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Introduction
Five percent of patients in trauma centers are affected by pe-
ripheral nerve injury (Belkas et al., 2004; Taylor et al., 2008). 
Since most of these patients are of prime working age, such 
injuries pose a serious economic burden to society (Whitlock 
et al., 2009). Restoration of function after peripheral nerve 
injury remains one of the toughest challenges in surgery. 
Despite the development of microsurgical equipment, with 
which it is now possible to suture the damaged nerves accu-
rately within a short time after injury, complete functional 
recovery after peripheral nerve damage has not yet been 
achieved (Eser et al., 2009). Various methods have been at-
tempted (Vetter et al., 2010; Bosse et al., 2012; Seidel et al., 
2013), but none have obtained complete success, mainly be-
cause the mechanisms underlying selective peripheral nerve 
regeneration remain poorly understood (Calvo et al., 2012; 
Jesuraj et al., 2012). 

To achieve full recovery from nerve injury, high accuracy 
nerve innervation is just as important as robust axonal re-
growth (Ruiter et al., 2011). Axons regenerated from proxi-
mal motor nerve stumps should grow into the motor nerve 
pathways in the distal stump, and vice versa. However, little 
is known about the mechanism underlying the misdirection 

of regenerating axons. To achieve accurate regeneration and 
full functional recovery, more research must be carried out 
to explore how the regeneration accuracy of axons changes 
after injury. Novel experimental approaches, such as retro-
grade labeling (Hoke et al., 2006), have provided us with new 
tools to observe this process. We have used this approach in 
the present study to investigate the regeneration of axons 
after crushing or freezing, two common types of peripheral 
nerve injury, with the aim of providing new insight into che-
motactic regeneration.  

Materials and Methods
Animals 
A total of 92 healthy male Sprague-Dawley rats, aged 8 weeks 
and weighing 250 ± 20 g, were provided by the Experimental 
Animal Center of the Chinese PLA General Hospital. The 
study was approved by the same institute’s Animal Ethics 
Committee in China. 

Establishment of animal models 
Animals were anesthetized by intraperitoneal injection of 
10% chloral hydrate (0.3 mL/100 g) and placed on an op-
erating table in the supine position. A surgical incision was 
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made in the right groin to expose the femoral nerve. Ani-
mals were divided into three groups. In the control group 
(n = 40), the femoral nerve was transected 5 mm proximal 
to the bifurcation point (Brushart et al., 1993). In the crush 
injury group (n = 40), the nerve was transected 5 mm prox-
imal to the bifurcation point, and the femoral nerve trunk 
was crushed using microforceps (WA3010; Head Biotech-
nology, Beijing, China) for 5 seconds (Brushart et al., 1993). 
In the freeze lesion group (n = 12), the femoral nerve was 
transected 7 mm proximal to the bifurcation point, and a 
cotton swab soaked in liquid nitrogen (Air Products, Bei-
jing, China; stored in the Orthopedic Research Institute 
of the Chinese PLA General Hospital was used to freeze 5 
mm of nerve trunk from 2 mm proximal to the bifurcation 
point. The incision was closed in layers after successful in-
jury modeling. 

Retrograde labeling 
A 2% solution of True Blue (Sigma, St. Louis, MO, USA) was 
prepared in distilled water, and a 5% solution of 1,1′-dioc-
tadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate 
(Dil; Sigma) was prepared in dehydrated alcohol. Both solu-
tions were stored at 4°C until use.  

Retrograde labeling was performed 2, 3, 6, and 12 weeks 
postoperatively (Ruiter et al., 2011). At each time point, 10 
animals from the crush injury group, 10 from the freeze 
lesion group, and three from the control group were used. 
Animals were anesthetized by intraperitoneal injection of 
10% chloral hydrate (0.3 mL/100 g), and placed on the op-
erating table in the supine position. An incision was made in 
the right groin, to expose the right femoral nerve, its muscle 
branch, and saphenous nerve branches. The muscle branch 
was cut where it grows into the quadriceps femoris muscle, 
and the same length of saphenous nerve was cut to prepare 
for the next step. A 10 µL microsyringe was used to inject 
5 µL of Dil or True Blue into aseptic plastic chambers. The 
nerve stumps of the muscle branches were inserted into the 
chamber filled with Dil, and the saphenous branch into the 
chamber of True Blue. The incision was closed in layers and 
animals were returned to their home cages with food and 
water ad libitum to recover for 3 days.

Observation of the spinal cord
Three days after retrograde labeling (Hoke et al., 2006), all 
animals were anesthetized with 10% chloral hydrate (0.3 
mL/100 g). The dorsal spinal canal was opened and the 
spinal cord was exposed. The L2–4 segment was carefully re-
moved, placed on a freezing microtome (CE1900; Leica, Ger-
many) at −25°C until frozen solid, then embedded, and sag-
ittal sections were cut using the microtome until the spinal 
gray matter was reached. Three sections (15 µm thickness) 
were taken and immediately observed and photographed 
under a fluorescence microscope (IX70; Olympus, Tokyo, 
Japan). Blue and red fluorescence was used to visualize True 
Blue and Dil, respectively, in the ventral horn of the spinal 
cord. Blue, red, and purple (colabeled) neurons were count-
ed using Image-Pro Plus 6.0 image analysis software (Media 

Cybernetics, USA).

Statistical analysis
All data are presented as the mean ± SD. Data were analyzed 
by one-way analysis of variance and the least significant dif-
ference post-hoc test, using SPSS 17.0 software (SPSS, Chica-
go, IL, USA). P < 0.05 was considered statistically significant. 

Results
Only single-labeled Dil-positive (red) neurons were seen in 
the anterior horn of the spinal cord in the control group. 
In the crush and freeze injury groups, the percentage of Dil 
single-labeled neurons in the anterior ventral horn increased 
over time, with significant increases at each time point after 
2 weeks, after both crush and freeze injuries (P < 0.01). No 
significant differences between the crush and freeze injury 
groups were observed in Dil single-labeled cell counts at any 
time point (Tables 1, 2, Figure 1).

Discussion
Peripheral nerve injury is common in the trauma center and 
battlefield. The present study was designed to investigate 
regeneration after two types of common peripheral nerve 
damage: crush injury and freeze lesion. A series of patho-
physiological changes is known to occur after peripheral 
nerve injury, in the neurons and axons at the injury site, as 
well as at target organs, and in the central nervous system 
(Lieberman, 1971). Nerve fibers at the proximal nerve stump 
begin to grow, while at the distal stump, axons break down, 
myelinolysis takes place and a new medullary sheath begins 
to form, providing a pathway to the growing axons from the 
proximal stump (Abdullah et al., 2013; Muheremu et al., 
2013). Pathological changes after freeze injury include dam-
age to the endoneurium, epineurium, and Schwann cells, 
at the injury site (Gaudet et al., 2011; Scheib et al., 2013). 
The perineurium remains intact. However, axon regrowth is 
impeded by the scar tissue created by the ruptured endoneu-
rium and Schwann cells (Dubový et al., 2013; Suganuma et 
al., 2013; Gordon 2014), which impairs reinnervation to the 
distal target organs. Crush injury may also cause perineurial 
injury, leading to axonal misrouting.

With the development of microsurgical techniques, the 
timely and accurate suturing of peripheral nerve stumps is 
now possible, and considerable axonal regeneration can be 
achieved through part of the lesion. However, to date, it has 
not been possible to restore the function of the target organs 
to their pre-injury level. In the process of peripheral nerve 
regeneration, axonal misdirection may result in functional 
deficiency of original target organs (Madison et al., 2007; 
Vetter et al., 2010; Corriden et al., 2012; Yuan et al., 2013; 
Megan et al., 2014).    

The theory of chemotactic nerve regeneration, proposed 
by Cajal (1928), assumes that nerve stumps tend to grow to-
wards their original nerve pathways. Even before the 20th cen-
tury, Bailey et al. (1993) found that nerve fibers regrowing 
from the proximal nerve stump tended to follow their orig-
inal pathways, and called this phenomenon neurotropism, 
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Table 1 Number of labeled neurons in the anterior horn of rat spinal cords after surgery for crush injury or freeze lesioning

Group

Time after injury (weeks) 

2 3 6 12 

Crush injury Dil+ (Red) 86.4±7.2 124.6±14.9 185.4±18.2 322.7±24.2

True Blue+ (Blue) 84.2±7.4 78.2±6.6 62.2±8.4 47.3±8.4

Dil+/True Blue+ (Purple) 32.6±5.6 26.9±4.4 18.9±4.7 8.9±2.4

Freeze injury Dil+ (Red) 61.2±5.2 114.2±11.8 176.5±16.3 276.4±19.6

True Blue+ (Blue) 58.4±4.3 65.3±5.2 53.7±6.3 30.5±5.1

Dil+/True Blue+ (Purple) 62.2±8.4 23.4±2.4 16.7±3.7 7.5±1.8

Number of prechlorate (Dil) single-labeled neurons increased with time, whereas the number of True Blue single-labeled and Dil/True Blue double-
labeled neurons decreased. Significant increases were observed in Dil single-labeled neurons at each time point from 2 weeks postoperatively (P < 
0.01). No differences were observed between crush and freeze groups in the number of Dil single-labeled neurons at each time point (P > 0.05). 
Data are expressed as the mean ± SD (one-way analysis of variance and the least significant difference test).

Table 2 Percentage of prechlorate (Dil) single-labeled neurons in the 
anterior horn of rat spinal cords after surgery for crush and freeze 
injuries 

Group 

Time after injury (weeks)

2  3 6 12 

Crush injury 43.6±7.6 61.8±11.4 75.2±12.1 83.4±6.0

Freeze injury 44.2±3.7 61.6±7.6 74.4±11.4 77.7±9.2

Percentage of  Dil single-labeled neurons increased with time. 
Significant increases were observed at each time point after 2 weeks 
postoperatively (P < 0.01). Data are expressed as the mean ± SD (one-
way analysis of variance and the least significant difference test).

until Cajal (1928) renamed it chemotaxis. Cajal assumed 
chemotactic nerve growth to have histological, topograph-
ical, and target organ specificity. Although the theory of 
chemotaxis in nerve regeneration has been widely accepted, 
there is still much dispute about its specific characteristics 
and mechanisms. Furthermore, the phenomenon was de-
nied by Weiss and Tailor with their famous experiment using 
Y tubes made from autologous blood vessels (Weiss et al., 
1943, 1944), which discouraged research on chemotaxis for 
several decades. Lundborg (1986, 2000), Politis (1982, 1983, 
1985), Seckel (1984), Mackinnon (1986), Bruneli (1987), 
Brushart (1993), and Chiu et al. (1982, 1988, 1990) demon-
strated the existence of selective nerve regeneration and ex-
plained its chemotactic characteristics. It was presumed that 
chemotactic regeneration of axons after peripheral nerve 
injury promoted the accuracy of nerve reinnervation and 
the functional recovery of target organs (Jesuraj et al., 2012; 
Zhou et al., 2014). 

However, although chemotaxis is now a generally accepted 
notion, there is still no consensus on its characteristics. Poli-
tis (1985) used femoral nerve retrograde labeling to show 
that axons grown from proximal motor nerve stumps tend 
to follow distal motor nerve pathways, and proximal senso-
ry nerve stumps tend to follow distal sensory pathways. He 
suggested that the specific factors produced by distal nerve 
stumps facilitate the selective growth of proximal nerve ax-

ons. Madison et al. (2007) proposed the “pruning hypothe-
sis”, explaining that axons following the wrong pathway will 
be pruned back, gradually increasing the accuracy of nerve 
innervation. 

Our results from the present study show that the type of 
neurons in the anterior ventral horn at 2 weeks is random, 
but that accuracy increased significantly with time. After in-
jury, nearly 80% of regenerated motor axons grew into their 
original pathways. The gradual increase of the proportion of 
Dil-labeled neurons and the gradual decrease of True Blue 
labeled and True Blue + Dil labeled neurons in the anterior 
ventral horn supports the pruning hypothesis, indicating 
that misdirected nerve fibers gradually shrink back in the 
inappropriate microenvironment. Hoke et al. (2006) also 
suggested that chemotactic nerve growth may be affected by 
different Schwann cell phenotypes. In their research, they 
found that Schwann cells of motor and sensory nerves have 
different phenotypes and produce different neurotrophic 
factors. Tsubokawa et al. (1999) proposed that Schwann 
cells strongly promote the growth of sensory nerves, but 
have little effect on motor axons. In our experiment, al-
though massive Schwann cell death occurs after the freeze 
lesion, axonal regeneration accuracy remains equal to that 
of the crush injury group, contrary to Tsubokawa’s theory. 
Our results suggest that perineural suture may lead to more 
accurate reinnervation than epineural suture (Bonini et al., 
2013; de Ruiter et al., 2014); and that relatively long nerve 
gaps may be bridged by tubes that simulate the stereochem-
ical structure of nerves (Nectow et al., 2011; Xin et al., 2011; 
Kim et al., 2013). 

Novel experimental methods can be powerful tools (Vyas 
et al., 2010; Lee et al., 2012; Pujic et al., 2013). In the present 
study, we made some improvements to the conventional 
retrograde labeling technique. Since we found that it was 
impossible to inject Dil and True Blue into the sephanous 
nerve and muscle branch of the femoral nerve with the 
smallest available microinjector (10 µL), because of the 
extremely small diameter of these branches, we used small 
plastic chambers filled with each drug, and put the nerve 
stumps into those chambers. Viewing sagittal sections of 
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pathways of the distal muscle branch were also considered 
to be correctly innervated (Politis et al, 1985). Future stud-
ies should be designed to avoid such interferences and find 
more accurate ways to evaluate correct nerve regeneration. 

In summary, the accuracy of peripheral reinnervation rises 
gradually over time and may be the result of pruning at the 
injury site. Moreover, nerve stumps can regenerate with high 
accuracy over a relatively long distance if the integrity of 
perineurium is preserved.
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