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The anesthetic state and natural sleep share many neurobiological features and yet are two distinct states.
The hallmarks of general anesthesia include hypnosis, analgesia, akinesia and anxiolysis. These are the
principal parameters by which the anesthetic state differs from natural sleep. These properties are me-
diated by systemic administration of a combination of agents producing balanced anesthesia. The exact
nature of anesthetic narcosis is dose dependent and agent specific. It exhibits a relative lack of nociceptive
response and active suppression of motor and autonomic reflexes. Surgical anesthesia displays a signature
electroencephalogram pattern of burst suppression that differs from rapid eye movement sleep, repre-
senting more widespread disruption of thalamocortical connectivity, impairing information integration
and processing. These differences underpin successful anesthetic action. This review explores the differ-
ences between natural sleep and anesthetic-induced unconsciousness as induced by balanced anesthesia.

Lay abstract: The anesthetic state and natural sleep share many similar features yet are two distinct states.
The key features of general anesthesia are mediated by systemic administration of a combination of
agents. The exact nature of anesthesia is dose dependent and agent specific. Anesthesia displays a more
widespread disruption of brain connectivity compared with natural sleep, impairing information integra-
tion and processing. These differences are essential to successful anesthetic action. This review explores
the differences between natural sleep and anesthetic-induced unconsciousness.
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The anesthetic state refers to a pharmacologically induced reversible state of unconsciousness associated with
physiological endpoints of analgesia, amnesia and akinesia [1]. There is also concomitant depression of ventilation
and the autonomic nervous system. Few anesthetic agents individually fulfill all these physiological traits; hence,
modern practice largely centers around the administration of combinations of agents that together achieve the
desired anesthetic effect, while aiming to minimize side effects [2]. Sleep is endogenously generated involving the
active suppression of consciousness by nuclei in the brainstem, diencephalon and basal forebrain [3]. There is
periodic cycling between two distinct states in electroencephalogram (EEG) activity: rapid eye movement (REM)
and non-rapid eye movement (NREM) sleep [4]. A large body of evidence suggests mechanistic similarities between
anesthetic-induced unconsciousness and sleep.

Neuroanatomically, there is parallel between the GABA-mediated inhibition of arousal-promoting brain nuclei
during sleep and general anesthesia [5]. In addition, EEG studies show similar brain activity during the anesthetized
state and NREM sleep, although with some notable differences as exhibited by MacIver and Bland in the EEG results
of rats anesthetized with isoflurane compared with slow-wave sleep. Both groups displayed similar high-amplitude
delta activity alongside a 1- to 3-Hz dominant frequency; however isoflurane-induced delta activity lacked the
higher frequencies seen during sleep [6]. Anesthetics that act through GABAA receptors, for example propofol,
are associated with beta oscillations; conversely, beta oscillations are seen to decrease in NREM sleep [7]. Another
point to note in the case of propofol, general anesthesia has been shown to reverse sleep debt [8]. It should be
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said, however, that this phenomenon is not replicated across all types of anesthesia and is in fact contradicted with
reference to volatile anesthetics. Pick et al. showed the volatile anesthetics sevoflurane, isoflurane and halothane all
incurred a REM sleep deficit, with halothane also accruing NREM sleep debt [9]. Similarly, Pal et al. demonstrated
that sevoflurane anesthesia was able to reverse NREM sleep debt, but had no effect on REM sleep [10]. Despite
the many similitudes, it is clear that anesthetic-induced unconsciousness is not sleep. There are some fundamental
physiological differences present that suggest that the two states are not as close neural correlates as is often described.

Discussion
Sleep & anesthesia onset
Sleep is actively generated in the brain and is dependent on homeostatic drive and circadian rhythms. The ease of
onset and maintenance of sleep is subject to environmental factors such as temperature, noise, light and chemical
stimulants. Once NREM is established, there is regular cycling between this state and REM sleep at approximately
90-min intervals [11]. In contrast, anesthesia is a pharmacologically induced state, the stages of which do not
normally show the fluctuation and cycling seen in sleep. Instead there is cycling of brain states in anesthesia,
during maintenance at steady-state concentrations, with EEG readings varying among delta, theta, alpha and burst
suppression [12,13].

The onset of sleep is known to be regulated by a variety of neurotransmitter systems. In recent years, the prevailing
supposition is that sleep–wake regulation is contingent on fast neurotransmitters such as GABA and glutamate [14].

The ventrolateral preoptic area (VLPO) is known to be important in sleep onset. GABAergic neurons project
from the VLPO to arousal areas such as the histaminergic tuberomammillary nucleus in the posterior hypothalamus,
the serotonergic dorsal raphe and the noradrenergic locus coeruleus [15,16]. Furthermore, certain anesthetics have
been shown to stimulate these VLPO neurons to exert their hypnotic effect. Immunohistochemical mouse studies
demonstrate an increase in the numbers of active neurons in the VLPO in response to isoflurane and halothane,
the same neurons involved in regulating natural sleep [17]. Adenosine is one of the brain’s chief somnogens and
accumulates as a degradation product of adenosine triphosphate during prolonged intervals of waking [18]. Adenosine
binding in the VLPO is associated with increased activity in this region, promoting non-REM sleep [18].

The median preoptic (MnPO) area is another nucleus that contains a large concentration of GABAergic sleep-
active neurons and is located dorsal to the third ventricle [18,19]. Like the VLPO region, the MnPO projects
neurons that inhibit wake-promoting neurons found in multiple regions of the brain, including the perifornical
lateral hypothalamus, dorsal raphe nucleus and the locus coeruleus. Experiments suggest, however, that the MnPO
neurons are more active during states of sleep deprivation, compared with the VLPO region, which is more
active during sleep [20]. This could highlight differing roles in sleep homeostasis, with the MnPO responding to
homeostatic pressure, whereas the VLPO plays a more consolidatory role [18].

It has become increasingly evident that anesthetic agents employ diverse agent-specific mechanisms to achieve
their desired effect, some of which correlate with sleep mechanisms.

The sedative dexmedetomidine has a mode of action that is particularly similar to the signatures of natural
sleep. Rat studies have shown that administering dexmedetomidine to the locus coeruleus results in an NREM
EEG pattern [21], with a similar effect observed in humans [22]. Dexmedetomidine opens K+ channels resulting in
hyperpolarization of the noradrenergic neurons of the locus coeruleus, inhibiting their activity [23]. This mimics a
similar decrease in activity of locus coeruleus neurons observed during natural sleep [24]. This causes disinhibition
of hypothalamic neurons in the preoptic area, which subsequently inhibits midbrain and pontine arousal centres [7].
Recent research has shown that dexmedetomidine mimics NREM stage 3 sleep, which is termed biomimetic
sleep. Subjects were also shown to have no impaired performance on subsequent psychomotor tests, compared
with zolpidem, a sleep medication that modulates GABAA receptors. This could benefit patients by eliminating
cognitive dysfunction postemergence that occurs as a drug side effect [25].

Opioids, such as fentanyl, often used in conjunction with anesthetic agents, decrease arousal by reducing
acetylcholine in the medial pontine reticular formation and by binding to opioid receptors at various target sites
including the spinal cord and periaqueductal gray [11]. Propofol, a small alkylphenol derivative introduced into
practice in the late 1980s, has an anesthetic action that is mediated by GABAA inhibitory action. This hinders release
of the arousal-promoting neurotransmitter histamine from the tuberomammillary nucleus in hypothalamus [11].

It has been suggested that the nature of the GABAergic inhibition observed in both sleep and anesthesia has
subtle variations. A study by Bjornstrom et al. put forth evidence of propofol preferentially targeting the β2 (54)
subunit of the GABAA receptor compared to the β2 (56) isomer targeted by endogenous GABA [26]. The subunit
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distribution varies across the central nervous system, and this may define the site of action of anesthetic agents
and natural somnogens. Furthermore, a recent study by Kelz et al. has shown the effect of orexin antagonism in
anesthetic emergence but a lack of effect on induction [27]. Orexin released from lateral hypothalamic neurons
promotes wakefulness. Kelz et al. used selective genetic ablation of orexinergic neurons, which causes acquired
narcolepsy and resulted in delayed emergence from anesthesia, but without a corresponding effect on anesthetic
induction [27]. The results suggest that the process of anesthetic onset and offset are not a reciprocal. Similar
conclusions regarding the lack of an inverse relationship between induction and emergence were drawn by Vanini
et al., who showed that anesthetic induction in rats is regulated by GABAergic transmission in the pontine reticular
formation (PnO) but that emergence is not [28]. Thus, anesthetic and sleep onset may differ with regard to the
neurotransmitters and molecular targets in play, as well as the agent in question.

Sleep & anesthesia maintenance period
EEG activity

In both the anesthetic state and natural sleep, thalamocortical signal loops produce EEG activity with sequential
transitioning between alpha, theta and delta oscillations, with the exception of agents such as ketamine [29]. At
increasing depth of anesthesia and sleep, EEG wave morphologies show changes unique to both sleep and surgical
anesthesia. The transition from slow wave sleep to REM sleep corresponds to the switching from delta waves to
low voltage, high frequency EEG activity. REM sleep is often described as paradoxical sleep, due to the similarities
between its EEG with that of wakefulness. However, there are some differences, a notable one being the decoupling
of thalamocortical activity during REM sleep, which is coupled during wakefulness [30]. Partially underlying this
process is cholinergic activity from the basal forebrain and pontine tegmental nuclei emanating to the cortex [18]; this
complex transition is orchestrated by many systems, however, and is not fully understood.

In contrast, a common EEG pattern characteristic of deep anesthesia is burst suppression, marked by alternat-
ing periods of high voltage activity in the brain and periods of no brain activity. Burst suppression is associated with
a depletion of the extracellular calcium levels during the burst phase, reducing it to the point where it interferes
with calcium dependent neurotransmitter release in synaptic transmission. This is followed by the suppression
phase where the calcium levels are restored by neuronal pumps [31]. Theories about what induces burst suppression
centre around hyperpolarization of cortical neurons, such as is induced by isoflurane when it acts on GABAA recep-
tors [32]. Other studies have used biophysical computer modeling, which points to decreases in cerebral metabolic
rate as being the causative factor for the onset of burst suppression. These studies showed that the decrease in
intracellular ATP concentration caused by the inhibitory effect of anesthetics results in increased conductance of
K+/ATP channels. This results in an influx of K+ leading to the hyperpolarization that triggers burst suppres-
sion [33]. The anesthetic state shows a substantial global reduction in cerebral metabolism when compared to sleep.
FDG-PET studies have shown a 54% reduction under general anesthesia compared with at most a 23% reduction
during NREM sleep [34]. This supports the notion of a more profound dampening of brain activity compared with
sleep. It should also be noted that not all anesthetics produce burst suppression, with dexmedetomidine being an
example of such an anesthetic that does not commonly produce this effect [35].

Nociception

Complete lack of nociceptive response is a striking feature of the anesthetic state that differs from sleep. Anesthetic
agents target ventral and dorsal horn cells to blunt ascending transmission of a noxious stimulus to the thalamus.
Opiates used as anesthetic adjuncts further activate descending inhibitory signals from the periaqueductal gray. Sleep
can be quickly reversed by stimulating somatosensory receptors or cortex with noxious stimuli, whereas emergence
from anesthesia is dependent on drug washout [36]. More recently, however, we have moved beyond the notion that
anesthetic emergence is an exclusively pharmacokinetically driven process. Friedman et al. used the term neural
inertia to describe the hysteresis between anesthetic concentrations at induction and emergence [37]. Their animal
studies indicated that this hysteresis is not purely due to pharmacokinetics and could be genetically modulated,
showing an increased complexity of the conscious state that is more difficult to restore as opposed to disrupting.
This theory of neural inertia has been determined to exist in humans as demonstrated by Warnaby et al., through the
measurement of saturated slow wave brain activity as an individualized marker for perception loss in anesthesia [38].
They showed a maintenance of slow-wave activity during the process of emergence even with the anesthetic dose
at very low hypnotic concentrations, thus indicating the so-called neural inertia on transition to consciousness [38].
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Reflex suppression & atonia

The immobility component of anesthesia is produced by active inhibition of neural circuits in the brainstem and
spinal cord, which leads to suppression of reflex withdrawal from noxious stimuli. For example, both propofol
and isoflurane depressed ventral horn neurons, with isoflurane additionally having a significant depressive effect
on dorsal horn neurons, although evidence suggests that the ventral neurons are likely to be the critical target [39].
Reflex suppression has been used as a parameter to measure anesthetic potency, or minimum alveolar concentration
(MAC), which is defined as the minimum alveolar concentration of inhaled anesthetic at which 50% of people do
not move in response to a noxious stimulus [40,41]. Spinal cord reflex loops pose as a protective mechanism and are
conserved during natural sleep. Postural control is also diminished in the state of anesthesia which differs from the
stereotypical species-specific body postures held during NREM sleep. Furthermore, loss of protective reflexes that
are maintained during sleep, such as the cough and gag reflexes, are lost in anesthesia; therefore, airway patency has
to be artificially maintained.

Autonomic nervous system response

The reflex activation of the sympathetic nervous system in response to noxious stimuli is suppressed by adminis-
tration of appropriate doses of anesthetic agents measured in MAC-BAR, the minimum concentration required
to block the autonomic response [41]. The respiratory response to noxious stimuli consists of raised respiratory
rate, tidal volume and increased tendency of breath-holding and laryngospasm. Anesthetic-induced ventilatory and
cardiorespiratory depression diminishes these responses that would otherwise reverse natural sleep.

Role in cognitive development

Although sleep, like anesthesia, is characterized by amnesia, it is thought to play a key role in memory consolidation
and cognitive development. Conversely, anesthetic use exhibits neurotoxicity at the extremes of age, although the
etiology is poorly understood. In neonates, the actions of typical general anesthetic agents such as NMDA receptor
antagonism and GABAA receptor potentiation have been shown to cause apoptosis and interfere with the neuroge-
nesis process [42]. Postoperative cognitive dysfunction is a common complication of general anesthesia in the elderly
with significant associated morbidity and mortality [43]. The underlying mechanisms are thought to be increased
vulnerability of the aging brain to insult, causing alterations in calcium homeostasis and acceleration of endogenous
neurodegenerative processes [44].

Sleep & anesthesia emergence
Sleep offset occurs rapidly in a matter of minutes. There is intrinsic resistance to reinitiate sleep immediately
after waking but an increased propensity to sleep after deprivation [18]. Conversely, resumption of wakefulness from
general anesthesia can take up to hours and, as discussed previously, is not simply a reversal of the induction process.
The hypnotic component of anesthesia at a supraspinal level renders a patient unrousable even by vigorous stimuli.
During natural sleep, the GABAergic inhibitory postsynaptic potentials, acting in the thalamocortical orientation,
are increased, however it is possible for a moderate stimulus to achieve the required cortical depolarization to induce
consciousness. Under anesthesia, the dominant effects of enhanced GABA-mediated inhibition and depressed
glutamate-mediated excitation on the cortex is such that even high intensities of stimulation are insufficient to
increase the firing rate at the neocortex required for the transition into wakefulness [45].

Additionally, re-anesthetizing a patient can be achieved immediately after anesthetic emergence, and this useful
technique is carried out in procedures where patients are routinely awakened to test responses intraoperatively, such
as during deep brain stimulation electrode implant surgery [46]. Finally, iatrogenic side effects following anesthetic
emergence, such as postoperative nausea and vomiting, cardiorespiratory depression and immune function losses
stand in stark contrast to the refreshing nature of wakefulness after natural sleep [47–49].

Conclusion
Sleep research continues to contribute to the pursuit of understanding the process of general anesthesia. This has
highlighted both striking similarities and differences. The anesthetic state correlates with physiological endpoints of
unconsciousness, analgesia, motor and autonomic reflex suppression and profound depression of brain activity that
goes beyond the level observed during natural sleep. These key differences are crucial to successful induction and
maintenance of anesthesia and to facilitate surgical intervention. The differences must be accounted for in future
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comparative studies to further research in the field and may warrant a move away from modeling the anesthetic
state on sleep.

Future perspective
Substantial progress has been made over the past few decades in neuroscience research evaluating the mechanisms of
sleep and balanced anesthesia. Anesthetic agents targeting specific molecules are now used to achieve different aspects
of the anesthetic state. For example, hypothalamic nuclei have been such targets for anesthetic agents due to their
wake-promoting properties. However, our knowledge remains limited, and there remains scope for further research
on the relationship between sleep and the anesthetic state. Further research exploring the neuronal mechanisms
controlling consciousness in the cortex and thalamus could provide insight into the influence of sleep on anesthesia
and vice versa, improving both our clinical understanding and the practice of anesthesia.

Executive Summary

• Anesthetic onset and sleep onset differ with regard to the neurotransmitters and molecular targets in play, as
well as the anesthetic agent used.

• In recent years, the prevailing supposition is that sleep–wake regulation is contingent on fast neurotransmitters
such as GABA and glutamate.

• Thalamocortical signal loops produce electroencephalogram (EEG) activity with sequential transitioning between
alpha, theta and delta oscillations in both the anesthetic state and natural sleep, with some exceptions.

• At increasing depth of anesthesia and sleep, EEG wave morphologies show changes unique to both sleep and
surgical anesthesia.

• Complete lack of nociceptive response is a striking feature of the anesthetic state that differs from sleep.
• Immobility during anesthesia is produced by active inhibition of neural circuits in the brainstem and spinal cord,

which leads to suppression of reflex withdrawal from noxious stimuli and loss of protective reflexes that are
maintained during sleep.

• Reflex activation of the sympathetic nervous system in response to noxious stimuli is suppressed during
anesthesia, thus diminishing responses that would otherwise reverse natural sleep.

• Although sleep, like anesthesia, is characterized by amnesia, it is thought to play a key role in memory
consolidation and cognitive development.

• Sleep offset occurs rapidly in a matter of minutes with natural resistance to reinitiating sleep immediately.
Resumption of wakefulness from general anesthesia can take much longer and re-anesthetizing a patient can be
achieved immediately after anesthetic emergence.
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