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Abstract
The high number and diversity of microbial strains circulating in host populations 
have motivated extensive research on the mechanisms that maintain biodiversity. 
However, much of this work focuses on strain-specific and cross-immunity interac-
tions. Another less explored mode of pairwise interaction is via altered susceptibili-
ties to co-colonization in hosts already colonized by one strain. Diversity in such 
interaction coefficients enables strains to create dynamically their niches for growth 
and persistence, and “engineer” their common environment. How such a network of 
interactions with others mediates collective coexistence remains puzzling analyti-
cally and computationally difficult to simulate. Furthermore, the gradients modulat-
ing stability-complexity regimes in such multi-player endemic systems remain poorly 
understood. In a recent study (Madec & Gjini, Bulletin of Mathematical Biology, 82), 
we obtained an analytic representation for N-type coexistence in an SIS epidemio-
logical model with co-colonization. We mapped multi-strain dynamics to a replicator 
equation using timescale separation. Here, we examine what drives coexistence re-
gimes in such co-colonization system. We find the ratio of single to co-colonization, 
µ, critically determines the type of equilibrium and number of coexisting strains, and 
encodes a trade-off between overall transmission intensity R0 and mean interaction 
coefficient in strain space, k. Preserving a given coexistence regime, under fixed trait 
variation, requires balancing between higher mean competition in favorable envi-
ronments, and higher cooperation in harsher environments, and is consistent with 
the stress gradient hypothesis. Multi-strain coexistence tends to steady-state attrac-
tors for small µ, whereas as µ increases, dynamics tend to more complex attractors. 
Following strain frequencies, evolutionary dynamics in the system also display con-
trasting patterns with µ, interpolating between multi-stable and fluctuating selection 
for cooperation and mean invasion fitness, in the two extremes. This co-colonization 
framework could be applied more generally, to study invariant principles in collective 
coexistence, and to quantify how critical shifts in community dynamics get potenti-
ated by mean-field and environmental gradients.
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1  | INTRODUC TION

Rich ecosystems comprise many species interacting together in 
a myriad of ways and on multiple temporal and spatial scales. 
Understanding the scope and consequences of such interactions 
has been the focus of countless theoretical ecology studies, starting 
with the seminal work by Lotka (1926) and Volterra (1926) on math-
ematical models of the population dynamics of interacting species. 
This model has been later extended and sophisticated by many other 
theoretical studies (May 1972; Pascual et al., 2006), and is currently 
extensively used to characterize interaction networks in empiri-
cal microbiome communities (Bucci et al., 2016; Stein et al., 2013). 
Theoretically, a crucial question has been to study stability and 
coexistence patterns in such Lotka–Volterra multi-species commu-
nities, analyzing both structured ecological networks and random 
networks (Serván et  al.,  2018; Song & Saavedra,  2018). Modeling 
efforts seek to understand organizing principles for species compo-
sition, including the balance between competition and cooperation 
(Mougi & Kondoh, 2012).

Overall, analysis of such models with arbitrarily high dimension-
ality has been and continues to remain difficult. In particular, beyond 
the complexity-stability debate which represents a major force in 
ecology (Landi et al., 2018; May 1972; McCann, 2000), many studies 
are increasingly addressing the problem of deriving collective dy-
namics from pairwise outcomes between species, which constitutes 
another major challenge, both at an analytical (Levine et al., 2017; 
Momeni et al., 2017) and empirical (Friedman et al., 2017) level.

The challenge of high-dimensionality in ecological microbial net-
works parallels a similar challenge in the epidemiology of polymorphic 
pathogen systems, where understanding the mechanisms and forces 
that maintain diversity among interacting strains, is also an area of 
active research (Cobey & Lipsitch, 2012; Gupta & Anderson, 1999; 
Lipsitch et al., 2009; Wearing & Rohani, 2006). While it is well recog-
nized that population patterns of infection are to a large extent de-
termined by susceptibility to infection, most multi-strain SIR models, 
inspired from influenza, dengue, and malaria parasites, have focused 
on cross-immunity between strains as driver of population structure 
(Gog & Grenfell, 2002; Gomes et al., 2002; Gupta et al., 1998; Lin 
et  al.,  1999). Yet, other factors, besides persistent host immunity, 
may make strains compete or cooperate with each other, and it re-
mains unclear which environmental variables also contribute to their 
epidemiologic fitness.

Here, we bridge between multi-species ecology and multi-
strain epidemiology, revisiting coexistence and diversity in a new 
context. We explore another mode of strain interactions, namely 
altered susceptibilities to coinfection, whereby N strains com-
pete in SIS endemic scenarios of no persistent immunity and 
no virulence. Coinfection models with up to two strains have 

described vulnerability to coinfection with a single parameter (Alizon 
et al., 2013; Davies et al., 2019; Gaivão et al., 2017; van Baalen & 
Sabelis, 1995), two coefficients (Lipsitch, 1997) or four coefficients 
(Gjini et al., 2016) depending on model structure and aims, but very 
few analytical investigations have been done for a larger number of 
interacting strains (Adler & Brunet, 1991), recognizing the difficul-
ties of including within-and between-strain details for such coeffi-
cients (Mosquera & Adler,  1998). Moreover, analytic solutions for 
strain frequency dynamics in coinfection models remain rare, due to 
nonlinearities even for N = 2.

In a recent co-colonization (coinfection) SIS model framework, 
with N-strains, we have simplified the complex ecology embedded 
in N2 epidemiological variables (Madec & Gjini, 2020). Using times-
cale separation, we obtained a model reduction from the matrix of 
pairwise coinfection vulnerabilities between strains. This coincides 
with a special replicator equation (Cressman & Tao, 2014; Hofbauer 
& Sigmund, 2003) by which we can predict explicitly multi-strain fre-
quency evolution. This N-dimensional model reduction makes the 
entire epidemiology more accessible to analysis, and relates emer-
gent collective dynamics to the ensemble of pairwise competitive 
outcomes, not only qualitatively but moreover in an explicit quan-
titative manner.

In the present article, we harness the simplicity of this co-
colonization model framework (Madec & Gjini, 2020) to investigate 
coexistence, stability, and evolution of such multi-strain systems 
with variable co-colonization susceptibility coefficients among 
strains. We start by studying the behavior of the system for different 
global variables such as total transmission intensity R0 and mean in-
teraction coefficient in the pool of available strains k. We then study 
coexistence through random co-colonization interactions, where the 
matrix coefficients are drawn from fixed distributions, and can range 
from competitive to cooperative links. We ask what is the number of 
strains that can coexist when starting from a pool of N strains, and 
in which diversity–stability configuration. We uncover rich transient 
and asymptotic behavior of such systems, where steady states, limit 
cycles, multi-stability, and chaotic attractors are possible.

We find that the ratio of single- to co-colonization is a criti-
cal factor in collective dynamics, by modulating the asymmetry 
in pairwise invasion fitness between types, and consequently, the 
dynamic complexity of the system as a whole. This ratio is key to 
observe the emergent context dependence of strain interactions 
(Bascompte, 2019; Coyte & Rakoff-Nahoum, 2019) in our model. 
We argue that the analytically explicit form of this ratio in our 
formalism enables direct connection with the stress gradient hy-
pothesis (SGH) in ecology (Bertness & Callaway, 1994; Callaway & 
Walker, 1997). This hypothesis postulates that as stress increases, 
the importance of positive facilitative effects increases in a com-
munity, whereas in benign environmental conditions, competitive 
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effects are higher; a finding that emerges also from our results. In 
support of complex higher-order dynamics emergent from simple 
pairwise interactions, with critical links between mean and vari-
ance, we uncover the exact formulation for why the sum as a col-
lective is much more than its parts. Our results invite a deeper 
understanding of the biology of endemic multi-strain systems and 
point to key global modulators of collective polymorphic coexis-
tence in nature.

2  | METHODS

2.1 | N-strain SIS model with co-colonization

We study the epidemiological model (Madec & Gjini, 2020) given by 
the following ordinary differential equations:

where Fi = �

�
Ii +

∑
N
j= 1

1

2
(Iij + Iji)

�
 gives the force of infection of strain 

i , and the variables S, Ii and Iij refer to the proportion of susceptible 
hosts, singly colonized by strain i  and co-colonized by strains i  and j. 
Notice that S = 1 −

∑
Ii + Iij, thus the dimension of the system is effec-

tively N + N(N − 1)∕2. A key assumption in the model is that hosts co-
colonized with different strains i  and j transmit either with equal 
probability. In the above notation, m = � + r, is the infected host turn-
over rate, encapsulating both clearance rate � of colonization episodes 
and recruitment rate of susceptible hosts r (balanced by natural mor-
tality rate r = d).

This model has also been described in detail previously (Gjini 
& Madec,  2017) for the case of N = 2. The model allows for each 
strain to interact differently with other strains upon co-colonization, 
altering the susceptibility of an already-colonized host to incoming 
strains. The magnitude and type of such interactions are described 
by the matrix K, where values Kij above 1 indicate facilitation be-
tween strains, and values of Kij below 1 indicate inhibition or com-
petition between strains. We do not make any specific assumptions 
on the mechanisms underlying such interactions, but a key feature 
of this formulation is the explicit incorporation of intra-strain and 
inter-strain interactions. The derivation of the slow-fast dynamics 
decomposition (Madec & Gjini, 2020) lies on the assumption that the 
variance of such interaction coefficients is low, thus deviation from 
neutrality of Kij, with respect to a reference k, is small. In our par-
ticular simulations here, we assume a normal distribution for such 
interaction coefficients. We can write every Kij as: Kij = k + ��ij under 
the assumption that � is small.

Although many different parametrizations are possible, we de-
fine k = (

∑
1≤i,j≤NKij)∕N

2 as the statistical mean of the co-colonization 
interaction coefficients between all possible strains in the available 
pool. We define the deviation from neutrality � as the standard 

deviation of (Kij)1  ≤  i,j  ≤  N. This leads to the normalized interaction 
matrix

to have the same distribution as K, but with mean 0 and variance 1, at 
the start of dynamics in the unpruned community. We adopt analy-
sis and simulations to understand the behavior of the epidemiological 
model for different assumptions on the co-colonization interaction ma-
trix, and for different system size N. We use the reduced system (of N 
equations) for dynamics on the slow timescale �t (Madec & Gjini, 2020) 
to obtain the steady-states of the system and analyze their properties 
and stability (see Box 1).

3  | RESULTS

In the present model, the entire system is structured as a collec-
tion of hosts that can be in different colonization states: suscep-
tible, singly colonized, or co-colonized. We consider a multi-type 
infection, transmitted via direct contact, following susceptible-
infected-susceptible (SIS) epidemiological dynamics with co-
colonization (Madec & Gjini, 2020). Adopting a general formulation 
for diversity, we assume there are N types, without specifying the 
mechanisms for their definition. Thus, with an ordinary differential 
equations model (see Section  2), we describe the proportion of 
hosts in several compartments: susceptibles, S, hosts colonized by 
one type Ii, and co-colonized hosts Iij, with two types of each com-
bination, independent of the order of their acquisition. The model 
structure follows that of Gjini et al. (2016); van Baalen and Sabelis 
(1995) allowing also for same strain coinfection (Iii). Hosts in the 
mixed coinfection compartment (Iij) transmit either strain with 
equal probability. Fitness differences in this system are encoded 
in how strains interact with each other upon co-colonization (Kij), 
whether there is facilitation between resident and co-colonizer 
(Kij > 1) or inhibition (Kij < 1), and its exact magnitude, – assuming 
equivalence in transmission β and clearance rate γ. The structure of 
the Kij, subject to small deviation from perfect symmetry, is central 
to multi-strain dynamics. We take no account of other biological 
details such as mutation, seasonality in transmission, or heteroge-
neity in the host population, which may influence the transmission 
dynamics of particular strains. These exclusions serve our purpose 
to assess the impact of selection imposed by co-colonization inter-
actions between given strains in the host population on temporal 
trends in individual strain frequencies.

In an earlier mathematical investigation (Madec & Gjini, 2020), 
we have derived in detail two timescales in this multi-strain system: 
a fast one, given by the neutral model, and a slow one governed by 
the variation in co-colonization coefficients Kij. During fast dynam-
ics, the system stabilizes conserved quantities such as the endemic 
prevalence of single and co-colonization whereas over the slow 
timescale, strain selective dynamics unfold (see Box 1).

(1)

⎧⎪⎪⎨⎪⎪⎩

Ṡ=m(1−S)−S
�N

j=1
Fj

İi=FiS−mIi− Ii

�
j

KijFj, 1≤ i≤N

İij= IiKijFj−mIij, 1≤ i, j≤N

,

A =
(
�ij
)
=

Kij − k

�
,
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BOX 1 Key features of the N-strain co-colonization model (Madec & Gjini, 2020)

Deviation from symmetry in interaction trait space: the basis of the framework

We conceptualize each altered susceptibility to co-colonization (i.e., interaction coefficient) between closely related strains, as a 
mean value k plus some deviation from symmetry, thus re-writing it as:

where 0 < 𝜀 < 1 is small. Thus, A = (�ij) is the normalized interaction matrix, relative to the reference k. The parameter k in this case en-
codes mean interaction in co-colonization between any two strains, which, if k > 1 describes mutual facilitation, and if k < 1 describes 
mutual inhibition. Another key epidemiological parameter is the basic reproduction number, R0, in our model given by β/m (Section 2), 
describing the intensity of transmission, and defined as the average number of secondary infections that arise from a single case in a naive 
population (Diekmann et al., 1990).

Fast and slow dynamics: derivation of the replicator equation in a new context

On the fast time-scale (� = 0), strains behave as neutral (Kij ≡ k). The system reaches the central manifold where total prevalence of 
susceptibles S, total prevalence of single colonization I, and total prevalence of co-colonization D are conserved, and depend only on 
mean epidemiological parameters:

but, where each individual strain frequency is neutrally stable and free to vary zi ∈ [0, 1]. On the slow time scale � = �t, consistent with 
weak selection, exact asymmetries between strains play out, and under the conservation law above, individual frequencies zi obey deter-
ministic slow dynamics, given by an N-dimensional replicator equation:

where Q(z) =
∑∑

1≤k≠j≤N �
k
j
zjzk, is a quadratic term symmetric on all strains, encapsulating the effect of the system as a whole on each 

individual strain. The quantity 
∑

izi = 1 is conserved and the rate Θ is given by: Θ = �
(1− S)ID

2(1− S)2 − ID
. This replicator equation links directly epi-

demiological SIS dynamics to Lotka–Volterra systems (Bomze, 1995) and multi-strain co-colonization processes to ecology and evolution 
(Nowak & Sigmund, 2004).

From pairs to collective dynamics

The above equations drastically reduce the system from N(N − 1)∕2 + N to N dimensions. Furthermore zi dynamics are a direct func-
tion of pairwise invasion fitnesses �j

i
 between strains, which, for each pair (i, j), have the form:

The quantities �j
i
 denote the initial rate of growth of strain i  in an exclusion equilibrium where only strain j is resident, and depend 

on the ratio between single and co-colonization � which is given by

(2)Kij = k + ��ij,

(3)
S =

1

R0
, I =

N∑
i=1

I ∗
i
=

R0 − 1

R0 + R0k
(
R0 − 1

) , D =
∑

1≤ i,j≤N

I ∗
i,j
=

1(
R0 − 1

)
k
I

(4)d

d�
zi = Θzi ⋅

(∑
j≠ i

�
j

i
zj − Q(z)

)
, i = 1,⋯,N,

N∑
i=1

zi = 1,

(5)�
j

i
= �ji − �jj − �

(
�ij − �ji

)
.

(6)� =
I

D
=

1

(R0 − 1)k
.
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3.1 | How mean-field parameters determine 
type and tempo of selection

3.1.1 | What type of coexistence?

According to this model, global mean-field parameters, such as 
those affecting transmission rate, �, basic reproduction number 
R0, and mean interaction coefficient k, explicitly impact the multi-
strain dynamics over long time scales (�t). The equation for strain 
frequencies zi contains information for how they set the speed 
(Θ) and mode of strain stabilization (�). More specifically, the rela-
tive dominance of single colonization in the system � appears as 
a factor in pairwise invasion fitness (�j

i
= �ji − �jj − �(�ij − �ji)) of i  

when invading a j− only equilibrium. The � parameter modulates 
the importance of cross-strain asymmetry in co-colonization 
trait comparison between two strains. The higher � is, the higher 
the prevalence of single colonization, thus the more important 
the asymmetry between how i  and j invest in the mixed co-
colonization compartment Iij. Because Iij hosts transmit both i  and 
j with equal probability, the relative superiority of i  will be re-
duced from such “altruistic” investment; thus, it appears with a 
negative sign −�(�ij − �ji) in invasion fitness. While this component 
of invasion fitness of i  is sensitive to feedbacks from global trans-
mission and mean parameters between strains, the other fitness 
component of i  in �j

i
 depends only on characteristics of the resi-

dent, namely on the relative strength of inter- versus intra- strain 
interaction of the resident (�ji − �jj), which indicates how much the 
resident j promotes its own coinfection, compared to its vulner-
ability to coinfection by i .

Notice, that for fixed normalized variation among strains, 
hence rescaled matrix A = (�ij), increasing � in the system, ampli-
fies asymmetries among all pairs of strains. Mathematically this is 
reflected in the correlation between �j

i
 and �i

j
 tending to -1, which 

leads to more pairwise competitive exclusion. We illustrate this 
for the case of N = 2 in Figure 1a, where for randomly generated 

rescaled interaction matrices A (Normal distribution with mean 0 
and variance 1), increasing � stretches the region occupied by �j

i
 to-

wards the competitive exclusion zone (𝜆j
i
> 0, and 𝜆i

j
< 0 and vicev-

ersa). This phenomenon applies also to the case of higher N, where 
effectively the multi-strain network is derived from pairwise inva-
sion fitnesses between any two constituent strains (Figure 1b). As 
the ratio of single to co-colonization, �, increases, the proportion 
of edges between constituent strains, that lead to competitive ex-
clusion increases, making collective coexistence more probable as 
a result.

To illustrate concretely how the ratio � impacts ecological coexis-
tence, we visualize multi-strain dynamics as a function of � in Figure 2, 
for the case of N = 3 and N = 4. Under fixed interaction asymmetries 
A, changing the ratio between single and co-colonization, shifts multi-
strain dynamics from stable coexistence towards limit cycles and ul-
timately towards heteroclinic cycle type oscillations, with effectively 
only one strain persisting for long periods of time, to be subsequently 
replaced by another one, and so on. We find that for � → 0 and 
random �ij, we have a case of a general replicator equation whose 
steady-state analysis when �ii = 0 may be reduced to Generalized 
Lotka–Volterra (GLV) dynamics with constant growth rates and ran-
dom interactions. Whereas for the case of 𝜇 ≫ 1, dynamics converge 
to hyper-tournament dynamics studied by Allesina and Levine (2011) 
for �ij = ±1 and Grilli, Barabás, et  al.  (2017) for the case in which 
�ij ≠ ±1. These extreme regimes of behavior are expected in the rep-
licator equation for special cases, but the novelty in our framework 
is that we have identified a global system quantity, the ratio between 
single and co-colonization, as a tuning parameter for moving our 
multi-strain dynamics between such extremes (see Box 2).

3.1.2 | How many strains coexist?

Using simulations with random strain interactions and varying �, we 
find that the mean number of strains that can coexist (n) increases with 

Invariant principles in nonequilibrium multi-strain dynamics

On the slow timescale, at all times, and for all strains, the following relationships hold:

stating that zi, as a measure of dominance of strain i  in the total prevalence of carriage, occupies an equal relative frequency in single (Ii) 
and co-colonization (Di =

∑
j(Iij + Iji)∕2)). After solving for strain frequencies zi, the Equation (4) can inform the epidemiological variables 

of the original system (1) as follows:

(7)zi =
Ii

I
=

Di

D
,

(8)Ii(t) = Izi(�); Iij(t): = Dzi(�)zj(�)

BOX 1 (Continued)



     |  8461GJINI and MADEC

� (see full distributions in Figure S1 for N = 10). In the limit � → 0 and 
with the additonal assumption that �ii = 0 for each i , the probability of 
a feasible (positive) steady-state of n strains in our replicator equation 
is exactly the same as that of a positive steady state in GLV dynamics 
with equal growth rates and random interactions: 2− n. As � increases, 
the number of coexisting strains tends to N∕2, with � → ∞ where N 
denotes the total pool size. In particular, when � is low, lower numbers 
of coexisting strains are progressively more probable, but for large val-
ues of the ratio �, favoring single to co-colonization, stable coexistence 
tends to become restricted to only an odd number of strains, a fea-
ture expected in special cases of the replicator equation (Chawanya & 
Tokita, 2002). Such case of perfect pairwise exclusion between species 
has emerged as the best-studied stabilizing competitive network in-
volving intransitive competition among species, known as rock-paper-
scissors tournament games (Allesina & Levine, 2011; Kerr et al., 2002). 
In our system, this extreme, obtained in the limit � → ∞, emerges as a 

special case of a far more general gradient mediated by different values 
of �, where edges between any pairs of strains can vary among coexist-
ence, exclusion and bistability, and with quantitative subtleties like in 
hypertournament games.

3.1.3 | How fast is the dynamics?

Thanks to the explicit formula for this critical ratio, one can immedi-
ately see that � = I∕D = 1∕k(R0 − 1) can change in two ways, either by 
changing basic reproduction number R0, or by changing k, the mean 
interaction coefficient between strains in co-colonization. If overall 
colonization increases (R0 ↑), or if facilitation between strain increases 
(k ↑), � decreases, and viceversa: when total prevalence is lower, or 
strains compete more in co-colonization, � increases. So far, we have 
seen that the ratio � determines completely the type of multi-strain 

F I G U R E  1   Collective coexistence from pairwise invasion fitnesses and the effect of single-to co-colonization ratio �. (a) Effects of � on 
the repartition of the pairwise invasion fitnesses. In our model, there are four possible outcomes between any two strains (depending on 
the values of �j

i
 and �i

j
): extinction of i , extinction of j, coexistence or bistability of the exclusion equilibria, the latter being known also as 

priority effects (Ke & Letten, 2018). The coefficients �ij of the matrix A = (�ij) are randomly generated from a normal distribution �(0, 1). 
When � → 0, the partitioning (probabilities) between the four outcomes is the same. When � increases, the strain pairs, for the same 
A matrix, follow more likely competitive exclusion dynamics. Among 10,000 random simulations of A, as we increase �, we find 51% of 
pairwise competitive exclusion for � = 0, 64% exclusion for � = 0.5 and 92% exclusion for � = 5. (b) Effect of � on the multi-strain invasion 
(pairwise �) networks. Red line: coexistence, blue line: bistability, and a gray arrow indicates competitive exclusion (the arrow points to the 
winner between the two). Here we fixed the normalized interaction coefficients between strains (matrix A) and N = 10 strains, and we varied 
�. As � increases even though the actual normalized interaction coefficients remain fixed, the effective outcomes between each pair of 
strains, being �-dependent, tend to exclusion for lim�→+∞�

j

i
+ �i

j
= 0, with the gray edges becoming more common
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equilibrium, for a given standardized variation in strain interactions. 
But how fast is this equilibrium reached? This is determined by 

Θ = �

(
1 −

1

R0

)
�

2(� + 1)2 − �, also explicit, in our replicator equation de-
scribing multi-strain dynamics over the slow time �t. As � changes, not 
only the selection “movie” changes, but also the effective speed at 
which such “movie” is played. Essentially, Θ decreases with �, hence 
selection is slower with increases in R0 or k. But there are in general 
three cases, illustrated in Figure S2. When changes in � are obtained 
via R0, if � is small (i.e., R0 large) it is possible that increasing � increases 
Θ. This would be obtained either from lower � or higher m in 
R0 = �∕m. In such case, reducing colonization prevalence from rela-
tively high to lower levels (via lower strain transmission/growth, or 
faster host birth-death, shorter colonization episodes) not only acts to 
increase the complexity of the dynamics, but also to 
speed up multi-strain selection in the biological co-colonization 
“game”.

3.2 | Coexistence, stability, and diversity

The community dynamics resulting purely from co-colonization 
interactions between strains can be very complex, and ranges 
from simple coexistence equilibria to limit cycles and even pos-
sible wildly oscillatory dynamics. Noting that dynamics among 
strains are bounded in our system, failure to identify existence of 

a steady state necessarily implies the existence of another long-
time attractor, of a more complex nature. We find the dimension of 
the attractor is 0 for small � and becomes 1, and may even exceed 
1, for larger values of this parameter. This is what we refer to as 
complex coexistence.

As the important debate in ecology about the relationship be-
tween stability and diversity in ecosystems is still ongoing (Landi 
et al., 2018; May, 1972; McCann, 2000; Odum & Barrett, 1971; Tilman 
& Downing, 1994), here we set out to examine this relationship in 
our system, assuming random interaction structure between strains, 
described in the matrix A, and fixing the total pool size of strains N. 
Thus, we study the model's rich behavior for a relatively larger pool 
of strains in the system, namely N = 10 (Figure 3). We sample the 
normalized interaction matrix A randomly from a normal distribution 
�(0, 1). For each interaction matrix, we compute numerically the 
feasible equilibria of the system (verifying zi ≥ 0, ∀ i ∈ {1, 2, . .N}), and 
for each equilibrium found, we evaluate the number of strains coex-
isting, n, the local stability of the steady state (see Appendix), and 
its associated Shannon entropy H = −

∑
N
i
z ∗
i
ln(z ∗

i
), also known as 

species evenness in ecology. By simulating different randomly gen-
erated normalized interaction matrices A, we can explore regimes 
of exclusion, multi-stability, multi-strain coexistence, limit cycles 
and even chaos. In this analysis we use the definition of equilibrium 
stability (McCann, 2000), although there are also other notions of 
general stability related to permanence (Law & Morton, 1996) that 
could be informative.

F I G U R E  2   Increasing the ratio of single to co-colonization (�) increases the complexity of multi-strain dynamics. We illustrate two 
examples with fixed interaction matrix A and shifting � for two system sizes: (a) N = 3 and (b) N = 4. Here, we fixed the normalized interaction 
coefficients between strains (matrix A) and we varied � from 0 to 0.5 and 1.5. Because � affects the �j

i
 (Equation 5), for each �, we obtain a 

different effective competition network between strains modulated by top-down factors. The plots show the strain frequency (zi) dynamics 
following the replicator equation on the slow manifold. For N = 3 and N = 4, for small value of � closer to zero, the final attractor is a stable 
steady state, while for a larger value of �, the stable attractor is a union of heteroclines of three strains (May Leonard type or rock-paper-
scissors dynamics). For intermediate values of � (� = 0.5) in this case we obtain a stable spiral of coexistence for N = 3 and a limit cycle of 
coexistence for N = 4, both consistent with an increase in rate of strain turnover
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BOX 2 Single to co-colonization ratio as a tuning parameter for complexity of attractors

One limit for � may be achieved by either increasing global facilitation k → ∞, or increasing transmission intensity R0 =
�

m
→ ∞. The 

other limit can be achieved by increasing competition in co-colonization or decreasing transmission intensity. Although in reality, 
these limits may never be literally attained biologically, here we describe the mathematical trends of the system, which will most 
likely reside in the intermediate range. For a more detailed analysis of system behavior and speed of the dynamics Θlim in these limits, 
see also Text S2, and Figures S2 and S3. A specific example with dynamics close to these limits is provided in Figure S4.

Limit 1: Co-colonization, � → 0 (R0 ↑ or k ↑).

Quality of the dynamics. Recall that 𝜆j
i
> 0 implies that 

the  strain i  (the invader) may invade the system with only 
strain j  (the resident) present, starting from a very small 
frequency. In the limit � → 0, this pairwise invasion fitness 
reduces to:

Importantly, in this limit, the fitness �j
i
 depends only on the co-

efficients of the resident, where �j,i measures how much the 
resident j contributes to mixed co-colonization with strains i  
and j: Iij (transmission and fitness of other strains), and �j,j how 
much the resident j contributes to self co-colonization: Ijj (trans-
mission and fitness of itself). Hence, the relative fitness of the 
invader i  depends only on the resident j. Invasion is possible if 
and only if 𝛼j,i > 𝛼j,j.
This phenomenon in a system of N players can increase the 
availability of independent niches. For example, if 𝛼j,j > 𝛼i,j for 
all j = 1,⋯N and i ≠ j then all strains may be stable residents 
when alone, leading to at least N stable monomorphic equilibria. 
Cycles or more complex dynamics are rare.
The final outcomes can vary because the structure of the 
matrix Λ is free in principle. In the special case �jj = 0 for 
all j , then Λ = AT, and the dynamics could be richer, in line 
with generic replicator systems (Yoshino et  al.,  2008). In 
that special case, under random �ij i.i.d. symmetric about 
0, the probability of having a feasible equilibrium z ∗ > 0 
is exactly 1∕2n, where n is the number of coexisting strains 
(Morrison,  2013; Serván et  al.,  2018). In general, for ran-
dom A, with no special structure, qualitatively, the system 
likely has many stable steady states wherein only few spe-
cies coexist.

Speed of the dynamics.
1.	Θlim = 0. If k → ∞, we have Θ: m

2k
→ 0. For fixed population 

turnover (m: clearance and death rate), the selective dynam-
ics happen very slowly, that is, the dynamics are effectively 
neutral. Similarly if R0 → ∞ via lower m (m → 0), the multi-
strain system stays close to neutrality.

2.	Θlim > 0. If R0 → ∞, via increases in transmission rate, 
� → ∞, then Θ →

m

2k
> 0 which is far from zero. In this case, 

the model reduction captures well the real dynamics and the 
qualitative study of � → 0 is appropriate.

Limit 2: Single colonization, � → ∞ (R0 ↓ or k ↓).

Quality of the dynamics. Recall the matrix Λ is the matrix of all 
pairwise invasion fitnesses between N strains in the system. In 
this limit, we have generically ||Λ|| → +∞ and Θ → 0. In order to 
keep a bounded matrix Λ, we rewrite the system as

Then, the speed is given by �Θ and the qualitative behavior by 
� − 1Λ. Notice that when � → +∞, the matrix � − 1Λ → AT − A.

Importantly, this matrix is skew symmetric, for which there are 
known mathematical results of the replicator equation in zero-sum 
games (see Allesina & Levine, 2011; Chawanya & Tokita, 2002; 
Fisher & Reeves, 1995). The quadratic term in Equation (9) is zero: 
Q(z) = zTΛz = 0. The N-strain dynamics reduce to:

There exists exactly one nonnegative linearly stable equilibrium (in 
particular multistability is impossible). In practice, similar to the clas-
sical Lotka–Volterra model, there is a one-parameter family of limit 
cycles parametrized by initial conditions. This type of coexistence is 
not structurally stable and will be lost for a large but finite value of � 
leading in general to heteroclinic limit cycles among strains.
Denoting n the number of strains coexisting, for this skew-
symmetric case, it has been shown that only an odd number of 
strains may coexist (see also Figures S1 and S5). The probability 
to observe n = k strains, out of a total pool of N is

In this case, at equilibrium Λz ∗ = 0, hence z ∗ is an eigenvec-
tor associated with a zero eigenvalue. For a general skew-
symmetric matrix, a zero eigenvalue is expected only when its 
size is odd (see also Grilli, Barabás, et al., 2017).

Speed of the dynamics.
1.	Θlim = 0. If R0 → 1 decreases transmission intensity, either via 

lower � or higher m, then Θ → 0, and selective dynamics are 
too slow, making the system effectively neutral.

2.	Θlim > 0. If k → 0, 𝜇Θ →
m

2
(R0 − 1) > 0. Thus dynamics are well 

defined and occur on a feasible timescale.

�
j

i
= �j,i − �j,j.

(9)żi = �Θzi
[((

�−1Λ
)
z
)
i
− zt

(
� − 1Λ

)
z
]
,

(10)żi = Θlimzi

[
((AT−A)z)i

]
.

P(n = k) =

⎧
⎪⎪⎨⎪⎪⎩

0 ifk is even

⎛
⎜⎜⎝
N

k

⎞
⎟⎟⎠
21−N ifk is odd

.
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Analyzing coexistence patterns under random allocation of 
co-colonization interaction coefficients (Figure 3), there are multi-
ple phenomena to note. First (and trivially) the higher the number 
of strains coexisting (n ≤ N), out of a pool of N strains, the higher 
the maximal Shannon entropy (evenness) in coexistence, delimited 
mathematically by H = −

∑
n
i

1

n
ln(

1

n
) = ln(n), a function that increases 

with n (dashed lines in Figure 3a). Second, within a given n, the higher 
the evenness in coexistence, the higher the stability of such steady-
state, as measured by the negative part of the dominant eigenvalue 
of the Jacobian matrix evaluated at that equilibrium, a result similar 
to Song and Saavedra (2018) using a Lotka–Volterra framework. In 
contrast, across different n, as maximal entropy increases, the max-
imal stability of coexistence steady states tends to decrease (color 
peaks decreasing diagonally down from left to right in Figure  3a). 
This implies that under randomly sampled interactions, hence in 
randomly assembled communities, stable coexistence equilibria 
with more strains, and more evenly distributed strain frequencies, 
become harder to obtain.

Next, when formally computing the probabilities of reaching a 
stable n-strain coexistence in this model, we find that the relative 
probability of stable n-strain steady-state decreases with n, thus 
confirming that the more strains there are, randomly interacting, 
the harder it is for all of them to coexist (relative comparison among 
colored dots frequencies in Figure 3a). In contrast to the overall sta-
ble steady states (2%), there are many more unstable steady states 

in the system (98%), spread at any entropy (evenness) and stability 
level, with no apparent order or hierarchy (black dots in Figure 3a). 
This indicates that stable coexistence at a steady state is rare under 
random co-colonization interactions, and that the attractors are 
often of dimension 1 or more. This also suggests that the number of 
coexisting strains in that case is not a limiting factor.

Quantification and stratification of these probabilities jointly by 
n, stability and evenness, combines the feasibility of a given state 
with its expected stability and strain composition. Then, to visualize 
in more detail this distribution, among steady states with a given n, 
for each entropy level E, we multiply the existence probability of a 
stable steady state (feasibility) f(E) with the absolute value of mean 
dominant eigenvalue (mean stability) of such steady state s(E) and 
plot the resulting effective stability= f(E)s(E) for each n (Figure  3b). 
This integrates two opposing forces: on one hand higher-evenness 
equilibria are less feasible and harder to reach under random sam-
pling of interaction coefficients from a pool of N strains, that is, f(E) 
decreases with E; on the other hand, more evenness among strains 
is associated with more stability in coexistence, s(E) increases with E, 
similar to (McCann, 2000). As can be seen in the emergent peaked 
curves in Figure 3b, such trade-off between probability of stable co-
existence and stability gives rise to an optimal intermediate evenness 
for n-strain coexistence, for any n, where stable coexistence is suf-
ficiently feasible in the first place, and secondly where the stability 
of that equilibrium to perturbations is sufficiently high. Thus, mean 

F I G U R E  3   Diversity-stability relationships for n-strain coexistence starting with a pool of N = 10 strains. (a) Summary of 100,000 
simulations with a random normalized interaction matrix A, with each entry �ij drawn from the Normal distribution �(0, 1). � = 0.05. The 
equilibria of each system are mapped as dots in this plot, after computing their local stability and Shannon entropy. (b) Effective stability is 
calculated as a product between the mean dominant eigenvalue and proportion of steady states at each entropy level, stratified by number 
of strains coexisting n. (c) Plot of the rank- order frequency distribution of strains at the “optimal intermediate evenness” for n = 4 strains 
coexisting out of a pool of 10. (d) Plot of the rank- order frequency distribution of strains at the “optimal intermediate evenness” for n = 8 
strains coexisting out of a pool of 10
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stability of n-strain coexistence is effectively maximized at particu-
lar, typically intermediate, values of Shannon entropy (Figure 3c,d). 
In practice, independently of particular strain composition, out of a 
total pool of N, for a given number coexisting, n, the rank-frequency 
distribution of strains should be preserved. Such “optimal” rank-
order frequency distribution will display higher variance for low 
number of coexisting strains (for example n = 4), but be more robust 
for higher n (e.g., n = 8).

In Figure S5, we explore the same phenomena for the case of a 
higher �, tending to dominant single colonization (� = 10 more likely 
applies to a system like pneumococcus serotypes, Gjini et al., 2016). 
We find the ecological forces leading to an optimal effective sta-
bility at an intermediate entropy range remain robust also in this 
case. This limit also verifies that for the same randomization of in-
teraction coefficients A, typically more strains coexist than for lower 
�, and in particular, tending to an odd number of them (Chawanya 
& Tokita, 2002), while their joint dynamics become more complex 
(Box 2).

3.3 | The role of the ratio � in multi-stability

With the richness of potential dynamics in mind for a fixed � 
(Figure 3), we next revisit the relationship between complexity and 
ratio of single to co-colonization, with model simulations where 
� = 1∕(k(R0 − 1)) is varied. Using 100,000 random system simula-
tions with N = 10 for different values of �, we confirm the pattern 
observed for N = 2 and illustrated for N = 4 in Figure 2, that increas-
ing � (via decreasing either R0 or k) increases strain turnover and the 
complexity of multi-strain coexistence. Computing the number and 
stability properties of equilibria for each system, we can see that 
multi-stability of steady-states is very common, especially in the 
limit of single colonization dominance (� → 0) as shown in Figure 4a. 
By multi-stability we broadly refer to multiple “alternative stable 
steady-states” in the system, which may contain different strains, a 
number of which may also overlap. Pure multi-stability, with 100% 
overlapping constituent strains, but different frequencies, between 
two steady states, is impossible. In contrast, as � increases, multi-
stable equilibria become less common but the proportion of systems 
without any stable steady state increases, pointing to an increase 
in dynamic complexity for the same N and normalized interaction 
matrix A between strains.

In particular, when zooming-in on the alternative stable steady-
states of each system, we can quantify how different are the subsets 
of strains coexisting in each of those equilibria. Defining an index 
of strain overlap, based on the Jaccard index between two sets 
(see Appendix), we find that multi-stability is largely characterized 
by nonoverlapping subsets of strains (Figure 4b), in contrast to the 
higher average strain overlap (about 20%) between any two generic 
steady states. This means that depending on initial conditions and 
founder effects, the same global pool of N strains with random co-
colonization interactions, can lead to entirely different community 
composition of strains in different epidemiological settings, an 

effect that is rather common (60% probability) for values of � around 
0.1, but becomes improbable for � = 10.

When quantifying system outcomes for N strains, in three broad 
categories: those leading to a unique stable steady state, “monostabil-
ity”; those having multiple alternative stable steady states, “multista-
bility,” and those leading to complex attractors but no stable steady 
state, as we apply an even higher resolution for �, we find that there 
are effectively three regions as a function of single to co-colonization 
prevalence (Figure  5). For small �, stable coexistence and multi-
stability are more likely, for intermediate �, a single stable steady state 
is more likely, and for high �, it is very rare for the system to have 
any stable steady state, a regime we refer to as no stable steady state, 
implying complexity. In this regime, rock-paper-scissors type coexis-
tence and unstable coexistence are the more, if not the only, probable 
outcomes. This result highlights the importance of an environmental 
mean-field gradient in shifting the qualitative dynamics: moving from 
higher endemic prevalence or more facilitation in co-colonization to-
wards lower prevalence or more competition, the inter-dependence 
between strains increases, the role of asymmetric investment in co-
colonization increases, and thus, the propensity for complex high-
dimensional coexistence becomes higher. In one extreme, we expect 
low variability in a system over time, while in the other, we expect high 
variability and complex strain turnover over time.

3.4 | Contrasting patterns of evolution along the 
gradient �

Until now, we have seen how for a fixed � and a given set of in-
teraction coefficients between strains, their relative abundances 
change at the population level. Next, we consider how the epi-
demiological dynamics and the evolutionary dynamics interact. 
Evolution happens on several levels in this system, made explicit by 
zi dynamics and various possible trait definitions for each system 
member i . Here we focus on two important levels. First, frequency 
dynamics (zi) can be linked with selective dynamics on mean interac-
tion in co-colonization trait space (see Madec & Gjini, 2020) where 
keffective = k + εq(t). Secondly, another trait changing in the commu-
nity is mean invasibility of the system, Q, in mutual invasion fitness 
space (see Box 1). These two quantities reflect the changing mean 
fitness landscape, and depend on frequency dynamics as quadratic 
terms involving summation over products of strain pair frequencies 
over time. When varying �, as the multi-strain selective dynamics 
unfold in different ways, so do the evolutionary dynamics of mean 
traits in the system (Box 3).

In particular, in the � → 0 limit, where multi-stability is common, 
systems can slowly evolve towards higher mean competition (q < 0), 
or higher facilitation (q > 0) in co-colonization depending on initial 
conditions, and on the strains that get selected in the pruned commu-
nity to stably coexist. Conversely, in the � → ∞ limit, where complex 
oscillatory coexistence is more probable, systems are more likely to 
preserve many strains in oscillatory dynamics, and thus fluctuating 
polymorphism in interaction trait space, with alternating periods 
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between higher average competition and higher average facilita-
tion (q oscillatory). This result highlights two routes to coexistence 
or maintenance of biodiversity: little variability within one popula-
tion but diversity between populations in the first case, and more 

variability within one population but low diversity between popula-
tions in the second. Notice also that an increase in mean resistance 
to invasion of the multi-strain system (Q dynamics) does not nec-
essarily always correlate with increased facilitation or competition 

F I G U R E  4   System complexity as a function of � and multi-stability. (a) For several values of �, 100,000 systems of N = 10 strains have 
been generated (using a normal distribution of A). For each value of �, we show the proportion of systems with a given number of stable 
steady states (in {0,⋯, 6}). As � increases, the proportion of systems without any stable steady state increases, reflecting larger potential 
for complex coexistence dynamics, where the attractors may be limit cycles, heteroclinic cycle or even strange attractors. For 𝜇 < 0.5 (high 
transmission or competition between strains), stable multi-strain coexistence is very probable, and most of the systems have several stable 
steady states, thus multi-stability is common. (b) In the particular limit case of � = 0, and for each of the 100,000 systems, we compare 
the strain overlapping index SOI (see Appendix) within all steady states and within only the stable steady states. We see that without the 
constraint of stability, two steady states of our system share on average 20% of their coexisting strains, while within the set of stable steady 
states, this overlapping index is nearly always 0. This shows that in multi-stability, the attractors contain mostly disjoint sets of strains

F I G U R E  5   Dynamic regimes as a function of single to co-colonization ratio �. We plot the number of steady states as a function of 
� ∈ [0.01, 100] for many randomly generated interaction matrices A. Since � depends on R0 and k, we kept their combination implicit, and 
randomly sampled the rescaled interactions matrix A = (�ij). For any system (A), if there are two or more stable steady states, the system 
is considered multistable and the dynamics depend on the initial conditions. If there is only one stable steady state the dynamics can 
be considered simpler. Indeed every system with a unique global attractor is monostable, but the converse is not true for a monostable 
system may also have non stationary attractors. If there is no steady state, the dynamics are more complex, meaning the attractors are 
necessarily neither stationary like limit cycles, heteroclinic cycles or even strange attractors. For the simulations, we used a total strain 
pool size of N = 10, and for each value of � we generated randomly 1, 000 matrices A leading to 1, 000 different interaction systems for each 
value of �. For a given value of �, we then counted the proportion of systems with no stable steady state (red line), exactly one stable steady 
state (black line) or several stable steady states (gray line). For a small �, very few systems have zero stable steady states, while nearly 80% 
of them are multistable. For a large value of � the multistability is nearly impossible while more than 70% of interaction systems having no 
steady state and thus displaying a complex dynamics with no stationary attractors
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BOX 3 Stability–diversity–complexity and evolutionary dynamics in the system

In multi-strain communities with random co-colonization interaction strengths (A), the global epidemiological quantity � = 1∕((R0 − 1)k), 
describing the single to co-colonization ratio in the host population, modulates regimes of system behavior, shaping its stability, com-
plexity and diversity properties.
Alongside transmission dynamics among hosts, we may track evolution in real time on at least two traits in this system:
1.	mean interaction in co-colonization trait space (q) where keffective = k + εq(t),
2.	mean invasibility of the system (Q) in mutual invasion fitness space among strains (Equation 4).
Evolutionary dynamics in the microbial community reflect the changing mean fitness landscape, and depend on strain frequency dy-
namics (Madec & Gjini, 2020) as follows:

Notice that q increasing means the system tends to increase facilitation in co-colonization on average over time, whereas q decreasing 
means the multi-strain community tends to increase inhibition in co-colonization over time. Similarly Q increasing implies the system 
becomes less invadable over time, and Q decreasing means the community of strains becomes easier to invade from outsider strains. 
As frequency dynamics can be complex, so can mean trait dynamics. An indirect measure of the diversity of the system is given by the 
magnitude of Q. A dynamic measure of the “selfishness” in the system is given by the difference:

which indicates the relative strength in the system of self-positive feedbacks in co-colonization. If q − Q > 0 the system selects for strains 
which are better at favoring self than others, and viceversa. If q − Q < 0, the system selects for strains which, on average, are better at favor-
ing others than self (“altruists”). A special case are competitive exclusion scenarios (Madec & Gjini, 2020), where a decrease in Q (Q → 0) will 
be associated with a positive dynamics of q, illustrating how extreme selfishness leads to selection of a single strain in the system.

High prevalence or high facilitation (� low) Low prevalence or high competition (� high)

•	 Co-colonization dominates
•	 Few strains coexist
•	 Multistability is common
•	 Simple coexistence (fixed point)
•	 Low variability over time in one population
•	 Mean trait evolution on 2 levels: q and Q over time 

•	 Resistance to invasion Q tends to be stable
•	 Either competitors or facilitators can be selected
•	 Evolution of “specialist” communities
•	 High diversity between host populations

•	 Single colonization dominates
•	 Many strains coexist
•	 No multi-stable steady states
•	 Complex attractors (limit or heteroclinic cycles)
•	 High variability over time in one population
•	 Mean trait evolution on 2 levels: q and Q over time 

•	 Resistance to invasion Q tends to oscillate
•	 Competition and facilitation fluctuate
•	 Evolution of “generalist” communities
•	 Lower diversity between host populations

q(z)=
∑∑
1≤k,j≤N

�jkzkzj and Q(z)=
∑∑
1≤k≠j≤N

�k
j
zjzk=�.

q − Q =
∑
i

�iizi,
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(higher or lower q), and in the oscillatory regime the two can also be 
synchronous and asynchronous (Figure S6). As q − Q can be taken 
as a relative measure of selfishness versus altruism in the system 
(Box 3), in the asynchronous oscillatory regimes for high �, we can 
expect fluctuating prevalence of “altruist” and “selfish” strains, all 
maintained over time.

3.5 | Linking � to the stress gradient hypothesis

Our main result is that the ratio of single to co-colonization 
� = 1∕((R0 − 1)k) is a key modulator of the qualitative complexity of 
the dynamics (Figure 5, Box 2). While both transmission intensity R0 
and mean interaction coefficient in cocolonization k decrease this 
ratio, a natural corollary is that the only way for � to be held constant, 
is if R0 and k are traded-off against each other. In other words, when 
colonization opportunities for all strains are reduced, in order to keep 
� constant, the mean interaction coefficient must increase, thus en-
hancing facilitation among strains in co-colonization. And viceversa, 
if the environment gets more favorable, that is, R0 increases, then � 
can only be be kept constant if k decreases accordingly, thus if all 
strains become less vulnerable to co-colonization. Such quantitative 
feature of our model makes an explicit link with the stress-gradient 

hypothesis (SGH) postulated in ecology (Bertness & Callaway, 1994; 
Callaway & Walker, 1997; Chamberlain et al., 2014). The SGH pre-
dicts that positive interactions should be more prevalent in stress-
ful environments, while more favorable environments should favor 
competition. This hypothesis has been supported and tested mainly 
in plant systems (Callaway et al., 2002; Eränen & Kozlov, 2008; He 
et al., 2013; Pugnaire & Luque, 2001), and more recently in micro-
bial communities (Fetzer et al., 2015; Hoek et al., 2016; Lawrence 
& Barraclough, 2016; McCluney et al., 2012; Piccardi et al., 2019).

In our epidemiological system, with microbial interactions 
embedded in co-colonization dynamics, the overarching single-
to-co-colonization ratio can be considered as a conceptual and math-
ematical formalization of the stress-gradient hypothesis. In order for 
a set of species with a fixed set of normalized interactions (A = (�ij)) 
between them, to maintain a given configuration of coexistence (�) 
under changing environmental conditions (e.g., R0), the only way is 
by universal adaptation in mean-field interaction, increasing antago-
nism towards co-colonizers in favorable environments and increas-
ing facilitation in harsher environments, respectively (see Figure 6). 
However, even if � is kept constant, the speed of collective dynamics 
may still be affected, typically reduced with R0, although the abso-
lute magnitude will depend on whether and how they are mediated 
through transmission rate versus duration of carriage (see Figures S3 
and S4). In summary, while the fitness landscape is shaped by the 
phenotypic distribution of all the community members, as the exter-
nal environment changes, the relative balance of their interactions 
may shift, due to ultimate context-dependence in mutual invasion 
fitness. One solution to keep that balance in check would be by quick 
reversal adaptation of the mean.

Taken together, our results show that even though differences 
in pairwise co-colonization interactions can be small and random, 
as expected for closely related strains (or species), they are enough 
to drive selection in a large community of such members, which can 
collectively coexist, adapt, and self-organize, albeit often in com-
plex and unstable fashion. The critical influence of average growth 
potential and mean “willingness to share” co-colonization, analyzed 
here, highlights the importance of global context, and calls for de-
tailed system-specific investigations in the future.

4  | DISCUSSION

A central question in microbial ecology is whether community 
members compete or cooperate with one another, and how such 
interactions mediate community stability, resilience and function. 
In our model, we study an epidemiological multi-strain system, 
where members interact with each other via altered susceptibili-
ties to co-colonization, which broadly include both competition 
and facilitation. By clearly delineating the role of mean interaction 
coefficient, basic reproduction number R0, and biases in pairwise 
coefficients relative to the mean, we obtain a model reduction for 
strain frequency evolution for any N. The questions we addressed 
within such a system are similar to a long-standing ecological 

F I G U R E  6   The R0 versus k trade-off in � and the stress gradient 
hypothesis. While the type of equilibrium the system will tend to, 
is strongly driven by � (the ratio of single to co-colonization), hence 
directly by R0 and k, it is clear from the expression � = 1∕((R0 − 1)k) 
that the only way for this ratio to be held constant, is if R0 and 
k are traded-off against one another. This principle reflects a 
core expectation of the stress-gradient hypothesis (SGH): when 
transmission opportunities for all strains are reduced (harsher 
environment), the mean interaction coefficient in the system must 
increase, that is, if all strains cooperate more in co-colonization, 
to keep the same � and coexistence regime. And viceversa, if 
the environment gets more favorable, that is, R0 increases, then 
� can be kept constant only if k decreases, thus if all strains 
increase competition. Note that keeping � fixed only preserves 
the qualitative multi-strain dynamics, but does not guarantee its 
speed Θ will remain unchanged. Different global R0 and k and the 
underlying route to such changes may effectively impact selection 
speed
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quest on multispecies dynamics (Bunin, 2017; May, 1972; Pascual 
et al., 2006; Serván et al., 2018; Song & Saavedra, 2018): what gov-
erns coexistence regimes, diversity and stability in such systems?

Although we do not specify the molecular mechanisms that 
can mediate positive or negative interactions between strains in 
co-colonization (Dawid et  al.,  2007; Leggett et  al.,  2014; Lysenko 
et al., 2010; Riley & Gordon, 1999; Shen et al., 2019), this renders 
the system generic and broadly applicable. We can quantitatively 
predict very important features of system behavior with a simple 
mathematical framework derived under quasi-neutrality and strain 
similarity assumptions (Madec & Gjini, 2020). This model reduction 
captures selective dynamics between strains over long time, and co-
incides with an instance of the replicator equation from evolutionary 
game theory (Hofbauer & Sigmund, 2003; Nowak & Sigmund, 2004). 
Studying this equation and its biological consequences in detail, 
here we find that in our system, there is a critical ratio that tunes 
complexity and dynamic regimes in such multi-strain contagion con-
text: namely the ratio of single to co-colonization. This ratio, �, is 
given by the inverse of the product of the basic reproduction num-
ber and mean vulnerability to co-colonization � = 1∕((R0 − 1)k). We 
show that it amplifies the importance of asymmetry in interaction 
between strains, lending theoretical support to the principle of 
context-dependence (Coyte & Rakoff-Nahoum, 2019) of relative fit-
nesses in a coupled microbial community.

As strain relative abundances fluctuate, the resource and fitness 
landscape change dramatically and feed back on the system. This dy-
namic interdependence is on one hand, the source of complexity, but 
also a key driver of evolving mean fitness between extant strains. A 
global, symmetric and temporally varying, environmental feedback 
on all strains emerges naturally in co-colonization dynamics (Q in 
Equation 4), describing mean invasibility and following the evolution 
of diversity. Mean invasion fitness will tend to increase when more 
strains are stably maintained over time, and it will tend to zero in the 
extreme cases of competitive exclusion. Depending on parameter 
values, there is a gradient for number of resources in the system. 
Strains compete more strongly for susceptible hosts (one limiting re-
source) in the extreme of co-colonization (� → 0), whereas they com-
pete for (at most) N singly colonized hosts, open to co-colonization (N 
resources) in the opposite extreme of single colonization dominance 
(� → ∞).

We find that for small values of the ratio between single and 
co-colonization �, which means high transmission intensity or high 
cooperation among strains on average, the system dynamics is char-
acterized by multi-stability, where typically nonoverlapping strain 
subsets can coexist, depending on initial conditions, a result that 
resonates with earlier multi-strain SIRS models with cross-immunity 
(Gupta & Anderson, 1999). In our model, we find a similar principle 
applies, despite the interactions between strains being mediated 
via altered susceptibilities to co-colonization, without persistent 
immune memory. While in the present setup this gradient emerges 
naturally from the intrinsic structure of infection-mediated inter-
actions among all strains, similar gradients have been found also 
in ecological communities studied with generalized Lotka–Volterra 

models, when the correlation between i − j and j − i interactions was 
explicitly varied (Bunin, 2017).

Our study brings together several themes of interest across 
many multi-type systems shaped by interactions and higher-order 
feedbacks between their members. Many fields including ecology, 
geophysics, and economics are calling attention on critical transi-
tions, which occur when natural systems drastically shift from one 
state to another (Scheffer et al., 2012). Critical transitions in the ep-
idemiology of infectious diseases are of relevance to the emergence 
of new pathogens and escape from control, such as vaccines. The 
critical transitions analyzed in this paper relate global and mean-field 
environmental variables to the manifestation of competitive hier-
archies between multiple strains interacting in co-colonization. We 
have made explicit how a gradient emerges from the epidemiolog-
ical ratio of single to co-colonization, and how it tunes effectively 
the diversity, stability and complexity of the coexistence between 
strains. Such gradient can mediate critical transitions in collective 
dynamics, when the normalized interaction coefficients between 
members are held fixed. These transitions may underlie and poten-
tially enhance (or counteract) efforts to control and eliminate multi-
type infectious pathogens, as via vaccines or drugs, or in the face of 
climate change. Other studies have shown that concurrent multiple 
infection in malaria creates tipping points that give rise to hysteresis 
in responses to control or seasonal variation in vector abundance 
(Alonso et al., 2019). Our work supports a similar perspective, but 
more generally relevant to interacting systems with multiple strains, 
and coexistence regimes, rather than prevalence tipping points. 
Mean facilitation and competition among strains, affecting �, ap-
pear as two sides along a continuum for the system, which particular 
strain compositions or environmental drivers (seasonality, general 
host immunity, population turnover) may tip towards one or the 
other extreme.

We find that when � tends to favor co-colonization, for example 
in the limit of more facilitation between strains on average, the sys-
tem tends to multi-stability and stable coexistence of a few strains 
in simple dynamics. In contrast, when � tends to favor single col-
onization, for example in the limit of more competition between 
strains on average, the system tends to more complexity and un-
stable equilibria (Figure 5), but coexistence of more strains becomes 
possible (Figure S1). Although at first sight this may seem to suggest, 
somewhat contrary to previous expectation from lower-dimensional 
models (Chen et al., 2017; Hébert-Dufresne & Althouse, 2015), that 
average cooperation in co-colonization is stabilizing and average 
competition is destabilizing, our result should be related to the fact 
that k in our model is not a measure of cooperation in the classical 
sense, whereby cooperation is exclusively defined as a between-
strain phenomenon. In our model k includes self and nonself-
interaction, and is critical to the global resource dynamics shaped 
dynamically by N strains.

Our study has also several limitations. Although we explored 
the qualitative aspects of the dynamics, including the complexity 
and stability of steady states, their dimensionality and associated 
entropy, we did not study which strains ultimately coexist. This 
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question relates to optimal strategies among N players in a game 
theoretic context. How the interaction traits of each member de-
termine its persistence or exclusion from the system, and what is 
the role of N, requires further investigation and algorithmic optimi-
zation (Bárány et  al.,  2007). We also did not develop all the links 
with the Lotka–Volterra modeling literature in microbial ecology, al-
though special cases of our model are similar to particular cases of 
GLV dynamics. The metaphor of co-colonization, as adopted here, 
could be applied to more general cases of ecological dynamics be-
tween microbial species or ecotypes. We did not study alternative 
distributions of rescaled interaction strengths A, only focusing on a 
symmetric distribution around 0. It would be interesting in the fu-
ture to test our findings against nonrandom topologies, and empir-
ical interaction networks, as studied for example by Grilli, Adorisio, 
et al. (2017). In the limit � → ∞ the patterns analyzed here still hold 
independently of the distribution governing Aij, but in the limit � → 0, 
the distribution of A matters, and different distributions may lead to 
slightly different numerical predictions.

Finally, this model makes several predictions which can be 
tested empirically. First, the invariant principles in the slow time 
scale (Box  1) suggest that dominance patterns in single and co-
colonization of particular strains should be the same. The other 
finding that stable (multi-stable) coexistence between types 
through co-colonization is more likely when mean interactions 
tend towards cooperation, and that a single stable coexistence 
between types becomes more probable at intermediate values of 
�, and ultimately only unstable coexistence is possible for large 
values of � could be tested in endemic multi-type microbial eco-
systems. For example, empirical data in polymorphic Streptococcus 
pneumoniae bacteria, have been consistent with estimates of about 
90% mutual inhibition between co-colonizing serotypes (Gjini 
et  al.,  2016; Lipsitch et  al.,  2012), and R0 values around 2. This 
implies that for this system, � ≈ 10, and multi-stability is highly 
unlikely but a single stable equilibrium point is almost as likely 
as complex unstable coexistence. This may reconcile the secular 
trends observed in some settings consistently over many years 
(Ekdahl et al., 1998; Feikin & Klugman, 2002; Fenoll et al., 1998). 
Such secular trends can interfere with vaccine introductions and 
need to be accounted for when estimating impact (Moore, 2009; 
Moore & Whitney,  2008). Our model makes explicit predictions 
about the timescale and qualitative aspects of such secular trends 
(Box 2, Figure S4), under the plausible assumption that they are 
driven by co-colonization interactions.

The requirement of being simultaneously stable and feasible 
tends to push coexistence regimes toward intermediate entropy, 
independently of precise strain composition. The consistency of 
the optimal evenness (Shannon entropy) configuration for a given 
number of strains has been observed empirically for pneumococ-
cus serotypes across geographical settings, before and after vacci-
nation (Hanage et al., 2010). Our model, offers a new perspective 
on such observations, thanks to co-colonization interactions be-
tween serotypes. As this optimal rank-order abundance distri-
bution depends on the context �, model expectations for such 

dependence could be tested with multi-site data from different 
endemicity levels.

We postulate that the stress gradient hypothesis (SGH) (Bertness 
& Callaway, 1994; Callaway & Walker, 1997; Chamberlain et al., 2014) 
could help interpret the critical role of multiple infection in shap-
ing epidemiological multi-strain systems. Our link suggests that to 
preserve a certain “optimal” single-to co-colonization ratio (optimal 
complexity/coexistence balance), independently of community size 
N, facilitation in co-colonization between microbial strains should be 
more common in settings with low prevalence, a prediction to be 
tested in the future. It becomes intriguing to verify, beyond pneu-
mococcus, to what extent this model and its insights (Box 3) can be 
used as an analytic backbone to interpret multi-strain dynamics in 
other systems of relevance for public health, for example influenza 
(Yang et al., 2019), dengue (Mier-y Teran-Romero et al., 2013), ma-
laria (Alonso et al., 2019; Gupta & Maiden, 2001) or human papilloma 
viruses (Murall et al., 2014).

Disentangling multi-strain interactions and their role in commu-
nity function at the epidemiological level remains challenging, but 
can be made more accessible analytically using frameworks such 
as the one proposed here. With the simplicity and deep insights af-
forded by this model, we can address better the role of mean fitness 
of the microbial system as a whole, trait variance, and the role of 
environmental gradients for stabilizing versus equalizing forces in 
biodiversity.
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APPENDIX 1

S TR AIN OVERL AP INDE X (SOI)  FOR T WO COE XIS TENCE EQUILIBRIA OF THE SAME SYS TEM
Consider a set S = {E1, E2,⋯, Ep} with all steady states of a given system (interaction matrix), where Ej ⊂ {1,⋯,N} and Ej ≠ ∅. In our applications, 
Ej is the index of feasible strains (with zi > 0) in the steady-state number j of a given system of, for example, N = 10 strains. We note �(S) the set 
of each subsets of S. For instance, if S = {E1, E2} then �(S) =

{
∅, {E1}, {E2}, {E1, E2}

}
. Recall that |�(S) | = 2 | S | = 2p.

We denote the strain overlapping index by SOI and define it as a mean over the Jaccard indices calculated for each pair of coexistence 
equilibria:

S TE ADY S TATE S AND S TABILIT Y
We give here the mathematical details that have been used for the numerical computation of the steady states of our system and their stability.

Notations
Our replicator equation for strain frequencies (Box 1) reads

where z(0) ∈ ℝ
N
+
,Q(z) = zTΛzand

∑
N
i= 1

zi(0) = 1. In this section, Θ is a positive fixed constant that can be taken equal to one without loss of gener-
ality. Define ℳ = {z ∈ ℝ

N,
∑

N
i= 1

zi = 1} and the simplex ℳ+ = {z ∈ ℝ
N
+
,
∑

N
i= 1

zi = 1} = ℳ ∩ ℝ
N
+
. As any replicator equation, ℳ+ is invariant under 

the dynamics of (3). Indeed both ℝN
+
 and ℳ are invariant under (A.2).

Computation of the steady state with n strains
Take a positive integer n ≥ N and take E ⊂ {1,⋯,N} with cardinal |E | = n. Denote ΛE ∈ ℝ

n× n the submatrix of Λ with only those columns and 
those rows whose index belongs to E.

Let z ∗ be a steady state of (3) such that 
⎧⎪⎨⎪⎩

z∗
i
=0 if i ∉ E

z∗
i
>0 if i ∈ E

. Note z ∗
E
= (zi)i∈E. Therefore we have

In particular, we have 
(
ΛEz

∗
E

)
j
=
(
ΛEz

∗
E

)
k
 for any j, k ∈ E. This leads to the linear system that we use in the numerical computations:

(A.1)
SOI =

1

⎛
⎜⎜⎝
2

p

⎞
⎟⎟⎠

�

A∈� (S)

�A�=2

�����
⋂
E∈A

E
�����

�����
⋃
E∈A

E
�����

.

(A.2)żi = Θzi
(
(Λz)i − Q(z)

)
: = fi(z), i = 1,⋯,N,

ΛEz
∗
E
= Q

(
z ∗
E

)
(1,…, 1)T,

∑
i∈ E

z ∗
i
= 1.

(A.3)
⎧
⎪⎨⎪⎩

�
ΛEz

∗
E

�
j
=
�
ΛEz

∗
E

�
j+1

, j=1,⋯, n−1�
i∈E

z∗
i
=1

.
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Stability
Denote f(z) =

(
fi(z)

)
i=1,⋯,N

. If z ∗ is a steady state (f(z ∗ ) = 0) then the Jacobian matrix of f  at z ∗, that we denote Df(z
∗ ), contains all the information 

about the linear stability of z ∗. But since the dynamics hold only on ℳ+ = ℳ ∩ ℝ
N
+
, the eigenvalue in the direction transverse to M+ must be 

removed.
Generally speaking, saying that ℳ is invariant under the dynamics means that for any z ∈ ℳ, f(z) ∈ Tz the tangent space of ℳ at z. 

Moreover, ℳ =
1

N
1 +M0 is an affine space where we have denoted 1 = (1,⋯, 1)T ∈ ℝ

N and M0 = 1⊥ = {z ∈ ℝ
n, z ⋅ 1 = 0}. Thus, for any z ∈ ℳ 

we have Tz = M0 does not depend on z and thus f(ℳ) ⊂ M0.
Hence, we define the map g = f|ℳ :ℳ → M0 by g(z) = f(z) for any z ∈ ℳ. The system (A.2) writes simply as: ż = g(z). The stability of a steady 

state z ∗ ∈ ℳ+ is given by the eigenvalues of the Jacobian Dg(z
∗ ) of g at z ∗. In practice, the problem is to compute the matrix of this Linear map 

from the matrix of Df(z
∗ ).

A first idea is to remark that the invariance below implies that 1T is a left eigenvector of the Jacobian matrix Jf of f  at z ∗ ∈ ℳ
+ and that 

the corresponding eigenvalue is −Q(z ∗ ). Thus, −Q(z ∗ ) is exactly the eigenvalue corresponding to the transverse direction. Hence, we have to 
remove this eigenvalue from the spectrum of Jf to obtain only the eigenvalues of Dg(z

∗ ). Due to numerical issues and the possible multiplicity 
greater than 1 of this eigenvalue, it is hard to use this remark in practice.

Thus we use the following method. Define the vectors v1 = 1 and for i = 1,…,N, vi(j) =

⎧⎪⎪⎨⎪⎪⎩

1 if j=1

−1 if j= i

0 otherwise

.

The family {vi}i=1,⋯,N is a base of ℝN and the subfamily ℱM = {vi}i=2,⋯,N is a basis of M0. Define the matrix P = (v1 |⋯ |vn).
Let Jf be the Jacobian matrix of f  at some z in the canonical base. We have

where 0T
n− 1

 is a (line) vector with N − 1 null term and ∗ is a (column) vector of ℝN− 1 and Jg is the Jacobian matrix of g in the base ℱM. Finally, we 
compute the stability of z ∗ by the analysis of the spectrum of Jg.

P− 1JfP =

⎛
⎜⎜⎝
−Q(z∗) 0T

N−1

∗ Jg

⎞
⎟⎟⎠
,


