymptom

hasTNM

suspectibleHasStage

treatedBy

ageAtFirstChild

ageAtMenopause

hasALBCrisp

hasAdenosis

hasAgeCrisp

hasApocrineMetaplasiaCysts

hasAtypicalDuctalHyperplasia

hasAtypicalLobularHyperplasia

hasAverageHeight

hasBCIPredictive

hasBCIPrognostic

hasBMI

hasBMICrisp

hasBloodSugarLevel

hasCalciumLevel

hasChlorideLevel

hasColumnarCellChange

hasComplexSclerosingLesion

hasCrispValue

hasDuctalCarcinomaInSitu

hasEstrogenReceptor

hasFuzzyDataProperty

hasGFRCrisp

hasGender

hasGlandFormation

hasHER2Level

hasHeightCrisp

hasHighALB

hasHighGFR

hasIn-SituLobularCarcinoma

hasIntraductalCarcinoma

hasKi-67

hasLiverEnzymesLevel

hasLobularCarcinomaInSitu

hasLowALB

hasLowGFR

hasLymphNodeFeature

hasM

Fig. 9 Proposed crisp ontology of breast cancer with a detailed listing of classes and the subclasses in addition to a visualization display of the

complete ontology showing classes and some of their instances
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highALP, lowALP, normalALT, lowALT, hightALT, and

others. We fuzzified datatype properties or fuzzy attributes

such as severeHasLowALB. After completing the fuzzifi-

cation process, we realized our BCFO has 55 fuzzy data-

type properties, 34 fuzzy datatypes, and modified fuzzy

data types, datatype properties, and existing classes, object

properties and datatype properties in the crisp ontology.

Now that the fuzzy ontology structure is constructed,

developed, and certified to be consistent, we approach the

next phase of our development, populating the BCFO with

instances.

4.1.3 Instantiation of the fuzzy ontology

The approach used for the population of the BCFO ontol-

ogy with patient cases differs from the approach used in

[38, 40, 58]. The instances of the cases and the instances of

its describing features of their fuzzy ontologies were pop-

ulated using either manual method or relational database.

This study proposes a novel approach using the

hybridization of data structures. The justification of this

approach, which differs from the relational database

approach, is to avoid data duplication in two different data

representation formats. We argue that while the approach

of [36] presents a good mapping of patient case data from a

relational database to ontology, it suffers from the com-

putational cost of data translation. The hybridization of

using data structures to store patient cases before popu-

lating the BCFO is efficient, providing a good mapping

between the data structure and the ontology with a reduced

computational cost. The outcome of this approach is to

store both the taxonomy and instances in the ontology

structure so that the traditional TBox and ABox compart-

ment are maintained. Whereas Sects. 4.11 and 4.1.2

describes the taxonomy box (TBox) of the BCFO, the

instantiation, known as ABox (assertion box), for both

crisp and fuzzy elements is presented in this subsection.

Instances of patient cases were first stored in a singly

linked list. Generally, a linked structure is applied to

overcome the limitation of an array to allow for easy

insertion and deletion. This provides our approach with

efficient in-memory insertion, editing and deletion before

populating the BCFO. Linked lists have an organized

collection of nodes that store data items and address them

to other nodes so that each node has a data field and a

reference field. The first node is called the head, and the

last node is called the tail. Each element of the linked list

contains a patient case, representing a container of other

data structures. Let’s consider a patient case patientcasen
that is expected to have numeric features such as age, BMI,

GFR, ALB and several others and its no-fuzzifiable fea-

tures, instances of classes associated through object prop-

erties. Our patientcasen can be modeled using a hybrid of

data structures, as shown in Fig. 10.

As shown in Fig. 10, each instance of patientcasen has a

1-M or 1–1 mapping to its data. Using an association

pattern where an ordered pair of objects are paired together

using key and value for the first and second objects, we

associate the caseID of a patientcasen with the value (pa-

tientcasenValue). So, items having a 1-M relationship with

patientcasen are aligned accordingly using this structure.

Secondly, items, having a 1–1 relationship with patient-

casen, have a simple solution using a simple data structure

as an array while those with fuzzified features like Age,

BMI, GFR and several others use the multi-way tree (a

generic version of B-tree). This approach is convenient for

two reasons: since the values are all expected to be numeric

and that they maintain some order, say 0.0 (lowLB), 0.6

(normalALB) and 0.4 (highALB). Multi-way tree of order

m ensures that each node has at-most m subtrees, at least 1

subtree, and m-1 distinct keys, where the subtrees may be

empty and keys in each node are sorted. It also enjoys the

requirement that the leaf nodes need not be at the same

level.

4.2 Querying the fuzzy ontology

The scope of this study is limited to fuzzification of breast

cancer ontology and no provision for applying it to any

expert system. The outcome of this study will support

studies on medical reasoning based on expert or knowl-

edge-based systems. Notwithstanding, we attempted to

demonstrate querying the fuzzified ontology to provide a

query mechanism that supports expert systems or knowl-

edge-based systems. Semantic web-based query languages

such as SQWRL, f-SPARQL [59] and SPARQL-DL could

be explored for querying the ontology. In addition to that,

we applied the Fuzzy DL [60] plugin and the Gurobi

optimization tools [60, 61], accompanied by the Fuzzy

OWL2 plugin, to check the consistency of the fuzzy

ontology and to also query it. The FuzzyDL reasoner is a

DL-based reasoner that supports reasoning in both fuzzy

logic and fuzzy rough set. The query is submitted to Fuz-

zyDL, which is the underlying inference engine. Listing 10

show an example SPARQL-DL query applied to the

implementation of the BCFO.
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Also, a FuzzyDL-based query was executed through the

Fuzzy OWL2 tab to output its result for confirmation of the

consistency of the BCFO. A sample query executed is as

follows:

(?min-instance PatientCase1 BreastCancerPatientCase) ,

(all-instances? BreastCancerPatientCase)

The query will retrieve the best entailment degree of an

assertion that PatientCase1 belongs to

Fig. 10 An illustration of a representation of patient cases for ontology population using a composite of data structures
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BreastCancerPatientCase, and all instances of the

BreastCancerPatientCase class and their degree of mem-

bership, respectively.

In this section, we have successfully implemented and

experimented with fuzzified ontology. The implemented

ontology was populated and then queried accordingly. In

the next section, we shall evaluate the efficiency of the

fuzzy ontology.

5 Results and discussion

In this section, we present the evaluation of the result on

the ontology and make insightful discussions around it. We

investigated the richness of the BCFO ontology, analyzed

its semantic and content depth and richness. Furthermore,

an evaluation of the coverage of the domain and the quality

of information accessible from the associated concepts and

data types is carried out.

5.1 Evaluation of the crisp ontology

A number of standard ontology metrics were considered for

the evaluation of the ontology designed in this study. Each

metric presents its value, as shown in the figure. For

instance, it is clear that the ontology is rich in axiom and

logical axiom, which are statements about concepts and

relations in the TBox. Other notable metrics are the class

assertion count, class count, SubclassOf axiom count,

ObjectProperty assertion axiom count, DataProperty

assertion axiom count, domain and range data property

counts, domain and range of object property counts, object

and data property counts, individual counts and others.

A description of these metrics and their count values are

summarized in Table 2. This clarification of the atomic

Table 2 A listing of metrics and their respective counts in the BCFO ontology

Metrics Number of

items

Description

Classes 114 Sets, collections, concepts, types of objects or things

Class axiom 104 Class-based statements that are asserted to be true in the domain being described: e.g.

Subclass, Equivalent class, Disjoint class

Individuals 194 An instance of a class

Individuals (Object property

assertion)

59 Statements made using object properties and individuals

Individuals (Data property assertion) 37 Statements made using data properties and individuals

Individuals (Class assertion) 291 Statements of individuals assigned to a class

Object property axiom (Object

property domain/range)

31/28 Statements made by stating the domain and range of an object property

Date property axiom (Object property

domain/range)

71/71 Statements made by stating the domain and range of an object property

Declarative axioms 442 A count of axioms declared or asserted

Maximum depth 9 The farthest route from the Thing class to a leaf class

Disjoint classes 9 Classes that cannot share an instance

Maximum number of children 36

Average number of Children 4.38 Computational value of finding the average number of children immediate subclasses of

the Thing class

Classes with a single child 14

Classes with more than * 10

children

3

Annotation 87 Comments on entities in an ontology

Axiom 1115 Statements asserted as a priori knowledge

Logical axiom count 648 Axioms that form the logical definition of terms

Object Property 31 Properties used to characterize classes

Data Property 77 Properties used to characterize the relationship between classes and data-values

Subclass of 92 A subdivision of a class

Subpropterty of 4 A subdivision of a property
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metrics became necessary to allow for their use in the

computation of the composite ontology metrics described

later in the section.

Considering the listing in Table 2, the following defi-

nitions hold:

i. Class Complexity: Average number of paths to

reach a class from the Thing class

ii. Property Complexity

iii. : Average number of semantic relations for object

properties per class

iv. Abstraction: Average depth of the ontology

v. Cohesion: Average number of connected classes

vi. Semantic richness: Ratio of the total number of

semantic relations mapped to classes by all

ontology relations consisting of object properties

and subsumption relations.

vii. Inheritance richness: Average number of sub-

classes in a class or computation of the broadness

or depth of ontology graph

viii. Attribute richness: Ratio of the total number of

datatype properties by the number of classes. It

also shows the average number of attributes

defined per class within the ontology

ix. Relationship richness—reflects the diversity of

relations by comparing the number of non-sub-

sumption relations to the number of subsumption

relations

x. Comprehension of properties (object and data-

type): Percentage of annotation of the features in

the ontology

xi. Comprehension of classes: Percentage of annota-

tion of the classes in ontology

The composite metrics listed above are used to generate

the values listed in Table 3. For atomic metrics such as

Axiom, Classes, Properties, and Instances, we obtained

1115, 114, 101 and 194, respectively. These fig-

ures demonstrate and confirm the richness of the ontology.

Similarly, for the richness of conceptualization of the

domain knowledge in terms of semantic relations, data

value relations, and level of sub-classing (inheritance), our

ontology obtained 2.0, 2.70, and 5.2, respectively. The

ontology’s complexity for the class and properties descri-

bed above yielded 13.14 and 2.0, respectively. Lastly, we

computed the average depth of the ontology and the

average number of connected classes and obtained 4.38 and

191, respectively.

The performance of the BCFO ontology, as earlier

described, was compared and graphed with other similar

studies, which have also developed both crisp and fuzzy

ontology. We found the performance of ontology proposed

in this study to have yielded outperforming results. Fig-

ure 11a–d present a comparison of the performance of this

study with related studies. The results of Table 3 show the

richness of the axioms, properties (object and datatype) and

instances of the proposed ontology used in this study. In the

next section, we will concentrate on metrics demonstrating

the level of fuzzification of the ontology.

The Class complexity and property complexity metrics

measured the average number of paths to reach a class from

the Thing class and the average number of semantic rela-

tions for object properties per class. These two metrics are

supportive of demonstrating the semantic richness of the

ontology. Table 3 shows that this study achieved an

impressive level of class complexity. Figure 11b shows

that though Oyelade and Ezugwu (2020) achieved a high

level of property complexity, our domain ontology

achieved the highest level of class complexity. The

implication is that the BCFO proposed in this study pre-

sents a rich and detailed representation of domain entities.

Another category of metric evaluated is the measure of

the abstraction and cohesion of the ontology. The measure

of cohesiveness represented in the ontology demonstrates

how the formalization sufficiently captures the intercom-

munication existing between entities in the domain. Med-

ical knowledge often corroborates terms and entities

together to deduce knowledge. Hence, the relevance of the

ontology to the domain will determine the measure of

cohesion seen in the ontology. The cohesion level shown in

Table 3 for the proposed BCFO is considerable high. This

indicates that this study demonstrates a good grasp of the

interconnectivity exiting in the domain. Similarly, the

abstraction metric measures the depth of the ontology,

meaning it finds out the level at which the knowledge

engineer understood the detailed definition of domain

entities. Again, the BCFO proposed in this study achieved

a significant level with regard to ontology abstraction. The

result of this evaluation is illustrated in Fig. 11b with the

class and property complexities.

Ontology comprehension metrics were also applied to

evaluate the ontology proposed in this study. The level of

comprehension of properties (object and datatype) classes

was evaluated to determine the percentage of annotation

achieved. Figure 11c illustrates the comparison of the

measure of class complexity, property complexity, cohe-

sion and abstraction attained in the proposed ontology

compared with what similar studies achieved. Although El-

Sappagh & Elmogy (2017) work achieved a slightly

increased annotation level, in this study, the annotation

level is not a deficiency to its richness since it significantly

annotates its class and property, as seen in Table 3.

The richness of the conceptualization of the domain

knowledge is of great importance when evaluating ontol-

ogy. This is because this category of metrics measures

semantic richness, inheritance richness, attribute richness

and relationship richness. The semantic richness allows for
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reasoners to exploit ontology for allowing machine

understandability of the domain. This metric is computed

by finding the total number of semantic relations mapped to

classes by all ontology relations consisting of object

properties and subsumption relations. Inheritance richness

reveals how the engineering process considers each con-

cept and extrapolates its definition to determine other

concepts. On the other hand, attribute richness measures

the wideness of the attributes contained in each class.

Table 3 shows that this study achieved a value of 2.7

compared with other studies. A significant result was

obtained regarding the semantic richness compared with

related studies. Figure 11a shows this comparative analysis

of the conceptualization richness of the ontology as com-

pared with other ontologies in medical sciences.

The ontology was also evaluated against some atomic

metrics. These are the axiom, classproperty, and instance

counts. The values returned by these metrics have a direct

impact on the composite metrics. The evaluation is direct

counts of the items associated with the definition of each

metric. For instance, from Table 3, 1115, 114, 101, and 194

values were obtained for the axiom, class, property, and

instance count, respectively. These are pointers to the depth

of knowledge search made in the domain by the elicitation

process before the engineering process. In Fig. 11d, we

graphed these values with those obtained from other

domains and showed an improvement compared with the

level obtained in other domains.

5.2 Evaluating the depth of vagueness
in the fuzzy ontology

We consider a number of fuzzy ontology-based metrics for

evaluating the breast cancer fuzzy ontology proposed in

this study. The following are the metrics proposed in the

literature:

a. Since the reduction of vagueness to the barest mini-

mum is what is conceived in the creation of fuzzy

ontology, authors in [63] computed the metric vague-

ness explicitness (VE) described in Eq. 3, vagueness

spread (VS) in Eq. 4, and vagueness intensity (VI). VS

computes the measure of vagueness achieved in a

fuzzy ontology, and VE, which computes the ontol-

ogy’s fuzzy relevance, are simple. VE is calculated by

dividing the number of vague ontological elements that

are explicitly represented (EVOE) by (VOE); VS is

computed by dividing the number of vague ontology

elements (VOE) which are classes, relations, and data

types, divided by the total number of elements (OE).

VI measures the level at which users of the fuzzy

ontology can accept the definition of the instances of

the fuzzy ontology. Since VI does not have a clear
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Fig. 11 a Showing the

comparison of the proposed

study as it relates with the

performance or richness of

similar studies with the richness

of conceptualization metrics.

b Showing the comparison of

the proposed study as it relates

to the performance or richness

of similar studies with

comprehension metrics.

c Showing the comparison of

the proposed study as it relates

to the performance or richness

of similar studies with class and

property complexities metrics.

d Showing the comparison of

the proposed study as it relates

to the performance or richness

of similar studies with atomic

metrics
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definition for computing its values, we ignore it in our

evaluation.

VE ¼ EVOE

VOE
ð4Þ

VS ¼ VOE

OE
ð5Þ

The definition of Eq. 4 describes comprehensibility,

shareability, and the level of reduction of vagueness

achieved in a fuzzy ontology. In the fuzzy ontology pro-

posed in this study, there are 114 classes, 31 object prop-

erties, 34 fuzzy datatypes, 55 fuzzy datatype properties,

and fuzzy object properties are 1. We compute VS and VE

as follows:

VE ¼ 34 þ 55 þ 1ð Þ
34 þ 55 þ 1ð Þ ¼

90

90
¼ 1

VS ¼ 34 þ 55 þ 1ð Þ
114 þ 31 þ 34 þ 55ð Þ ¼

90

234
¼ 0:38

The numerator and denominator of VE are the same

because we ensured that every fuzzy element we defined in

the proposed ontology is defined explicitly. Therefore,

obtaining the value of 1 for the VE signifies that the rele-

vance of the proposed breast cancer fuzzy ontology is high

since the value of VE is high. Similarly, we obtained the

value of 0.38 for the VS. The implication of this demon-

strates the level of vague elements this study was able to

identify and fuzzify.

b. In another study, Alexopoulos et al. suggested four

fuzzy ontology-based metrics: accuracy, correctness,

consistency, and completeness [11]. The following

describes their applicability to fuzzy ontology:

c. Correctness: A fuzzy ontology is correct when all its

fuzzy elements convey a vague meaning in the given

domain. According to the detailed presentation in

Sect. 3.3, we identified all the vague elements as

contemplated in the domain.

d. Accuracy: A fuzzy ontology is accurate when the

degrees of its fuzzy elements approximate the vague-

ness in an intuitively precise way for the given domain.

e. Completeness: A fuzzy ontology is complete when all

the vagueness in the domain has been well absorbed

within the ontology. We might not have exhausted all

the vague terms in the domain of consideration.

However, a significant achievement was made.

f. Consistency: A fuzzy ontology is consistent when it

does not contain controversial information about the

domain’s vagueness. This study has repeatedly empha-

sized the use of a domain expert and CPG in building

the ontology. Hence, we assume the consistency of the

breast cancer fuzzy ontology.

We found these metrics very relevant, and evaluating

the fuzzy-based breast cancer ontology presented in this

study showed that it performed well.

b. Lastly, Ivanova proposed another metric for fuzzy

ontology [64], which is defined in Eq. 5. This metric

aims to apply to situations where a learning algorithm

automates the extraction and representation of vague

terms in the fuzzy ontology.

K ¼
Xn

pi 6¼0

pi=n�
Xn

pi¼0

0:1=n� log n1=n
� �

ð6Þ

The author explained that the variables pi measures the

probability of how correctly a fuzzy element is located in the

ontology; n represents the total number of terms in the

ontology; n1 denotes the number of valuable domain terms

represented. A higher value of K shows a good learning pro-

cess. We found that there is ambiguity in the definition of how

pi is computed, hence the difficulty in applying the metric.

Fig. 11 continued
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Table 4 Listing of the parsing

times for WSs and WCs
% Concepts GCIs RIAs PT WCs (ms) PT WSs (ms) TT WCs (ms) TT WSs (ms)

0 0 0 0 4364.1 4363.9 5731.7 5726.1

10 2385 2604 88 4420.3 4382.5 5932.8 5812.6

20 4590 5151 177 4773.6 4692 6746.8 6443.9

30 6990 7675 276 5166.8 5025.2 7465.5 7059.4

40 9312 10,152 383 5481.4 5320.3 8173.5 7648.1

50 11,588 12,760 462 5884.5 5603.4 8925.2 8295.4

60 13,888 15,260 569 6131.6 5889 9928.1 8875

70 16,216 17,764 672 6785.7 6193.9 10,690.5 9521.6

80 18,475 20,363 785 7418.6 6509.4 11,403.1 10,402.8

90 20,805 22,906 875 7809.2 7418.8 12,451.7 11,303.3

100 23,141 25,563 958 8201.6 7813.8 13,228.3 11,962.6

Fig. 12 a Experimental evaluation results for the numbers of annotated elements influence in the PT. b Experimental evaluation results for the

numbers of annotated elements influence in the TT
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5.3 Evaluating the impact of fuzzy annotation

Similar studies that have developed fuzzy ontology have

investigated the impact of the addition of annotations

during the process of fuzzification. This impact is based on

computational reasoning and speed during parsing and

translation by the Fuzzy DL. This section presents the

computational parsing time of the proposed ontology and

the cumulative effect as the ontology gets bigger. To

demonstrate the latter, we present the result in [20].

The proposed breast cancer fuzzy ontology has 41

annotations: 34 fuzzy data types, 55 fuzzy datatype prop-

erties, and 1 fuzzy concept. The parsing time obtained for

crisp breast cancer ontology is 6.0 ms, whereas the fuzzi-

fied breast cancer ontology parsing time is 16.0 ms. Per-

formance with a larger fuzzy ontology such as Galen

ontology is examined. Authors showed the experimental

result on the number of annotated elements as it affects

parsing time (PT) in Fig. 12a; In Table 4, we show the

numbers of annotated elements as it affects in the

Table 5 Listing of concepts,

concept assertion, role assertion

in computing the parsing time

and in the translation time into

fuzzyDL syntax for WSs and

WCs in BCFO

% Concepts CIs RIAs PT WCs (ms) PT WSs (ms) TT WCs (ms) TT WSs (ms)

10 12 33 17 35.40 33.76 57.16 25.19

20 25 65 33 37.48 35.59 61.40 28.82

30 38 98 49 39.56 37.42 65.64 32.45

40 51 131 65 41.64 39.25 69.88 36.08

50 58 163 84 42.92 40.23 72.16 38.04

60 70 196 101 44.85 41.92 76.07 41.39

70 82 228 116 46.78 43.61 79.98 44.74

80 95 261 133 48.87 45.44 84.22 48.37

90 103 294 150 50.15 46.56 86.83 50.61

100 115 325 167 52.08 48.25 90.74 53.96

Fig. 13 a Experimental

evaluation results for the

numbers of annotated elements

influence in the PT for the

fuzzified ontology.

bExperimental evaluation

results for the numbers of

annotated elements influence in

the TT for the fuzzified

ontology
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translation time (TT) Fig. 12b; and the influence of the

percentage of annotations (%) in both PT and TT when

translating into fuzzyDL syntax.

Parsing and translation times are computed on fuzzy

ontology to know to what extent the fuzzification operation

impacts the speed of reasoners. Reasoners are expected to

parse the ontology for consistency and inference making

(or reasoning) operations. There are different levels of

fuzzification achieved in this study. For instance, fuzzifi-

cation of fuzzy atomic concepts is much simpler. It

requires little tagging compared to fuzzification of complex

fuzzy concepts such as weighted concepts (WCs) and

weighted sum concepts (WSs). Hence, we evaluated the

performance of the reasoner when parsing and translating

WCs and WSs.

Considering WCs and WSs’ description, Fig. 12a–b

show the computational time used to pars and translate

WCs and WSs in the Galen ontology–the biggest fuzzified

ontology. This computational time is constant across fuzzy

ontologies representing WCs and WSs in the ontology. The

figures revealed that as the percentage of the number of

WCs and WSs increases in the ontology, the computational

time for parsing and translating them using the FuzzyDL

reasoner also increases. As graphed in the figure, the

implication of this is that since WSs consists of two or

more WCs, it is reasonable to have the computational time

of WSs to be more than that of WCs, though the difference

is not so significant. The benefit of using WSs in fuzzified

ontology is achieving a rich or higher-level expression.

Hence, this computational time is a tradeoff that allows for

increased expressivity at the expense of time. Recall that

expressivity, also synonymous with reduction of vague-

ness, is the major aim of ontology fuzzification.

The parsing time and the translation time is shown in

Table 5 for the fuzzified breast cancer ontology with

emphasis on weighted sums (WSs) and weighted concepts

(WCs). These were used for the time computation because

of the increased number of nested tags required to represent

them in the Fuzzy OWL2 syntax. It is assumed that using

the WS and WC will capture a significant timing which

will be required by other low-tag demanding constructs

like a modifier, datatype and relations. Results obtained in

Table 5 for the PT WCs, PT WSs, TT WCs, and TT WSs

showed that there is a computational cost attached to the

reduction of vagueness in the fuzzified ontology. This time

cost also indicates that fuzzy elements contribute signifi-

cant expressivity to the fuzzified ontology. As seen in

Fig. 13a, b, the plot of the result showed that the difference

between the parsing time (PT) and the translation time (TT)

for both WCs and WSs are competing.

Ontology evaluation is the task of measuring the quality

of ontology, and it allows for the acceptance and adoption

of a given ontology in its domain. The results obtained

from the evaluation of the BCFO is demonstrating that it is

a candidate ontology for use by domain experts and

developers of expert systems or knowledge-based systems.

The ontology possesses the quality for both acceptance and

adoption. The result of this study reveals that fuzzification

of an ontology is feasible and results in the elimination of

the limitations of corresponding crisp ontology. In addi-

tion, the outcome of this study showed that reducing

vagueness with the hope of improving computational rea-

soning in ontology is effective using the proposed

approach. We have demonstrated that vagueness for the

domain of female breast cancer can be reduced by

impressively achieving a record high performance in

reducing the vagueness of breast cancer ontology through

the fuzzification of elements identified as vague.

Furthermore, the evaluation and result obtained from

this study guide future research seeking to apply or

improve on the proposed BCFO. Meanwhile, this will also

serve as a guide to reducing vagueness in ontology for

other domains. No study has been able to achieve the

fuzzification and evaluation of fuzzy ontology related to

female breast cancer, as shown in this study. Hence, this

work is a rich contribution toward the body of knowledge

advancing the reduction vagueness in formalization of

knowledge in breast cancer diagnosis and knowledge

representation.

6 Conclusion

In this study, the application of fuzzy logic to the challenge

of reducing vagueness in crisp breast cancer ontology was

proposed. The approach adopted is the use of IKARUS-

Onto for fuzzy identification elements and Fuzzy OWL2

for the representation of the fuzzy elements. The study’s

outcome is a rich contribution toward the body of knowl-

edge advancing the reduction vagueness in formalization of

knowledge in breast cancer diagnosis and knowledge rep-

resentation. We presented an elegant flow for the transla-

tion and conversion of a crisp ontology to fuzzy ontology

using a novel framework. It follows the novel IKARUS-

Onto methodology for fuzzification of the crisp ontology.

The resulting fuzzified ontology was evaluated, and the

result showed that a significant amount of vagueness had

been removed from the ontology. Therefore, obtaining the

value of 1 for the VE signifies that the relevance of the

proposed breast cancer fuzzy ontology is high since VE’s

value is high.

Similarly, we obtained the value of 0.38 for the VS. The

implication demonstrates the level of vague elements

identified and fuzzified. We acknowledge that the proposed

framework is limited by its handling of vagueness with no

mechanism for tackling imprecision. As future work, we
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recommend that the framework be modified to accommo-

date the reduction of imprecision. Also, we suggest that the

resulting BCFO be used to support knowledge-based sys-

tems that may be using reasoning algorithms such as Select

and Test (ST) [6]or case-based reasoning (CBR) paradigm

[30]. Considering the need for continuous engineering of

ontologies, starting from a benchmark version obtained

from this study, this fuzzification level can be further

improved in future studies.
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E, Ossowski S, Vouros G (eds) Agreement technol. Springer,

Berlin, pp 105–119

63. Alexopoulos P, Mylonas P (2014) Towards vagueness-oriented

quality assessment of ontologies. Artif Intell Methods Appl

8445(2014):448–453

64. Ivanova TI (2008) A metic and approach for fuzzy ontology

evaluation. In Proceedings of international scientific conference

computer science, 17th pp 822–827

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

3078 Neural Computing and Applications (2022) 34:3053–3078

123

https://doi.org/10.1016/j.artmed.2015.08.003
https://doi.org/10.1016/j.artmed.2015.08.003
https://disease-ontology.org/
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/understanding-your-pathology-report/breast-pathology/breast-cancer-pathology.html
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/understanding-your-pathology-report/breast-pathology/breast-cancer-pathology.html
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/understanding-your-pathology-report/breast-pathology/breast-cancer-pathology.html
https://pythonhosted.org/scikit-fuzzy/
https://pythonhosted.org/scikit-fuzzy/
https://www.oncolink.org/cancer-treatment/procedures-diagnostic-tests/blood-tests-tumor-diagnostic-tests/liver-function-test-lft
https://www.oncolink.org/cancer-treatment/procedures-diagnostic-tests/blood-tests-tumor-diagnostic-tests/liver-function-test-lft
https://www.oncolink.org/cancer-treatment/procedures-diagnostic-tests/blood-tests-tumor-diagnostic-tests/liver-function-test-lft
https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=albumin_blood
https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=albumin_blood
https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=167&contentid=albumin_blood
https://www.kidney.org/atoz/content/kidneytests
https://www.kidney.org/atoz/content/kidneytests
https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=p07248
https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=p07248
https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=p07248
http://www.umbertostraccia.it/cs/software/FuzzyOWL/
http://www.umbertostraccia.it/cs/software/FuzzyOWL/
http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html
http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html
https://protegewiki.stanford.edu/wiki/Gurobi_Optimizer

	Enhancing reasoning through reduction of vagueness using fuzzy OWL-2 for representation of breast cancer ontologies
	Abstract
	Introduction
	Related works
	Methods
	The crisp breast cancer ontology
	Need for the fuzziness of breast cancer ontology
	Definition of fuzzy ontology elements
	Representation of fuzzy concepts
	Representation of fuzzy relations and data types
	Representation and application of fuzzy modifier to concepts, data types and relations
	Representation of fuzzy logic used in breast cancer fuzzy ontology

	Validation of the breast cancer fuzzy ontology

	Implementation and experimentation on the fuzzified ontology
	Implementation of the crisp and fuzzy ontology with protégé
	Crisp ontology
	Fuzzy ontology
	Instantiation of the fuzzy ontology

	Querying the fuzzy ontology

	Results and discussion
	Evaluation of the crisp ontology
	Evaluating the depth of vagueness in the fuzzy ontology
	Evaluating the impact of fuzzy annotation

	Conclusion
	References




